Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


2020 | 27 | 2 | 171-197

Article title

The Influence of Land Cover on the Spatial Distribution of Fire Sites: A Case Study of Łódzkie Voivodeship, Poland

Content

Title variants

The Influence of Land Cover on the Spatial Distribution of Fire Sites: A Case Study of Łódzkie Voivodeship, Poland

Languages of publication

EN

Abstracts

EN
The paper continues from previous joint studies and their practical application at the confluence of human geography, safety-related research and Geographic Information Systems (GIS). The objective of the study was to identify the land cover types most at risk from fire. The study has contributed an original angle by taking into account various land cover types with a potential influence on the distribution of fires geocoded at the address level. The analysis considered 27,651 fire interventions, as recorded by the Polish State Fire Service between 2014 and 2016 in the country’s central region known as Łódzkie Voivodeship. The main methods employed include various GIS tools, including Voronoi tessellation (to identify the areas most at risk of fire) and the fire location quotient (FLQ, a measure of the colocation between the number of fires and land cover). The most important conclusion is that of all the land cover types considered in the study, the built-up area type, especially the multi-family residential and retail and service area subtypes, was virtually the only one with a strong influence on the location of fires. The fire high-risk areas (FH-RA) identified here were primarily limited to urban areas.
PL
The paper continues from previous joint studies and their practical application at the confluence of human geography, safety-related research and Geographic Information Systems (GIS). The objective of the study was to identify the land cover types most at risk from fire. The study contributes an original angle by taking into account various land cover types with a potential influence on the distribution of fires geocoded at the address level. The analysis takes into account 27,651 fire interventions, as recorded by the Polish State Fire Service between 2014 and 2016 in the country’s central region known as Łódzkie Voivodeship. The main methods employed include various GIS tools, including Voronoi tessellation (to identify the areas most at risk of fire) and the fire location quotient (FLQ, a measure of colocation between the number of fires and land cover). The most important conclusion is that of all the land cover types considered in the study, the built-up area type, especially the multi-family residential and retail and service area subtypes, was virtually the only one with a strong influence on the location of fires. The fire high-risk areas (FH-RA) identified here were primarily limited to urban areas.

Year

Volume

27

Issue

2

Pages

171-197

Physical description

Dates

published
2020-12-30

Contributors

  • University of Lodz, Faculty of Geographical Sciences, Institute of the Built Environment and Spatial Policy, Kopcińskiego 31, 90-142, Łódź, Poland
  • Independent researcher. GIS analyst.

