Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


2023 | 79 | 90-113

Article title

Bump in the Road to Global Energy Transition: The Bottlenecks of the Carbon Markets

Content

Title variants

PL
Wyboista droga do globalnej transformacji energetycznej – wyzwania związane z rynkami uprawnień do emisji dwutlenku węgla

Languages of publication

Abstracts

PL
W niniejszym artykule opracowano teoretyczne ramy oceny kluczowych czynników napędzających rynki uprawnień do emisji dwutlenku węgla, a więc dotyczące podejścia opartego na rynkach emisji dwutlenku węgla w globalnej transformacji energetyki. Opracowane ramy globalnej transformacji niskoemisyjnej energii (GLCET) są następnie stosowane do sześciu metaprzeglądów literatury, z wyjątkiem przeglądów literatury grup 1 i 2 (sekcja 2). Na podstawie tego metaprzeglądu w badaniu uwzględniono również kluczowe czynniki GLCET, a mianowicie karbonizację sektora energetycznego, stopniowe wycofywanie paliw kopalnych, bezpieczeństwo geopolityczne. Opierając się na technice MOSCOW, autor konkluduje, że karbonizacja energii elektrycznej jest bardzo ważna i krytyczna (MO), stopniowe wycofywanie zasobów kopalnych jest trudne, ale wymaga pewnych rozwiązań (S), a pozycjonowany na trzecim miejscu (W) wpływ bezpieczeństwa geopolitycznego na GLCET nie odznacza się ważnością. Głównym zaleceniem autora jest opracowanie ram badania jakościowego pozwalającego zrozumieć główne wyzwania globalnej transformacji energetycznej.
EN
This study develops a theoretical framework to assess the key drivers of carbon markets, that is, carbon markets approach in the global energy transition. The developed Global Low Carbon Energy Transition (GLCET) framework is then applied to the six metareviews of the literature, with the exception of the literature reviews of Groups 1 and 2 (Section 2). Based on this metareview, the study also considers the key drivers of the GLCET, namely, DE carbonisation of the power sector, fossil fuel phase-out, geopolitical security. Based on the MOSCOW technique, the author concludes that DE carbonisation of electricity is very important and critical (MO), phasing out fossil resources is challenging but requires some solutions (S) and in third place (W) the impact of geopolitical security on GLCET is not very important. The author’s main recommendation is to develop a more qualitative framework to understand the main challenges of the global energy transition.

