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ABSTRACT
In this paper, we have considered the generalized Pareto distribution. Various struc-
tural properties of the distribution are derived including (quantile function, explicit
expressions for moments, mean deviation, Bonferroni and Lorenz curves and Renyi
entropy). We have provided simple explicit expressions and recurrence relations
for single and product moments of generalized order statistics from the generalized
Pareto distribution. The method of maximum likelihood is adopted for estimating
the model parameters. For different parameter settings and sample sizes, the sim-
ulation studies are performed and compared to the performance of the generalized
Pareto distribution.
Key words: generalized order statistics, generalized Pareto distribution, single and
product moment, recurrence relations, characterization and maximum likelihood es-
timation.

1. Introduction

The Pareto distribution has been introduced as a model for the distribution of in-
comes. It is also used as a model for losses in property and casualty insurance.
The Pareto distribution has a heavy right tail behaviour, making it appropriate for
including large events in applications such as excess-of-loss pricing[see Arnold
(2008) and Verma and Betti (2006)]. The Pareto distribution has probability den-
sity function

f (x;α,β ) =
αβ α

(x+β )α+1 ; x > 0, α,β > 0,

and the corresponding cumulative distribution function is

F(x;α,β ) = 1−
(

β

x+β

)α

; x > 0, α,β > 0,

where β is a scale parameter and α is the shape parameter. Consider the transfor-
mation Y = X +β to get another form of the Pareto distribution

f (y;α,β ) =
αβ α

yα+1 ; β ≤ y < ∞, α,β > 0.

1Corresponding Author adress: Department of Statistics, Central University of Haryana, Mahender-
garh, India. E-mail: devendrastats@gmail.com. ORCID ID: https://orcid.org/0000-0001-5831-3315.
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This study uses the concept of generalized order statistics (GOS), introduced by
Kamps (1995), that enables a common approach to several models of ordered ran-
dom variables, such as ordinary order statistics, record values, progressively Type
II censoring order statistics, Pfeifer records and sequential order statistics. The use
of such a concept has been steadily growing over the years. Well-known proper-
ties of order statistics, progressively censored order statistics and record values
can be subsumed, generalized and integrated within the concept of GOS. This con-
cept can be effectively applied, e.g., in reliability theory. The statistical properties
and the estimation problems based on generalized order statistics for some lifetime
distributions has been studied by several researchers. For instance, Aboeleneen
(2010) discussed Bayesian and non-Bayesian estimation methods based on GOS
for Weibull distribution. Estimates of the unknown parameters and confidence inter-
vals from progressively type II censoring and record values are obtained. Burkschat
(2010) derived the best linear unbiased and best equivariant estimators in location
and scale families of GOS from generalized Pareto distribution. Safi and Ahmed
(2013) obtained the estimates of the unknown parameters of the Kumaraswamy
distribution based on GOS using maximum likelihood method. Recently, Wu et al.
(2014) obtained maximum likelihood estimator (MLE) of lifetime performance index
for the Burr XII distribution with progressively type II right censored sample and
Kim and Han (2014) obtained Bayesian estimators and highest posterior density
credible intervals for the scale parameter of Rayleigh distribution based GOS. Also,
they derived the Bayesian predictive estimator and the highest posterior density
predictive interval for independent future observations. Recently, Kumar and Goyal
(2019a, 2019b) obtained the relations for single and product moments of order
statistics from power Lindley distribution and generalized lindley distribution respec-
tively. Kumar (2015a, 2015b) and Kumar and Dey (2017a) Kumar and Jain (2018)
obtained the relations for moments and moment generating function of type-II ex-
ponentiated log-logistic, extended generalized half logistic, extended exponential
and power generalized Weibull distribution based on GOS respectively. Recently,
Kumar et al. (2017) and Kumar and Dey (2017b) established the relations for order
statistics from extended exponential and power generalized Weibull distribution and
the reference therein.

The motivation of the paper is twofold: first, to derive the mathematical and
statistical properties of this distribution as well as explicit expressions for single and
product moments based on GOS of generalized Pareto distribution, and second, to
estimate the parameters of the model using maximum likelihood method for different
sample sizes and different parameter values for the generalized Pareto distribution,
which we think would be of deep interest to applied statisticians.

The remaining of the article is organized as follows. In Section 2, we derive the
expressions for survival function, hazard rate function, complete moments, condi-
tional moments, mean deviation, Bonferroni and Lorenz curves, Renyi entropy and
quantile function. In Section 3 we derive relations for single and product moments
of GOS from generalized Pareto distribution. The obtained relations were used to
compute first for moments, variances, skewness and kurtosis of order statistics and
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record values. We have also derived the characterization of this distribution by us-
ing conditional moments of GOS in Section 4. In Section 5, we derive maximum
likelihood estimation of the generalized Pareto distribution. In Section 6, simulations
are performed for different sample sizes. Section 7 ends with concluding remarks.