References

  • AKAY, A.E. and ERDOĞAN, A. (2017), ‘Gis-Based Multi-Criteria Decision Analysis For Forest Fire Risk Mapping’, ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, IV-4/W4, pp. 25–30. https://doi.org/10.5194/isprs-annals-IV-4-W4-25-2017
  • AKAY, A.E. and ŞAHIN, H.T. (2019), ‘Forest Fire Risk Mapping by using GIS Techniques and AHP Method: A Case Study in Bodrum (Turkey)’, European Journal of Forest Engineering, 5 (1), pp. 25–35. https://doi.org/10.33904/ejfe.579075
  • ASGARY, A., GHAFFARIA, A. and LEVY, J. (2010), ‘Spatial and temporal analyses of structural fire incidents and their causes: A case of Toronto, Canada’, Fire Safety Journal, 45 (1), pp. 44–57. https://doi.org/10.1016/j.firesaf.2009.10.002
  • BAJOCCO, S., PEZZATTI, G.B., MAZZOLENI, S. and RICOTTA, C. (2010), ‘Wildfire seasonality and land use: when do wildfires prefer to burn?’, Environmental Monitoring and Assessment, 164 (1–4), pp. 445–452. https://doi.org/10.1007/s10661-009-0905-x
  • CORCORAN, J., HIGGS, G., BRUNSDON, C., WARE, A. and NORMAN, P. (2007), ‘The use of spatial analytical techniques to explore patterns of fire incidence: A South Wales case study’, Computers, Environment and Urban Systems, 31 (6), pp. 623–647. https://doi.org/10.1016/j.compenvurbsys.2007.01.002
  • DLAMINI, W.M. (2011), ‘Application of Bayesian networks for fire risk mapping using GIS and remote sensing data’, GeoJournal, 76 (3), pp. 283–296. https://doi.org/10.1007/s10708-010-9362-x
  • ERDEN, T. and COŞKUN, M.Z. (2010), ‘Multi-criteria site selection for fire services: the interaction with analytic hierarchy process and geographic information systems’, Natural Hazards and Earth System Sciences, 10, pp. 2127–2134. https://doi.org/10.5194/nhess-10-2127-2010
  • EUGENIO, F.C., dos SANTOS, A.R., FIEDLER, N.C., RIBEIRO, G.A., da SILVA, A.G., dos SANTOS, A.B., PANETO, G.G. and SCHETTINO, V.R. (2016), ‘Applying GIS to develop a model for forest fire risk: A case study in Espirito Santo, Brasil’, Journal of Environmental Management, 173, pp. 65–71. https://doi.org/10.1016/j.jenvman.2016.02.021
  • FEURDEAN, A., VANNIÈRE, B., FINSINGER, W., WARREN, D., CONNOR, S.C., FORREST, M., LIAKKA, J., PANAIT, A., WERNER, C., ANDRIČ, M., BOBEK, P., CARTER, V.A., DAVIS, B., DIACONU, A.-C., DIETZE, E., FEESER, I., FLORESCU, G., GAŁKA, M., GIESECKE, T., JAHNS, S., JAMRICHOVÁ, E., KAJUKAŁO, K., KAPLAN, J., KARPIŃSKA-KOŁACZEK, M., KOŁACZEK, P., KUNEŠ, P., KUPRIYANOV, D., LAMENTOWICZ, M., LEMMEN, C., MAGYARI, E.K., MARCISZ, K., MARINOVA, E., NIAMIR, A., NOVENKO, E., OBREMSKA, M., PĘDZISZEWSKA, A., PFEIFFER, M., POSKA, A., RÖSCH, M., SŁOWIŃSKI, M., STANČIKAITĖ, M., SZAL, M., ŚWIĘTA-MUSZNICKA, J., TANŢĂU, I., THEUERKAUF, M., TONKOV, S., VALKÓ, O., VASSILJEV, J., VESKI, S., VINCZE, I., WACNIK, A., WIETHOLD, J. and HICKLER, T. (2020), ‘Fire hazard modulation by long-term dynamics in land cover and dominant forest type in Eastern and Central Europe’, Biogeosciences, 17, pp. 1213–1230. https://doi.org/10.5194/bg-17-1213-2020
  • Fire management: voluntary guidelines. Principles and strategic actions (2006), Rome: FAO. http://www.fao.org/3/j9255e/j9255e00.pdf [accessed on: 03.09.2020].
  • GUO, F., SU, Z., TIGABU, M., YANG, X., LIN, F., LIANG, H. and WANG, G. (2017), ‘Spatial Modelling of Fire Drivers in Urban-Forest Ecosystems in China’, Forests, 8, p. 180.
  • HAAS, J.R., CALKIN, D.E. and THOMPSON, M.P. (2013), ‘A national approach for integrating wildfire simulation modeling into Wildland Urban Interface risk assessments within the United States’, Landscape and Urban Planning, 119, pp. 44–53. https://doi.org/10.1016/j.landurbplan.2013.06.011
  • HABIBI, K., LOTFI, S. and KOOHSARI, M.J. (2008), ‘Spatial Analysis of Urban Fire Station Location by Integrating AHP Model and IO Logic Using GIS (A Case Study of Zone 6 of Tehran)’, Journal of Applied Sciences, 8 (19), pp. 3302–3315. https://doi.org/10.3923/jas.2008.3302.3315
  • HART, T. and ZANDBERGEN, P. (2014), ‘Kernel density estimation and hotspot mapping: Examining the influence of interpolation method, grid cell size, and bandwidth on crime forecasting’, Policing: An International Journal of Police Strategies & Management, 37 (2), pp. 305–323. https://doi.org/10.1108/PIJPSM-04-2013-0039
