PL EN


2017 | 51 | 5 |
Article title

Portfel wieloskładnikowy z nieprecyzyjną wartością bieżącą daną trapezoidalną liczby rozmytej

Authors
Content
Title variants
Languages of publication
PL
Abstracts
PL
Praca zawiera analizę portfela wieloskładnikowego pod kątem ryzyka nieprecyzyjności. Nieprecyzyjność przesłanek decyzyjnych jest modelowana nieprecyzyjnym określeniem wartości bieżącej instrumentów składowych portfela podanej subiektywnie przez inwestora w postaci trapezoidalnej liczby rozmytej. Dla poszczególnych składników oraz skonstruowanego z nich portfela określone są miary obarczającej je nieprecyzyjności, badanej na podstawie rozmytych czynników dyskontujących. Analizowany model teoretyczny, oprócz przesłanek racjonalnych, uwzględnia czynniki behawioralne oraz techniczne i technologiczne wpływające na decydenta. Oceny ryzyka nieprecyzyjności rozważanego portfela dokonano przy pomocy miar energii i entropii. Przedstawiono również studium przypadku prezentujące sposób działania modelu i metody obliczania miar nieprecyzyjności. Na podstawie przeprowadzonych badań sformułowano wnioski dotyczące postaci i zachowania ryzyka nieprecyzyjności portfela.
EN
The article includes an analysis of a multiple asset portfolio, paying special attention to an imprecision risk, burdening the component instruments. The imprecision of decision premises is modeled in the imprecisely stated present value of portfolio assets, given subjectively by the investor in the form of trapezoidal fuzzy numbers. Next, for each asset and consisting portfolio we define imprecision measures appointed based on a fuzzy discounting factor. Analyzed theoretical model takes into account not only rational premises of a decision, but also allows for an inclusion of behavioral, technical and technological factors. During the performed research, relations between imprecision risk measures of assets and portfolio were found. Imprecision risk assessments are computed based on energy and entropy measures. Also, a case study is given, presenting mechanics of the model and methods of calculating risk measures. Performed analysis led to formulating some conclusions about the form and behavior of imprecision risk burdening a portfolio.
Year
Volume
51
Issue
5
Physical description
Dates
published
2017
online
2017-12-22
Contributors
author
References
  • Dubois D., Prade H., Fuzzy Sets and Systems: Theory and Applications, “Mathematics in Science and Engineering” 1980, Vol. 144.
  • Fang Y., Lai K.K., Wang S., Fuzzy portfolio optimization. Theory and methods, “Lecture Notes in Economics and Mathematical Systems” 2008, Vol. 609, DOI: https://doi.org/10.1007/978-3-540-77926-1.
  • Hirota K., Concepts of probabilistic sets, “Fuzzy Sets and Systems” 1981, Vol. 5, DOI: https://doi.org/10.1016/0165-0114(81)90032-4.
  • Huang X., Optimal project selection with random fuzzy parameters, “Computers and Mathematics with Applications” 2012, Vol. 55.
  • Huang X., Portfolio selection with fuzzy returns, “Journal of Intelligent & Fuzzy Systems” 2007, Vol. 18.
  • Khalili S., Fuzzy Measures and Mappings, “Journal of Mathematical Analysis and Applications” 1979, Vol. 68, DOI: https://doi.org/10.1016/0022-247X(79)90101-X.
  • Klir G.J., Developments In Uncertainty-Based Information, [w:] M. Yovits (ed.), Advances in Computers, Vol. 36, Academic Press, San Diego 1993.
  • Kosko B., Fuzziness vs. probability, “Int. J. General Systems” 1990, Vol. 17, DOI: https://doi.org/10.1080/03081079008935108.
  • Kuchta D., Project scheduling to maximize fuzzy net present value, [w:] Proceedings of the World Congress on engineering, Vol. 2, London, U.K., 2011.
  • Lesage C., Discounted cash-flows analysis. An interactive fuzzy arithmetic approach, “European Journal of Economic and Social Systems” 2001, Vol. 15(2), DOI: https://doi.org/10.1051/ejess:2001115.
  • Li X., Qin Z., Kar S., Mean-Variance-Skewness model for portfolio selections with fuzzy returns, “European Journal of Operational Research” 2010, Vol. 202, DOI: https://doi.org/10.1016/j.ejor.2009.05.003.
  • Luca A. De, Termini S., A definition of non-probabilistic entropy in the setting of fuzzy set theory, “Information and Control” 1972, Vol. 20, DOI: https://doi.org/10.1016/S0019-9958(72)90199-4.
  • Markowitz H.S.M., Portfolio selection, “Journal of Finance” 1952, Vol. 7(1),DOI: https://doi.org/10.1111/j.1540-6261.1952.tb01525.x.
  • Piasecki K., Behavioral Present Value, “SSRN Electronic Journal” 2011, Vol. 1.
  • Piasecki K., Siwek J., Portfel dwuskładnikowy z trójkątnymi rozmytymi wartościami bieżącymi – podejście alternatywne, „Przegląd Statystyczny” 2017, nr 1.
  • Siwek J., Portfel dwuskładnikowy – przypadek wartości bieżącej danej trapezoidalną liczbą rozmytą, „Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach” 2015a (w recenzji).
  • Siwek J., Portfel dwuskładnikowy – studium przypadku dla wartości bieżącej danej jako trójkątna liczba rozmyta, „Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach” 2015b, z. 241.
  • Tanaka H., Guo P., Turksen B., Portfolio selection based on fuzzy probabilities and possibility distributions, “Fuzzy Sets and Systems” 2000, Vol. 111, DOI: https://doi.org/10.1016/S0165-0114(98)00041-4.
  • Wang S., Zhu S., On fuzzy portfolio selection problems, “Fuzzy Optimization and Decision Making” 2002, Vol. 1, DOI: https://doi.org/10.1023/A:1020907229361.
  • Ward T.L., Discounted fuzzy cash flow analysis, Fall Industrial Engineering Conference Proceedings, Berkeley 1985.
  • Zadeh L.A., Fuzzy sets, “Information and Control” 1965, Vol. 8, DOI: https://doi.org/10.1016/S0019-9958(65)90241-X.
  • Zhou R., Cai R., Tong G., Applications of entropy in finance: A review, “Entropy” 2013, Vol. 15, DOI: https://doi.org/10.3390/e15114909.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.ojs-doi-10_17951_h_2017_51_5_293
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.