2. Generalized Pareto distribution

The generalized Pareto (GP)distribution was proposed by Pickands (1975). Now
it is widely used in analysis of extreme events in the modelling of large insurance
claims, and to describe the annual maximum flood at river gauging station.
A random variable X has the GP Distribution with two parameters α and β if it has
probability density function (pd f ) given by

f (x;α,β ) =
α

(βx+α)2

(
α

βx+α

) 1
β
−1

, x > 0, α,β > 0 (1)

and the corresponding cumulative distribution function (cd f ) is

F(x;α,β ) = 1−
(

α

βx+α

) 1
β

, x > 0, α,β > 0 (2)

The hazard rate function

h(x;α,β ) = (βx+α)−1, x > 0, α,β > 0

and the survival function

S(x;α,β ) =

(
α

βx+α

) 1
β

, x > 0, α,β > 0.

Note that for GP Distribution defined in (1)

F̄(x) = (βx+α) f (x). (3)

For β > 0, the GP Distribution is known as Pareto type II or Lomax distribution. For
β =−1, GP Distribution reduces uniform distribution on (0,α). As β → 0, GP Distri-
bution tends to exponential distribution with scale parameter α. It is well known that
the GP Distribution for β > 0, provides reasonably good fit to distributions of income
and property values. For more details and some applications of this distribution one
may refer to Pickands (1975) and Arnold (1983). Plots of the pd f (Figure 1), hazard
function (Figure 2) and survival function (Figure 3), respectively for GP Distribution
when α = 1,2,3 and β = 1,2,3.
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Figure 1: Probability density function of GP Distribution

Figure 2: Hazard function of GP Distribution

Figure 3: Survival function of GP Distribution
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2.1. Quantile function

Let xp = Q(p) = F−1(p), for 0 < p < 1 denote the quantile function of the GP Distri-
bution. then

xp =
α[(1− p)−β −1]

β
. (4)

In particular, the first three quantiles, Q1, Q2 and Q3, can be obtained by setting
p = 0.25, p = 0.5 and = 0.75 in equation (4) respectively.

The effects of the parameters α and β on the skewness and kurtosis can be con-
sidered based on quantile measures. The Bowley skewness (Kenney and Keeping
1962) is one of the earliest skewness measures defined by

B =
Q(3/4)+Q(1/4)−2Q(1/2)

Q(3/4)−Q(1/4)
.

Since only the middle two quartiles are considered and the outer two quartiles are
ignored, this adds robustness to the measure. The Moors kurtosis (Moors 1988) is
defined as

M =
Q(3/8)−Q(1/8)+Q(7/8)−Q(5/8)

Q(6/8)−Q(2/8)
.

Clearly, M > 0 and there is good concordance with the classical kurtosis measures
for some distributions. These measures are less sensitive to outliers and they exist
even for distributions without moments. For the standard normal distribution, these
measures are 0 (Bowley) and 1.2331 (Moors).

2.2. Moments

Let X be a random variable having the GP Distribution. It is easy to obtain the nth
moment of X as the following form

E(Xk) =
∫

∞

0
xn f (x)dx =

∫
∞

0
xn α

(βx+α)2

(
α

βx+α

) 1
β
−1

dx

=

(
α

β

)k ∞

∑
p=0

(−1)pΓ(k+1)
p!Γ(k+1− p)[β (p− k)+1]

. (5)

The variance, skewness and kurtosis of X can be obtained using the relationship

Var(X) = E(X2)− [E(X)]2

Skewness(X) = E[X−E(X)]3/[Var(X)]3/2

and
Kurtosis(X) = E[X−E(x)]4/[Var(X)]2.
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The variations of E(X), Var(X), Skewness(X) and Kurtosis(X) versus α and β are
illustrated in table 1. It appears that E(X), Var(X), Skewness(X) and Kurtosis(X) are
increasing function of α for every fixed β . It appears also that the E(X) is greater
than its Var(X) for every fixed β .

2.3. Conditional moments

The conditional moments of the GP Distribution, is given by

E(Xk|X > x) = α

∫
∞

x

tk

(β t +α)2

(
α

β t +α

) 1
β
−1

dt

=

(
α

β

)k ∞

∑
p=0

(−1)pΓ(k+1)
p!Γ(k+1− p)[β (p− k)+1]

(
α

βx+α

)p−k+ 1
β

.

The mean residual lifetime function is E(X |X > x)− x.