  • HASTIE, C. and SEARLE, R. (2016), ‘Socio-economic and demographic predictors of accidental dwelling fire rates’, Fire Safety Journal, 84, pp. 50–56. https://doi.org/10.1016/j.firesaf.2016.07.002
  • HOLBORN, P.G., NOLAN, P.F. and GOLT, J. (2003), ‘An analysis of fatal unintentional dwelling fires investigated by London Fire Brigade between 1996 and 2000’, Fire Safety Journal, 38 (1), pp. 1–42. https://doi.org/10.1016/S0379-7112(02)00049-8
  • HUANG, B., LIU, N. and CHANDRAMOULI, M. (2006), ‘A GIS supported Ant algorithm for the linear feature covering problem with distance constraints’, Decision Support Systems, 42 (2), pp. 1063–1075. https://doi.org/10.1016/j.dss.2005.09.002
  • Information Bulletin Of The State Fire Service For The Year 2016 (2017). http://www.straz.gov.pl/download/4022 [accessed on: 15.03.2020].
  • Instrukcja ochrony przeciwpożarowej lasu, (2020), Warszawa: Centrum Informacyjne Lasów Państwowych. http://www.lasy.gov.pl/pl/publikacje/copy_of_gospodarka-lesna/ochrona_lasu/instrukcja_p-poz.pdf [accessed on: 11.02.2020].
  • ISARD, W., BRAMHALL, D.F., CARROTHERS, G.A.P., CUMBERLAND, J.H., MOSES, L.N., PRICE, D.O. and SCHOOLER, E.W. (eds.) (1962), Methods of Regional Analysis: An Introduction to Regional Science, Cambridge: M.I.T. Press.
  • JAJTIĆ, K., GALIJAN, V., ŽAFRAN, I. and CVITANOVIĆ, M. (2019), ‘Analysing Wildfire Occurrence Through A Mixed-Method Approach: A Case Study From The Croatian Mediterranean’, Erdkunde, 73 (4), pp. 323–341. https://doi.org/10.3112/erdkunde.2019.04.05
  • JENNINGS, C.R. (2013), ‘Social and economic characteristics as determinants of residential fire risk in urban neighborhoods: A review of the literature’, Fire Safety Journal, 62, pp. 13–19. https://doi.org/10.1016/j.firesaf.2013.07.002
  • KOSTRUBIEC, B. (1972), ‘Analiza zjawisk koncentracji w sieci osadniczej. Problemy metodyczne’, Prace Geograficzne, 93.
  • KOZIOŁ, J. (2019), ‘Mapowanie rozkładu pożarów i miejscowych zagrożeń na przykładzie województwa mazowieckiego’, Safety & Fire Technology, 54 (2), pp. 22–31. https://doi.org/10.12845/sft.54.2.2019.2
  • LEE, I. and LEE, K. (2009), ‘A generic triangle-based data structure of the complete set of higher order Voronoi diagrams for emergency management’, Computers, Environment and Urban Systems, 33, pp. 90–99. https://doi.org/10.1016/j.compenvurbsys.2009.01.002
  • LI, Y., ZHAO, J., GUO, X., ZHANG, Z., TAN, G. and YANG, J. (2017), ‘The Influence of Land Use on the Grassland Fire Occurrence in the Northeastern Inner Mongolia Autonomous Region, China’, Sensors, 17 (3), p. 437. https://doi.org/10.3390/s17030437
  • MAZUR, R. (2014), ‘Ocena stopnia bezpieczeństwa w aspekcie statystyk zdarzeń za lata 2000–2012. Czasowo-przestrzenna charakterystyka zagrożeń pożarowych obiektów mieszkalnych w systemie informacji przestrzennej (GIS) na przykładzie m.st. Warszawa’, BiTP. Bezpieczeństwo i Technika Pożarnicza, 34 (2), pp. 47–56.
  • MAZUR, R. and GUZEWSKI, P. (2014), ‘Ocena stopnia bezpieczeństwa w aspekcie statystyk zdarzeń za lata 2000-2012. Analiza statystyczna przypuszczalnych przyczyn pożarów obiektów mieszkalnych w skali kraju i miasta’, Bezpieczeństwo i Technika Pożarnicza, 35 (3), pp. 47–59.
  • MAZUR, R. and KWASIBORSKI, A. (2013), ‘Ocena stopnia bezpieczeństwa w aspekcie statystyk zdarzeń za lata 2007–2012. Pożary’, Bezpieczeństwo i Technika Pożarnicza, 30 (2), pp. 17–22.
  • MAZUR, R., PAJĄK, M., KŁOSIŃSKI, M. and KLECHA, P. (2015), ‘Koncepcja budowy i zastosowania infrastruktury danych przestrzennych w aspekcie planowania operacyjnego Państwowej Straży Pożarnej. Studium przypadku na podstawie województwa świętokrzyskiego’, [in:] WRÓBLEWSKI, D. (ed.). Zarządzanie kryzysowe Wybrane wyniki badań naukowych i prac rozwojowych, Józefów: Centrum Naukowo-Badawcze Ochrony Przeciwpożarowej, Państwowy Instytut Badawczy, pp. 128–147.
  • MOFFAT, A.J. and PEARCE, H.G. (2013), Harmonising approaches to evaluation of forest fire risk, A report by Forest Resarch & Scion, supported by Tranzfor, Farnham.