Year

Volume

79

Pages

90-113

Physical description

Dates

published
2023

Contributors

  • Maria Curie-Skłodowska University in Lublin

References

  • Alola, A.A., & Joshua, U. (2020). Carbon Emission Effect of Energy Transition and Globalization: Inference from the Low-, Lower Middle-, Upper Middle-, and HighIncome Economies. Environmental Science and Pollution Research International, 27(30), 38276–38286. DOI: 10.1007/s11356-020-09857-z.
  • Arens, M., Åhman, M., & Vogl, V. (2021). Which Countries Are Prepared to Green Their Coal-Based Steel Industry with Electricity? – Reviewing Climate and Energy Policy as Well as the Implementation of Renewable Electricity. Renewable and Sustainable Energy Reviews, 143, 110938. DOI: 10.1016/j.rser.2021.110938.
  • Asghar, A.R., Bhatti, S.N., Tabassum, A., & Shah, S.A.A. (2017). The Impact of Analytical Assessment of Requirements Prioritization Models: An Empirical Study. International Journal of Advanced Computer Science and Applications, 8(2), 303–313. DOI: 10.14569/ijacsa.2017.080240.
  • Bazilian, M., Bradshaw, M., Gabriel, J., Goldthau, A., & Westphal, K. (2020). Four Scenarios of the Energy Transition: Drivers, Consequences, and Implications for Geopolitics. Wires Climate Change, 11(2). DOI: 10.1002/wcc.625.
  • Blondeel, M., Bradshaw, M., Bridge, G., & Kuzemko, C. (2021). The Geopolitics of Energy System Transformation: A Review. Geography Compass, 15(7), e12580. DOI: 10.1111/gec3.12580.
  • Cherp, A., Jewell, J., & Goldthau, A. (2011). Governing Global Energy: Systems, Transitions, Complexity. Global Policy, 2(1), 75–88. DOI: 10.1111/j.1758-5899.2010.00059.x.
  • Child, M., Koskinen, O., Linnanen, L., & Breyer, Ch. (2018). Sustainability Guardrails for Energy Scenarios of the Global Energy Transition. Renewable and Sustainable Energy Reviews, 91, 321–334. DOI: 10.1016/j.rser.2018.03.079.
  • Cronin, J., Anandarajah, G., & Dessens, O. (2018). Climate Change Impacts on the Energy System: A Review of Trends and Gaps. Climatic Change, 151(2), 79–93. DOI: 10.1007/s10584-018-2265-4.
  • Chestney, N. (2022, December 16). Global Coal Consumption to Reach All-Time High This Year – IEA. Reuters. Retrieved from: https://www.reuters.com/markets/commodities/global-coal-consumption-reach-all-time-high-this-year-iea-2022-12-16/.
  • Dorian, J.P., Shealy, M.T., & Simbeck, D.R. (2020). The Global Energy Transition: Where Do We Go From Here? IAEE Energy Forum. Retrieved from: file:///C:/Users/U31/Downloads/202dor.pdf.
  • Durand, R., & Thornton, P.H. (2018). Categorizing Institutional Logics, Institutionalizing Categories: A Review of Two Literatures. Academy of Management Annals, 12(2), 631–658. DOI: 10.5465/annals.2016.0089.
  • Fattouh, B., Poudineh, R., & West, R. (2019). The Rise of Renewables and Energy Transition: What Adaptation Strategy Exists for Oil Companies and Oil-Exporting Countries?. Energy Transitions, 3(1–2), 45–58. DOI: 10.1007/s41825-019-00013-x.
  • Goldthau, A., & Westphal, K. (2019). Why the Global Energy Transition Does Not Mean the End of the Petrostate. Global Policy, 10(2), 279–283. DOI: 10.1111/1758- 5899.12649.
  • Guo, R., Ye, H., & Zhao, Y. (2022). Low Carbon Dispatch of Electricity-Gas-Thermal-Storage Integrated Energy System Based on Stepped Carbon Trading. Energy Reports, 8(Sup8), 449–455. DOI: 10.1016/j.egyr.2022.09.198.
  • Hafner, M., & Tagliapietra, S. (Eds.). (2020). The Geopolitics of the Global Energy Transition. Cham: Springer Nature.
  • Henderson, J., & Sen, A. (2021, September). The Energy Transition: Key Challenges for Incumbent and New Players in the Global Energy System. Oxford Institute for Energy Studies Paper. Retrieved from: https://www.oxfordenergy.org/wpcms/wp-content/uploads/2021/09/Energy-Transition-Key-challenges-for-incumbent-players-in-theglobal-energy-system-ET01.pdf.
  • Korosteleva, J. (2022). The Implications of Russia’s Invasion of Ukraine for the EU Energy Market and Businesses. British Journal of Management, 33(4), 1678–1682. DOI: 10.1111/1467-8551.12654.
  • Meckling, J. (2018). Governing Renewables: Policy Feedback in a Global Energy Transition. Environment and Planning C: Politics and Space, 37(2), 317–338. DOI: 10.1177/2399654418777765.
  • Muttitt, G., & Kartha, S. (2020). Equity, Climate Justice and Fossil Fuel Extraction: Principles for a Managed Phase Out. Climate Policy, 20(8), 1024–1042. DOI: 10.1080/14693062.2020.1763900.
