PL EN


2015 | 3 | 314 |
Article title

ANALYSIS OF THE TIME EVOLUTION OF NON-LINEAR FINANCIAL NETWORKS

Authors
Content
Title variants
PL
ANALIZA EWOLUCJI NIELINIOWYCH SIECI FINANSOWYCH
Languages of publication
EN
Abstracts
PL
W niniejszym artykule traktujemy rynki finansowe jako sieci złożone. Najczęściej wyznacza się minimalne drzewo rozpinające oparte o empiryczną macierz korelacji W naszych wcześniejszych badaniach rozszerzyliśmy tę metodologię poprzez zamianę współczynnika korelacji liniowej Pearsona na miary oparte o teorię informacji: informację wzajemną i stopę informacji wzajemnej, co pozwala na uwzględnienie zależności nieliniowych. W niniejszym badaniu zajmujemy się ewolucją sieci finansowych w czasie, przy zastosowaniu mechanizmu przesuwnego okna. Jako że miary oparte o teorię informacji są znane z wolnej zbieżności, opieramy naszą analizę na współczynniku największej korelacji Hirschfelda-Gebeleina-Rényiego, estymowanym przez randomizowany współczynnik zależności (RDC). Jest on definiowany w odniesieniu do analizy korelacji kanonicznych losowych nieliniowych odwzorowań przy pomocy kopuł. Na tej podstawie tworzymy minimalnego drzewa rozpinające dla każdego okna przesuwającego się wzdłuż badanych szeregów czasowych, analizujemy ewolucję różnych własności tych sieci w czasie, i ich znaczenie dla badanego rynku. Stosujemy tę procedurę w odniesieniu do zestawu danych opisującego logarytmiczne zwroty cen akcji z Giełdy Papierów Wartościowych w Warszawie z lat pomiędzy 2006 i 2013, komentujemy otrzymane wyniki, możliwości ich praktycznego zastosowania oraz ich znaczenie dla badaczy i analityków.
EN
We treat financial markets as complex networks. It is commonplace to create a filtered graph (usually a Minimally Spanning Tree) based on an empirical correlation matrix. In our previous studies we have extended this standard methodology by exchanging Pearson’s correlation coefficient with information-theoretic measures of mutual information and mutual information rate, which allow for the inclusion of non-linear relationships. In this study we investigate the time evolution of financial networks, by applying a running window approach. Since information-theoretic measures are slow to converge, we base our analysis on the Hirschfeld-Gebelein-Rényi Maximum Correlation Coefficient, estimated by the Randomized Dependence Coefficient (RDC). It is defined in terms of canonical correlation analysis of random non-linear copula projections. On this basis we create Minimally Spanning Trees for each window moving along the studied time series, and analyse the time evolution of various network characteristics, and their market significance. We apply this procedure to a dataset describing logarithmic stock returns from Warsaw Stock Exchange for the years between 2006 and 2013, and comment on the findings, their applicability and significance.
Year
Volume
3
Issue
314
Physical description
Dates
published
2016-02-29
Contributors
author
References
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.ojs-doi-10_18778_0208-6018_314_09
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.