  • NIMLYAT, P.S., AUDU, A.U., OLA-ADISA, E.O. and GWATAU, D. (2017), ‘An evaluation of fire safety measures in high-rise buildings in Nigeria’, Sustainable Cities and Society, 35, pp. 774– 785. https://doi.org/10.1016/j.scs.2017.08.035
  • PAYSEN, T.E., ANSLEY, R.J., BROWN, J.K., GOTTFRIED, G.J., HAASE, S.M., HARRINGTON, M.G., NAROG, M.G., SACKETT, S.S. and WILSON, R.C. (2000), ‘Fire in western shrubland, woodland, and grassland ecosystems’, [in:] BROWN, J.K. and SMITH, J.K. (eds.), Wildland fire in ecosystems: effects of fire on flora, Fort Collins: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, pp. 121–159.
  • Podręcznik Użytkownika Systemu SWD-ST 2.5 (2014). https://www.swdst.pl/wp-content/uploads/pliki/instrukcja_swd_st_2.5.pdf [accessed on: 15.03.2020].
  • QIAO, Y., HUANG, K., JEUB, J., QIAN, J. and SONG, Y., (2018), ‘Deploying electric vehicle charging stations considering time cost and existing infrastructure’, Energies, 11, p. 2436. https://doi.org/10.3390/en11092436
  • Rozporządzenie Ministra Spraw Wewnętrznych i Administracji z dnia 18 lutego 2011 r. w sprawie szczegółowych zasad organizacji krajowego systemu ratowniczo-gaśniczego (Dz.U. 2011 nr 46, poz. 239).
  • RUNGE, J. (2006), Metody badań w geografii społeczno-ekonomicznej – elementy metodologii, wybrane narzędzia badawcze, Katowice: Wydawnictwo Uniwersytetu Śląskiego.
  • SCHAEFER, A.J. and MAGI, B.I. (2019), ‘Land-Cover Dependent Relationships between Fire and Soil Moisture’, Fire, 2, p. 55. https://doi.org/10.3390/fire2040055
  • SCOTT, J.H., THOMPSON, M.P. and CALKIN, D.E. (2013), A wildfire risk assessment framework for land and resource management, Fort Collins: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. https://doi.org/10.2737/RMRS-GTR-315
  • SHAI, D. (2006), ‘Income, Housing, and Fire Injuries: A Census Tract Analysis’, Public Health Reports, 121 (2), pp. 149–154. https://doi.org/10.1177/003335490612100208
  • SUCHECKI, B. (2010), Ekonometria przestrzenna. Metody i modele analizy danych przestrzennych, Warsaw: Wydawnictwo C.H. Beck.
  • SYPION-DUTKOWSKA, N. and LEITNER, M. (2017), ‘Land Use Influencing the Spatial Distribution of Urban Crime: A Case Study of Szczecin, Poland’, ISPRS International Journal of Geo-Information, 6 (3), pp. 74. https://doi.org/10.3390/ijgi6030074
  • Ustawa z dnia 24 sierpnia 1991 r. o ochronie przeciwpożarowej (Dz.U. 1991 nr 81, poz. 351).
  • VASILIAUSKAS, D. and BECONYTĖ, G. (2015), ‘Spatial analysis of fires in Vilnius city in 2010–2012’, Geodesy and Cartography, 41 (1), pp. 25–30. https://doi.org/10.3846/20296991.2015.1011862
  • WANG, J. and KWAN, M. (2018), ‘Hexagon-based adaptive crystal growth Voronoi diagrams based on weighted planes for service area delimitation’, ISPRS International Journal of Geo-Information, 7 (7), p. 257. https://doi.org/10.3390/ijgi7070257
  • WOŹNIAK, E. (2014), ‘Określanie metodami geoinformatycznymi stopnia zagrożenia pożarowego lasów w Polsce’, Teledetekcja Środowiska, 51, pp. 5–55.
  • XIA, Z., LI, H., CHEN, Y. and YU, W. (2019), ‘Detecting urban fire high-risk regions using colocation pattern measures’, Sustainable Cities and Society, 49, p. 101607. https://doi.org/10.1016/j.scs.2019.101607
  • YANG, L., JONES, B.F. and YANG, S. (2007), ‘A fuzzy multi-objective programming for optimization of fire station locations through genetic algorithms’, European Journal of Operational Research, 181 (2), pp. 903–915. https://doi.org/10.1016/j.ejor.2006.07.003
  • ZHANG, W. and JIANG, J.C. (2011), ‘Research on the location of fire station based on GIS and GA’, Applied Mechanics and Materials, 130–134, pp. 377–380. https://doi.org/10.4028/www.scientific.net/AMM.130-134.377
  • ZHU, H.H., YAN, H.W. and LI, Y. (2008), ‘An optimization method for the layout of public service facilities based on Voronoi diagrams’, Science of Surveying and Mapping, 33, pp. 72–74.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.ojs-doi-10_18778_1231-1952_27_2_11
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.