  • Overland, I., Bazilian, M., Ilimbek Uulu, T., Vakulchuk, R., & Westphal, K. (2019). The GeGaLo Index: Geopolitical Gains and Losses after Energy Transition. Energy Strategy Reviews, 26, 100406. DOI: 10.1016/j.esr.2019.100406.
  • Pastukhova, M., & Westphal, K. (2020). Governing the Global Energy Transformation. In: M. Hafner, & S. Tagliapietra (Eds.). The Geopolitics of the Global Energy Transition (pp. 341–364). Cham: Springer Nature.
  • Pye, S., & Bataille, Ch. (2016). Improving Deep Decarbonization Modelling Capacity for Developed and Developing Country Contexts. Climate Policy, 16(Sup1), S27–S46. DOI: 10.1080/14693062.2016.1173004.
  • Quarton, Ch.J., Tlili, O., Welder, L., Mansilla, Ch., Blanco, H., & Heinrichs, H., Leaver, J., Samsatli, N.J., Lucchese, P., Robinius, M., & Samsatli, S. (2020). The Curious Case of the Conflicting Roles of Hydrogen in Global Energy Scenarios. Sustainable Energy & Fuels, 4(1), 80–95. DOI: 10.1039/c9se00833k.
  • Quitzow, R., Bersalli, G., Eicke, L., Jahn, J., Lilliestam, J., & Lira, F. et al. (2021). The COVID-19 Crisis Deepens the Gulf between Leaders and Laggards in the Global Energy Transition. Energy Research & Social Science, 74, 101981. DOI: 10.1016/j.erss.2021.101981.
  • Rapier, R. (2022, August 9).Global Coal Consumption Surged in 2021. Forbes. Retrieved from: https://www.forbes.com/sites/rrapier/2022/08/09/global-coal-consumptionsurged-in-2021/?sh=4a540ca3d9af.
  • Regulatory Principles and Actions Relating to Energy Decarbonisation That Contribute to a Sustainable and Efficient Framework to Combat Climate Change. (n.d.). Iberdrola. Retrieved December 13, 2022, from: https://www.iberdrola.com/aboutus/decarbonized-economy-principles-regulatory-actions.
  • Rietveld, E., Boonman, H., van Harmelen, T., Hauck, M., & Bastein, T. (2018). Global Energy Transition and Metal Demand. TNO. DOI: 10.13140/RG.2.2.25790.54086.
  • Roemer, K.F., & Haggerty, J.H. (2021). Coal Communities and the U.S. Energy Transition: A Policy Corridors Assessment. Energy Policy, 151, 112112. DOI: 10.1016/j.enpol.2020.112112.
  • Shah Jahan, M., Azam, F., Waseem Anwar, M., Amjad, A., & Ayub, K. (2019). A Novel Approach for Software Requirement Prioritization. 7th International Conference in Software Engineering Research And Innovation (CONISOFT). DOI: 10.1109/CONISOFT.2019.00012.
  • Svobodova, K., Owen, J.R., Harris, J., & Worden, S. (2020). Complexities and Contradictions in the Global Energy Transition: A Re-evaluation of Country-Level Factors and Dependencies.Applied Energy, 265, 114778. DOI: 10.1016/j.apenergy.2020.114778.
  • Tian, J., Yu, L., Xue, R., Zhuang, S., & Shan, Y. (2022). Global Low-Carbon Energy Transition in the Post-COVID-19 Era. Applied Energy, 307, 118205. DOI: 10.1016/j.apenergy.2021.118205.
  • Van de Graaf, T., & Colgan, J. (2016). Global Energy Governance: A Review and Research Agenda. Palgrave Communications, 2(1), 15047. DOI: 10.1057/palcomms.2015.47.
  • Van de Graaf, T., Sovacool, B.K., Ghosh, A., Kern, F., & Klare, M.T. (2016).The Palgrave Handbook of the International Political Economy of Energy. London: Palgrave Macmillan UK.
  • Wang, Q., & Wang, S. (2020). Is Energy Transition Promoting the Decoupling Economic Growth from Emission Growth? Evidence from the 186 Countries. Journal of Cleaner Production, 260, 120768. DOI: 10.1016/j.jclepro.2020.120768.
  • Watari, T., McLellan, B.C., Giurco, D., Dominish, E., Yamasue, E., & Nansai, K. (2019). Total Material Requirement for the Global Energy Transition to 2050: A Focus on Transport and Electricity.Resources, Conservation and Recycling, 148, 91–103. DOI: 10.1016/j.resconrec.2019.05.015.
  • Wilson, Ch., & Tyfield, D. (2018). Critical Perspectives on Disruptive Innovation and Energy Transformation. Energy Research & Social Science, 37, 211–215. DOI: 10.1016/j.erss.2017.10.032.
  • York, R., & Bell, S.E. (2019). Energy Transitions or Additions?: Why a Transition from Fossil Fuels Requires More Than the Growth of Renewable Energy. Energy Research & Social Science, 51, 40–43. DOI: 10.1016/j.erss.2019.01.008.
  • Zakeri, B., Paulavets, K., Barreto-Gomez, L., Gomez Echeverri, L., & Pachauri, S., et al. (2022). Pandemic, War, and Global Energy Transitions. Energies, 15(17), 6114. DOI: 10.3390/en15176114.

Document Type

Publication order reference

Identifiers

Biblioteka Nauki
22429362

YADDA identifier

bwmeta1.element.ojs-doi-10_15804_athena_2023_79_05
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.