Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


2020 | 23 | 1 | 73-91

Article title

CO2 Emissions in the Visegrad Group Countries and the European Union Climate Policy

Content

Title variants

Emisja CO2 w krajach Grupy Wyszehradzkiej a polityka klimatyczna Unii Europejskiej

Languages of publication

EN

Abstracts

EN
Climate change is one of the most pressing challenges of our time and several policies trying to mitigate this negative phenomenon have been implemented. The reduction of GHG emissions along with the improvement in energy efficiency and the increase in the share of energy consumption from renewable sources also constitute the European Union policy priority. In this context, the aim of this article is to explore factors that affect changes in CO2 emissions in the four EU member states that form the Visegrad Group, during the period 1993–2016. The analysis was conducted using the Logarithmic Mean Divisia Index (LMDI) decomposition method and the Kaya identity, which enables the factors contributing most to the CO2 emissions changes to be identified. It also allows the results to be discussed in relation to the European Union’s climate policy. According to the decomposition analysis results, energy intensity and economic growth measured in terms of GDP per capita were the main factors driving changes in CO2 emissions across all countries considered. The emissions decrease resulted mainly from an improvement in energy efficiency and to a lesser extent from the change in the energy mix towards renewables.
PL
Zmiana klimatu jest jednym z najbardziej palących wyzwań naszych czasów. W związku z tym podejmowany jest szereg działań mających na celu złagodzenie tego negatywnego zjawiska. Redukcja emisji gazów cieplarnianych, poprawa efektywności energetycznej oraz wzrost udziału energii ze źródeł odnawialnych stanowią także priorytet polityki Unii Europejskiej. W tym kontekście celem artykułu jest zbadanie czynników wpływających na zmiany emisji CO2 w czterech państwach członkowskich UE tworzących Grupę Wyszehradzką, w latach 1993–2016. Analiza przeprowadzona z wykorzystaniem metody dekompozycji LMDI (Logarithmic Mean Divisia Index) oraz tożsamości Kaya pozwala zidentyfikować czynniki, które w największym stopniu przyczyniają się do zmian emisji CO2. Umożliwia ona także omówienie uzyskanych wyników w powiązaniu z polityką klimatyczną Unii Europejskiej. Zgodnie z wynikami analizy dekompozycyjnej energochłonność oraz wzrost gospodarczy wyrażony PKB per capita były głównymi czynnikami przyczyniającymi się do zmian emisji CO2 we wszystkich rozważanych krajach. Spadek emisji wynikał głównie z poprawy efektywności energetycznej i w mniejszym stopniu ze zmian koszyka energetycznego w stronę odnawialnych źródeł energii.

Year

Volume

23

Issue

1

Pages

73-91

Physical description

Dates

published
2020-03-30

Contributors

  • Ph.D., University of Lodz, Faculty of Economics and Sociology Department of Economic Mechanisms, Lodz, Poland

