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Abstract : In economic studies researchers are often interested in the estimation of 
the distribution function or certain functions of the distribution function such as 
quantiles. This work focuses on the estimation quantiles as inverses of the estimates 
of the distribution function in the presence of auxiliary information that is correlated 
with the study variable. In the paper a plug-in estimator of the distribution function 
is proposed which is used to obtain quantiles in the population and in the small ar-
eas. Performance of the proposed method is compared with other estimators of the 
distribution function and quantiles using the simulation study. The obtained results 
show that the proposed method usually has smaller relative biases and relative RMSE 
comparing to other methods of obtaining quantiles based on inverting the distribu-
tion function.
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Introduction

Nowadays increasing demand for statistical data can be observed. Data are regu-
larly collected to provide sufficient information about considered populations. 
Such studies are conducted both by official statistics and private research insti-
tutes. One of the most cost-effective ways of collecting data is sample surveys. 
A well-planned and organized sample survey allow inference about population 
parameters with sufficient accuracy.

Lots of the research in the area of sampling survey methodology is mainly 
concentrated on the estimation of the mean or the total, rather than median or 
other quantiles (Särndal, Swenson, & Wretman, 1992). However quantiles are 
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definitely parameters of practical interest especially in the field of economics 
and business. Quantiles are commonly used for instance in measuring income 
distribution and determining poverty lines (Osier, 2009; Vijay & Betti, 2011). 
Moreover median (quantile of order 0.5) rather than mean is considered to be 
a more appropriate measure of location for the skewed distribution that re-
searchers often deal with in economic data such as income, expenditures, etc. 
(Kuk & Mak, 1989).

There are two main approaches in quantile estimation. The first is based 
on obtaining quantiles as inverses of the cumulative distribution function 
and the second approach uses direct quantile estimators such as synthetic 
estimators (Stachurski, 2018). This paper is concerned with estimating the 
distribution function and getting quantiles in particular subpopulations for 
which sample sizes are small. In the paper there is presented a generalization 
of the estimator of the distribution function proposed by Salvati, Chandra 
and Chambers (2012). The main goal of this paper is to obtain an estimate 
of the distribution function that allows the estimating of quantiles with bet-
ter precision. The proposed method is based on the use of auxiliary informa-
tion that is assumed to be known not only for sampled elements but also for 
each element of the considered population. The main emphasis of the paper 
is on the problem of the estimation of the quantiles in small areas. In order 
to estimate characteristics of small area the linear mixed model is used which 
belongs to the class of small area models (Rao & Molina, 2015). Not only are 
linear mixed models used in the small area estimation but they can be also 
applied for modelling longitudinal data (Mihi-Ramirez, Arteaga-Ortíz, & 
Ojeda-González, 2019).

The structure of the article is as follows. Section 1 presents the basic con-
cepts of small area statistics. In Section 2 a review of different estimators of 
the cumulative distribution function is presented. In Section 3 the proposed 
estimator of the distribution function is described. Section 4 is devoted to the 
conducted simulation study. This section describes algorithm of the simula-
tion study, used datasets and the model. Discussion of the obtained results is 
also included. The last section contains an overall summary of the obtained 
results and includes some limitations of the considered proposition and direc-
tions for future research.

1. Small area estimation

Small area estimation is a branch of statistics dealing with methods of gather-
ing data and inference about distinguished subpopulations with small or even 
zero sample sizes. Subpopulations can be distinguished under many criteria 
such as: a geographical criterion (regions, municipalities, etc.), socio-demo-
graphic (e.g. cohort; Basuki, Widyanti, & Rajiani, 2021), professional status of 
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individuals, source of income, type of household), in the case of higher educa-
tion institutions it could be the education area (Mazurek, Korzyński, & Górska, 
2019) and in the case of enterprises, for instance in terms of the number of 
employees, the form of ownership or the type of economic activity. In order 
to define precisely the term “small area” it is necessary to define a direct esti-
mator. The direct estimator is based only on information of the variable of in-
terest from the domain of interest and the period of interest. A direct domain 
estimator may also use some auxiliary information. One of the most popular 
definition of the term “small area” is provided by Rao and Molina (2015). They 
used this term for “any domain for which direct estimates of adequate preci-
sion cannot be produced”. The term “small” is related to the small sample size 
in the domain of interest.