References

  • Ang, B.W. (2004), Decomposition analysis for policy making in energy: which is the preferred method?, “Energy Policy”, Vol. 32. https://doi.org/10.1016/S0301-4215(03)00076-4
  • Ang, B.W. (2005), The LMDI approach to decomposition analysis: a practical guide, “Energy Policy”, Vol. 33. https://doi.org/10.1016/j.enpol.2003.10.010
  • Ang, B.W. (2015), LMDI decomposition approach: A guide for implementation, “Energy Policy”, Vol. 86. https://doi.org/10.1016/j.enpol.2015.07.007
  • Ang, B.W., Goh, T. (2019), Index decomposition analysis for comparing emission scenarios: Applications and challenges, “Energy Economics”, Vol. 83. https://doi.org/10.1016/j.eneco.2019.06.013
  • Ang, B.W., Zhang, F.Q., Choi, K.H. (1998), Factorizing changes in energy and environmental indicators through decomposition, “Energy”, Vol. 23. https://doi.org/10.1016/S03605442(98)00016-4
  • Calbick, K.S., Gunton, T. (2014), Differences among OECD countries’ GHG emissions: Causes and policy implications, “Energy Policy”, Vol. 67. https://doi.org/10.1016/j.enpol.2013.12.030
  • Cansino, J.M, Sánchez-Braza, A., Rodríguez-Arévalo, M.L. (2015), Driving forces of Spain’s CO2 emissions: A LMDI decomposition approach, “Renewable and Sustainable Energy Reviews”, Vol. 48. https://doi.org/10.1016/j.rser.2015.04.011
  • Chapman, A., Fujii, H., Managi, S. (2018), Key drivers for cooperation toward sustainable development and the management of CO2 emissions: Comparative analysis of six Northeast Asian countries, “Sustainability”, Vol. 10. https://doi.org/10.3390/su10010244
  • Chen, J., Wang, P., Cui, L., Huang, S., Song, M. (2018), Decomposition and decoupling analysis of CO2 emissions in OECD, “Applied Energy”, Vol. 231. https://doi.org/10.1016/j.apenergy.2018.09.179
  • Conclusions on 2030 Climate and Energy Policy Framework (2014), European Council, https://www.consilium.europa.eu/uedocs/cms_data/docs/pressdata/en/ec/145356.pdf (accessed: 10.04.2019).
  • Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the promotion of the use of energy from renewable sources (2018), “Official Journal of the European Union”, L. 328, Vol. 61.
  • Directive (EU) 2018/2002 of the European Parliament and of the Council of 11 December 2018 amending Directive 2012/27/EU on energy efficiency (2018), “Official Journal of the European Union”, L. 328, Vol. 61.
  • Engo, J. (2018), Decomposing the decoupling of CO2 emissions from economic growth in Cameroon, “Environmental Science and Pollution Research”, Vol. 25. https://doi.org/10.1007/s11356-018-3511-z
  • Europe 2020: A strategy for smart, sustainable and inclusive growth (2010), Communication from the European Commission, Brussels 3.3.2010, COM (2010) 2020 final, http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2010:2020:FIN:EN:PDF (accessed: 21.05.2015).
  • Fatima, T., Xia, E., Cao, Z., Khan, D., Fan, J-L. (2019), Decomposition analysis of energy-related CO2 emission in the industrial sector of China: Evidence from the LMDI approach, “Environmental Science and Pollution Research”, Vol. 26. https://doi.org/10.1007/s11356-019-05468-5
  • Feng, C., Huang, J.-B., Wang, M. (2018), The driving forces and potential mitigation of energy-related CO2 emissions in China’s metal industry, “Resources Policy”, Vol. 59. https://doi.org/10.1016/j.resourpol.2018.09.003
  • Freitas, L.C., Kaneko, S. (2011), Decomposition of CO2 emissions change from energy consumption in Brazil: Challenges and policy implications, “Energy Policy”, Vol. 39. https://doi.org/10.1016/j.enpol.2010.12.023
  • González, P.F., Landajo, M., Presno, M.J. (2014a), The driving forces behind changes in CO2 emission levels in EU-27. Differences between member states, “Environmental Science & Policy”, Vol. 38. https://doi.org/10.1016/j.envsci.2013.10.007
  • González, P.F., Landajo, M., Presno M.J. (2014b), Tracking European Union CO2 emissions through LDMI (logarithmic mean divisia index) decomposition. The activity revaluation approach, “Energy”, Vol. 73. https://doi.org/10.1016/j.energy.2014.06.078
  • Karmellos, M., Kopidou, D., Diakoulaki, D. (2016), A decomposition analysis of the driving factors of CO2 (Carbon dioxide) emissions from the power sector in the European Union countries, “Energy”, Vol. 94. https://doi.org/10.1016/j.energy.2015.10.145
  • Köne, A.Ç., Büke, T. (2019), Factor analysis of projected carbon dioxide emissions according to the IPCC based sustainable emission scenario in Turkey, “Renewable Energy”, Vol. 133. https://doi.org/10.1016/j.renene.2018.10.099
  • Kumbaroğlu, G. (2011), A sectoral decomposition analysis of Turkish CO2 emissions over 1990–2007, “Energy”, Vol. 36. https://doi.org/10.1016/j.energy.2011.01.027
  • Li, W., Ou, Q., Chen, Y. (2014), Decomposition of China’s CO2 emissions from agriculture utilizing an improved Kaya identity, “Environmental Science and Pollution Research”, Vol. 21. https://doi.org/10.1007/s11356-014-3250-8
  • Lima, F., Nunes, M.L., Cunha, J., Lucena, A.F.P. (2016), A cross-country assessment of energy-related CO2 emissions: An extended Kaya Index Decomposition Approach, “Energy”, Vol. 115. https://doi.org/10.1016/j.energy.2016.05.037
  • Madaleno, M., Moutinho, V. (2017), A new LDMI decomposition approach to explain emission development in the EU: Individual and set contribution, “Environmental Science and Pollution Research”, Vol. 24. https://doi.org/10.1007/s11356-017-8547-y
  • Mavromatidis, G., Orehounig, K., Richner, P., Carmeliet, J. (2016), A strategy for reducing CO2 emissions from buildings with the Kaya identity – A Swiss energy system analysis and a case study, “Energy Policy”, Vol. 88. https://doi.org/10.1016/j.enpol.2015.10.037
  • Moutinho, V., Moreira, A.C., Silva, P.M. (2015), The driving forces of change in energy-related CO2 emissions in Eastern, Western, Northern and Southern Europe: The LMDI approach to decomposition analysis, “Renewable and Sustainable Energy Reviews”, Vol. 50. https://doi.org/10.1016/j.rser.2015.05.072
  • O’Mahony, T. (2013), Decomposition of Ireland’s carbon emissions from 1990 to 2010: An extended Kaya identity, “Energy Policy”, Vol. 59. https://doi.org/10.1016/j.enpol.2013.04.013
  • Pakulski, J. (ed.) (2016), The Visegrad countries in crisis, Collegium Civitas, Warszawa.
  • Pao, H.-T., Tsai, C.-M. (2011), Multivariate Granger causality between CO2 emissions, energy consumption, FDI (foreign direct investment) and GDP (gross domestic product): Evidence from a panel of BRIC (Brazil, Russian Federation, India, and China) countries, “Energy”, Vol. 36. https://doi.org/10.1016/j.energy.2010.09.041
  • Remuzgo, L., Sarabia, J.M. (2015), International inequality in CO2 emissions: A new factorial decomposition based on Kaya factors, “Environmental Science & Policy”, Vol. 54. https://doi.org/10.1016/j.envsci.2015.05.020
  • Shahiduzzaman, Md., Layton, A. (2015), Changes in CO2 emissions over business cycle recessions and expansions in the United States: A decomposition analysis, “Applied Energy”, Vol. 150. https://doi.org/10.1016/j.apenergy.2015.04.007
  • Štreimikienė, D., Balezentis, T. (2016), Kaya identity for analysis of the main drivers of GHG emissions and feasibility to implement EU “20–20–20” targets in the Baltic States, “Renewable and Sustainable Energy Reviews”, Vol. 58. https://doi.org/10.1016/j.rser.2015.12.311
  • Tang, C.F., Tan, B.W. (2015), The impact of energy consumption, income and foreign direct investment on carbon dioxide emissions in Vietnam, “Energy”, Vol. 79. https://doi.org/10.1016/j.energy.2014.11.033
  • Vehmas, J., Kaivo-oja, J., Luukkanen, J. (2018), Energy efficiency as a driver of total primary energy supply in the EU-28 countries – incremental decomposition analysis, “Heliyon”, Vol. 4. https://doi.org/10.1016/j.heliyon.2018.e00878
  • Wang, H., Ang, B.W., Su, B. (2017), Multi-region structural decomposition analysis of global CO2 emission intensity, “Ecological Economics”, Vol. 142. https://doi.org/10.1016/j.ecolecon.2017.06.023
  • Wang, Q., Li, R. (2016), Drivers for energy consumption: A comparative analysis of China and India, “Renewable and Sustainable Energy Reviews”, Vol. 62. https://doi.org/10.1016/j.rser.2016.04.048

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.ojs-doi-10_18778_1508-2008_23_05
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.