In small area estimation it is quite common to use unit-level models 
(Tzavidis, Marchetti, & Chambers, 2010). It is assumed that the population 
Ω of size N can be divided into D mutually exclusive and exhaustive domains 
Ωd of size Nd. The sample s in the dth domain is denoted by sd = s ∪ Ωd and its 
size is nd. One of the most popular models used in small area estimation is the 
generalized linear mixed model  which involves both random and fixed effects. 
The model follows the assumptions (Rao & Molina, 2015):

 

2

)
0

(
( )

0ξ

ξ

ξ

E
E

D

= + +
 = =
     =       

Y Xβ Zv e
e
v
v G 0
e 0 R

 (1)

where Y is a vector of the study continuous variable of size N × 1 (in the mod-
el-based approach it is assumed that values of the study variable are realiza-
tions of a random variable with distribution denoted by ξ), X is a matrix of 
size N × p for fixed effects, Z is a matrix of size N × q for random effects, β is 
an unknown vector of fixed effects of size p × 1, v is an unknown vector of 
random effects and e is a vector of random components of size N × 1. It is also 
assumed that v and e are independently distributed with covariance matrices 
G and R, respectively.

Without limiting the generality, the model (1) can be partition into sampled 
and non-sampled parts as follows (Rao & Molina, 2015):
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2. Estimation of the distribution function

The distribution function of the vector of the random variable Y at t is defined 
as a fraction of population elements not exceeding t (Dorfman, 2009):
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where I(u) is the indicator function. The distribution function follows the ba-
sic properties:

 – FN(t) is a monotone non-decreasing function,
 – FN(t) is a step function with step size N–1,
 – 0 ≤ FN(t) ≤ 1.

On the one hand estimation of the FN(t) for fixed t simplifies to the estima-
tion of the mean of zeros and ones. However usually there is a need to estimate 
the FN(t) for more than one and what is more, these estimates have to be coor-
dinated, especially when FN(t) is estimated in order to get quantiles.

Silva and Skinner (1995) and also Dorfman (2009) present a list of some criteria 
and desired properties of estimators of the distribution function denoted by ˆ( )F t :
1. ˆ( )F t  is a genuine distribution function. It means that ˆ( )F t  is at least non-

decreasing function and ˆ( )F t  satisfies the boundary condition: 0 ≤ ˆ( )F t  ≤ 1;
2. ˆ( )F t  is simple to calculate. For instance obtaining some of estimators including 

estimators based on the Monte Carlo simulation is definitely time-consuming;
3. ˆ( )F t  is easily invertible to get quantiles. The distribution function is a basic 

statistic underlying many others (Serfling, 1980). It is often estimated in 
order to obtain population quantiles;

4. ˆ( )F t  is unbiased or asymptotically unbiased;
5. ˆ( )F t  is consistent – ˆ( )F t  tends to approaches to F(t), as the sample size in-

creases;
6. ˆ( )F t  is an outlier-robust estimator. It is especially important in the case 

of economic research where outlying data are often encountered (Ren 
& Chambers, 2003);

7. ˆ( )F t  is efficient. It signifies that the mean square error of should be less than 
MSE of competing estimators;

8. ˆ( )F t  has a readily formulated variance and an estimator of this variance;
9. ˆ( )F t  is calibrated to any ancillary variable. It is desirable for ˆ( )F t  to ap-

proaches F(t) as x approaches y. It means that if the study variable is re-
placed by one of the auxiliary variables, then the following equation should 
be satisfied: ˆ( )F t  = F(t);

10. definition of ˆ( )F t  is automatic. This implies that ˆ( )F t  does not require any 
initial specification of a model formula or bandwidths.

However, it must be said that above criteria are not equally important. 
Moreover, those criteria are not compatible. For instance aiming for simplic-
ity could negatively affect the effectiveness of an estimator.
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3. Estimation of the distribution function in small areas

The paper considers mainly the problem of the estimation the distribution 
function in small areas. The distribution function of the vector of the random 
variable Y in dth domain at t is defined as a fraction of dth subpopulation ele-
ments not exceeding t (Salvati et al., 2012):
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A broad overview of methods used to estimate the distribution function is 
presented by Dorfman (2009). A convenient estimator of the distribution func-
tion at t in the dth subpopulation has the following form (Dorfman, 2009):
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 is assumed, then the Hajek estimator of the 

distribution function at t in the dth subpopulation is obtained (Hajek, 1971; 
Salvati et al., 2012):
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where weights di are inverses of first order inclusion probabilities: di = πi
–1, 

zi = I(yi ≤ t). In the case of simple random sampling without replacement the 
Hajek estimator reduces to the naïve estimator, given by the following formula:
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The variance of (6) and the estimator of this variance are given by the fol-
lowing formulas (Särndal et al., 1992):
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where the double summation in formulas (8) and (9) refers to summing ele-
ments of the second-order inclusion probabilities matrix, where those prob-
abilities are denoted by πij.

However, the Hajek estimator given by (6) cannot be used if the sample size 
in the dth domain equals zero. It implies that the possibilities of application 
of (6) in small areas estimation are quite limited. The Hajek estimator is often 
used as a benchmark against which other estimators are compared and those 
comparisons are usually successful. Empirical results show that the Hajek es-
timator is substantially biased in small areas due to the fact it does not use any 
information about a  study variable from other domains (Rueda, Martinez, 
Martinez, & Arcos, 2007).

Chambers and Dunstan (1986) is the groundbreaking paper in the field of 
the estimation of the distribution function using auxiliary information. In this 
paper the following heteroscedastic regression model is assumed:

 Yi = βxi + v(xi)εi (10)

where β is unknown regression parameter, xi is the value of the auxiliary vari-
able, v() is the known function of x and errors εi ~ G(0, σ2) are independent 
and follow a distribution G with mean 0 and variance σ2. Then assuming model 
(10) the estimator of the distribution function at t in the population has the 
following formula (Chambers & Dunstan, 1986):
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Estimator (11) satisfies properties 1, 2 and 9 (Dorfman, 2009). Chambers 
and Dunstan (1986) made it clear that their approach can be used also for more 
general model than (10). In order to use the Chambers and Dunstan (1986) 
approach a generalized linear mixed model given by (1) is assumed. Then the 
Chambers-Dunstan estimator of the distribution function at t in dth subpopu-
lation is given by the following formula (Salvati et al., 2012):
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where predicted values for non-sampled elements are obtained as follows:

 ˆˆ ˆEBLUP
j r ry = +X Zβ v (13)

where:
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Estimator (12) is asymptotically unbiased if the model (1) is correctly speci-
fied (Salvati et al., 2012).

Salvati and others (2012) proposed the following estimator of the distribu-
tion function in function at t in dth subpopulation:
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where ˆ EBLUP
jy  is given by (13).

Moreover, Salvati and others (2012) proposed to use empirical best predic-
tor under Molina and Rao (2010) approach. Molina and Rao (2010) consider 
the problem of prediction of any function of the study variable Y denoted by 
θ(Y) or shortly as θ. The best predictor (BP) is the predictor which minimizes 
the mean square error: MSE(θ̂) = E(θ̂ – θ)2. Hence, the best predictor is given 
by the following formula:

 s
ˆ ( | )BPθ E θ= Y  (17)

θ̂BP can be obtained provided that conditional distribution of Yr|Ys is known. 
The conditional distribution of Yr|Ys, which is unknown in practice, depends 
on vector of unknown parameters γ = [βT, δT]. If those parameters are replaced 
by their estimates, the empirical best predictor (EBP) denoted by θ̂EBP is ob-
tained. Molina and Rao (2010) proposed to calculate θ̂EBP using the following 
Monte Carlo approximation:
1. estimate the vector of parameters γ using sample data Ys. As a result vec-

tor γ̂ is obtained;
2. assuming the conditional distribution Yr|Ys is known, generate L vectors 

denoted by Yr
(l) (where L = 1, 2, …, L), but γ is replaced by γ̂;

3. form the population vectors denoted by Y(l), where Y(l) = [Ys, Yr
(l)] and 

l = 1, 2, …, L;
4. calculate empirical best predictor as follows:
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However, generating multivariate normal vectors of Yr is time-consuming, 
that is why Molina and Rao (2010) present also a fast algorithm of comput-
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ing EBP for a special case of the linear mixed model called nested error linear 
mixed model. It is based on the generation of independent univariate normal 
variables. Moreover, vector of the study variable Y can be replaced by a trans-
formed vector: Y = T(Y). Then assumptions of the model (1) are made not for 
the study variable Y but for the study variable after transformation T(.). Then 
the best predictor can be written as follows:

 ( )( )1
s

ˆ |  ( )BPθ E θ T −= Y Y  (19)

Salvati and others (2012) assumed that and then the estimator of the distri-
bution function in dth subpopulation is given by the following formula:
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Salvati and others (2012) applied Molina and Rao (2010) approach to log-
transformed data and then the obtained results were transformed into original 
scale using exponential back-transformation.

4. Proposed estimator of the distribution function

In the paper the plug-in estimator of the distribution function is proposed, 
which is inspired by the paper of Salvati and others (2012). Chwila and 
Żądło (2020) consider a  plug-in predictor of an any parametric function 

( ) ( )1 1 T T
s r( )   ] [ Tθ θ T θ TY− −= = Y Y  defined as:

 ( )1 T T
s r
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where T –1(.) is a back-transformation and RŶ  is a vector of fitted values of the 
model for non-sampled elements where the dependent variable of the model 
is the study variable after transformation T(.).

The proposed estimator of the distribution function based on a plug-in pre-
dictor is given by the following formula:
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where ˆ EBLUP
jy  is given by (13). The proposed estimator given by (22) is a gener-

alization of estimator (16) presented in Salvati and others (2012) for non-linear 
mixed models which can be transformed into a linear mixed model.
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5. Quantile estimation

The distribution function is a basic statistic that plays an important role in the 
statistical inference. It can be also used to get quantiles. The τth quantile de-
noted by qτ is defined as follows (Dorfman, 2009):

 { }min : ( )τq t F t τ= ≥  (23)

The quantile of order τ is such a value of a variable which divides the whole 
frequency distribution into two parts such that at least τ ∙ 100% of total num-
ber units are not greater than qτ and simultaneously at least (1 – qτ) ∙ 100% 
units are not less than qτ. 

Quantiles can be obtained by estimating direct estimators (see e.g. Dorfman, 
2009) or through inverting estimates of the distribution function. The proce-
dure of achieving quantiles based on estimates of distribution functions is as 
follows (Dorfman, 2009):
1. obtaining a grid of values *̂F (tv) for t1 < t2 <  < tv <  < tv* so that values 

of *̂F (tv) be close to order τ of estimated quantile;
2. the τth quantile is the smallest value that satisfies { }*

*̂min : ( )τ vq t F t τ= ≥ :
In step 1 the distribution function is not calculated for each value of be-

tween minimum and maximum of the study variable. Instead some numeri-
cal methods are used. In the paper the limited-memory Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithm, denoted by L-BFGS-B was used (Byrd, 
Lu, Nocedal, & Zhu, 1995). L-BFGS-B algorithm extends the limited memory 
BFGS algorithm belonging to the quasi-Newton methods. It allows nonlin-
ear optimization problems with a simple bound on the variables to be solved. 
The L-BFGS-B algorithm is implemented in package GoFKernel in R in the 
function inverse (McGrath, Sohn, Steele, & Benedetti, 2019; R Core Team,  
2020).

6. Simulation study

In order to verify the properties of quantile estimators considered in paper the 
simulation study was conducted using R (R Core Team, 2020). The simulation 
study allows the illustration of the performance of the quantiles’ estimators in 
the small areas. Their performance is evaluated by computing empirical rela-
tive biases:
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where ˆb
dθ  is the quantile of estimator of the study in dth domain, θd denotes 

the true value of the quantile in dth subpopulations and B stands for number 
of iterations in the Monte Carlo simulation. In order to evaluate the estima-
tion accuracy, the empirical relative root mean square errors were computed:
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In the design-based simulation study, the MU284 population was used. It is 
the population consisting of 284 Swedish municipalities where the study vari-
able is revenues from municipal taxation in 1985 (in millions of kronor) and 
the auxiliary variable is the number of municipal employees in 1984 (Särndal 
et al., 1992). This population was also considered in other simulation studies in 
which the performance of the quantiles estimators obtained as inverses of esti-
mates of the distribution function were studied (Rueda & Arcos, 2001; Berger 
& Muñoz, 2015). The population of municipalities was originally divided into 
eight regions. The division into domains in the simulation study is based on 
the division into regions. However, region Seven with the smallest number of 
municipalities was combined with region Eight in order to avoid zero domain 
sample sizes which makes it impossible to obtain direct estimators of distri-
bution function (which are used as a benchmark in the simulation study). In 
each of iterations in the simulation study the sample was selected using strati-
fied sampling without replacement where n = 42 ≈ 15% N. In the simulation 
the model with random effects for domains was used. Normality of the vari-
able under study was verified using Shapiro-Wilk test (p = 0.28).

In the simulation study five quantiles are considered: 0.1 quantile, 0.25 
quantile (first quartile), 0.5 quantile (median), 0.75 quantile (third quartile) 
and 0.9 quantile. In the simulation study there were studied 8 estimators list-
ed in Table 1.

Table 2 presents the values of the empirical relative biases of the considered 
in the paper estimators of quantiles. In the case of the estimation quantiles in 
the population, the lowest relative biases are obtained for the EBP.MR_DF and 
EBP.MR_Q methods which are based on Monte Carlo approximation. Slightly 
higher values were obtained for the proposed in the paper PLUG-IN_DF meth-
od. When it comes to the estimation quantiles in small areas, the best results 
were obtained again for the EBP.MR_DF and EBP.MR_Q methods. However, 
for the other methods considered in the analysis the values of empirical rela-
tive biases are quite similar. It is worth noting that the plug-in estimator of the 
distribution function proposed in the paper (PLUG_IN_DF) has slightly low-
er relative biases compared to the EBLUP. Th e highest values of the empirical 
relative biases were obtained for the Hajek estimator. It is a direct estimator 
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and it is not recommended for purposes of small area estimation (analogues 
results were obtained by Berger & Muñoz, 2015).

The second aspect of the conducted simulation study was the analysis of ac-
curacy of the considered methods. The obtained results are displayed in Table 3. 
Quantiles obtained as the inverses of the Hajek estimator of the distribution 
function are the least accurate (analogue results were obtained by Berger & 
Muñoz, 2015). The rRMSE are values in the order of several dozen percent. 
The best accuracy is obtained for the EBP.MR_Q estimator, PLUG-IN_Q_T 
and proposed in the paper – the PLUG-IN_DF estimator.

Compared to results obtained in the other simulation studies (Salvati et al., 
2012) there is the same conclusion that EBP.MR has usually better properties 
than EBLUP. It is also confirmed in this paper. However, it is quite interest-
ing that for every quantile order considered in the simulation study there are 
no clear differences in relative biases or relative RMSEs. In other papers, e.g. 
(Salvati et al., 2012) it can be observed that for left-tailed quantiles often huge 
values of rB or rRMSE are obtained.

Table 1. Description of the estimators considered in the simulation study

Estimator Description

HAJEK Quantiles are obtained as the inverses of the Hajek distribution function 
estimator given by (6)

CD Quantiles are obtained as the inverses of the Chambers-Dunstan distribu-
tion function estimator given by (12)

EBP.MR_DF
Quantiles are obtained as the inverses of the distribution function estima-
tor given by (20). Number of iterations in Monte Carlo approximation of 
the empirical best predictor equals L =50

EBP.MR_Q

Quantiles are obtained directly using the Molina and Rao (2010) empiri-
cal best predictor given by (18) where the function θ(.) is τth quantile. 
Number of iterations in the Monte Carlo approximation of the empirical 
best predictor equals L = 50

PLUG-IN_Q
Quantiles are obtained directly using a plug-in predictor given by (21) 
where the function θ(.) is τth quantile and the model is assumed for the 
original data without any transformation

PLUG-IN_Q_T
Quantiles are obtained directly using a plug-in predictor given by (21) 
where the function θ(.) is τth quantile and the model is assumed for the 
data after logarithmic transformation

EBLUP Quantiles are obtained as the inverses of the distribution function estima-
tor given by (16)

PLUG-IN_DF Quantiles are obtained as the inverses of the proposed distribution func-
tion estimator given by (22)

Source: Own elaboration.
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Conclusions

In the paper the problem of quantile estimation is considered. The perfor-
mance of the proposed method, which is a generalization of EBLUP presented 
in (Salvati et al., 2012) was compared with other methods of quantile estima-
tion. There are two kinds of competing estimators. The first group is based on 
inversing the estimates of the distribution function and the second approach 
is about obtaining quantiles directly using empirical best predictors or a plug-
in predictor. The proposed method performs usually better in terms of relative 
bias and relative RMSE than other estimators based on the estimates of the dis-
tribution function. At the same time it covers non-linear models such as the 
EBP approach but it is faster because it does not require the use of Monte Carlo 
algorithms to compute estimates. This property is important both for practi-
tioners in the data production process as well as for theoreticians who would 
like to assess their properties in extensive simulation studies.

The results of the conducted analysis constitute a recommendation for prac-
titioners who deal with the issue of quantile estimation in their research. The 
issue is particularly important for institutions and organizations dealing with 
the measurement of poverty and social exclusion, as many poverty measures 
are based on quantiles, for instance some of the Laeken Indicators (Beil, Kolb, 
& Münnich, 2011). Moreover, the proposed approach allows for the estima-
tion of quantiles in selected subpopulations with a small or even zero sample 
size. Quantiles can also be used in other areas especially to estimate the aver-
age level for highly asymmetric distributions—which is quite common in eco-
nomic research.

It needs to be highlighted that the in the conducted analysis only design-
based properties of the proposed method are considered. The impact of model 
misspecification on the accuracy of the presented method has not been taken 
into account, which may be an area of further research in the future. Future 
research should also examine the problem of the estimation the variance of the 
presented quantile estimation method. It is important from the practical point 
of view because the estimation of the estimator’s variance allows the calcula-
tion of the standards errors of quantile estimators.
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