Table 1: Mean, variance, skewness, kurtosis and coefficient of variation for β = 5
and some values of α

α Mean Variance Skewness Kurtosis CV
1 0.025221 0.002242 2.266105 3.254921 4.444709
2 0.050441 0.008969 2.272871 3.269397 8.890585
3 0.075662 0.020179 2.273945 3.272412 13.33496
4 0.100882 0.035875 2.274003 3.272299 17.78067
5 0.126103 0.056055 2.273847 3.272586 22.22588
6 0.151323 0.080719 2.273877 3.272552 26.67109
7 0.176544 0.109867 2.273915 3.272620 31.11604
8 0.201764 0.143500 2.273924 3.272615 35.56135
9 0.226985 0.181618 2.273875 3.272584 40.00661
10 0.252206 0.224219 2.273877 3.272596 44.45156

2.4. Mean deviations

The mean deviations about the mean and the median are used to measure the
dispersion and the spread in a population from the centre. The mean deviations
about the mean µ = E(X) and about the median M can be calculated as

D(µ) = E|x−µ|=
∫

∞

0
|x−µ| f (x)dx

and

D(m) = E|x−m|=
∫

∞

0
|x−m| f (x)dx,
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respectively. The measures, we obtain D(µ) and D(m), can be calculated using the
following relationships:

D(µ) =
∫

µ

0
(µ− x) f (x)dx+

∫
∞

µ

(x−µ) f (x)dx

= µF(µ)−
∫

µ

0
x f (x)dx−µ[1−F(µ)]+

∫
∞

µ

x f (x)dx

= 2µF(µ)−2µ +2
∫

∞

µ

x f (x)dx

and

D(m) =
∫ m

0
(m− x) f (x)dx+

∫
∞

m
(x−m) f (x)dx

= mF(m)−
∫ m

0
x f (x)dx−m[1−F(m)]+

∫
∞

m
x f (x)dx

= 2mF(m)−m−µ +2
∫

∞

m
x f (x)dx.

Consider

I =
∫

∞

µ

x f (x)dx. (6)

Using the substitution t = [F̄(x)]β in (6), we obtain

∫
∞

µ

x f (x)dx =
α

β (1−β )

(
α

β µ +α

)1/β [(
1+

β µ

α

)
+β −1

]
and ∫

∞

m
x f (x)dx =

α

β (1−β )

(
α

βm+α

)1/β [(
1+

βm
α

)
+β −1

]
,

so it follows that

D(µ) = 2µF(µ)−2µ +
2α

β (1−β )

(
α

β µ +α

)1/β [(
1+

β µ

α

)
+β −1

]
,

and

D(m) = 2mF(m)−m−µ +
2α

β (1−β )

(
α

βm+α

)1/β [(
1+

βm
α

)
+β −1

]
.

2.5. Bonferroni and Lorenz curve

Boneferroni and Lorenz curves are proposed by Boneferroni (1930). These curves
have applications not only in economics to study income and poverty, but also in
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other fields like reliability, demography, insurance and medicine. They are defined
as

B(p) =
1

pµ

∫ q

0
x f (x)dx (7)

L(p) =
1
µ

∫ q

0
x f (x)dx, (8)

and respectively, where µ = E(X) and q = F−1(p). By using (1), one can reduce (7)
and (8) to

B(p) =
α

pµ(1−β )

[
1−β

(
α

βq+α

)1/β {(
1+

βq
α

)
+β −1

}]
,

and

L(p) =
α

µ(1−β )

[
1−β

(
α

βq+α

)1/β {(
1+

βq
α

)
+β −1

}]
,

respectively.

2.6. Renyi entropy

The entropy of a random variable X with the density function f (x) is a measure of
variation of the uncertainty. Renyi entropy is defined as IR(ρ) = (1−ρ)−1log[I(ρ)],
where I(ρ) =

∫
ℜ

f ρ(x)dx, ρ > 0 and ρ 6= 1. If a random variable X has a GP distribu-
tion, then, we have

I(ρ) = α
ρ

∫
∞

0

1
(βx+α)2ρ

(
α

βx+α

)ρ

(
1
β
−1
)

dx

=
1

β (1+β )αρ
,

[see Gradshteyn and Ryzhik (2014), p-322]. Hence, the Renyi entropy reduces to

IR(ρ) =−
1

1−ρ
logβ (β +1)+

(
ρ

1−ρ

)
logα.

3. Generalized order statistics

The concept of generalized order statistics GOS was introduced by Kamps (1995).
Several models of ordered random variables such as order statistics, record val-
ues, sequential order statistics, progressive type II censored order statistics and
Pfeifer’s record values can be discussed as special cases of the GOS. Suppose
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X(1,n,m,k),. . . ,X(n,n,m,k) , (k ≥ 1,m is a real number), are n GOS from an abso-
lutely continuous cd f F(x) with pd f f (x), if their joint pd f is of the form

fX(1,n,m,k),...,X(n,n,m,k)(x1,x2, . . . ,xn)

= k

(
n−1

∏
j=1

γ j

)(
n−1

∏
i=1

[1−F(xi)]
m f (xi)

)
[1−F(xn)]

k−1 f (xn) (9)

on the cone F−1(0)≤ x1 ≤ x2 ≤ . . .≤ xn ≤ F−1(1),
where γ j = k+(n− j)(m+ 1) > 0 for all j, 1 ≤ j ≤ n, k is a positive integer and
m≥−1.
If m = 0 and k = 1, then this model reduces to the ordinary r−th order statistic and
(9) will be the joint pd f of n order statistics X1:n ≤ X2:n ≤ . . . ≤ Xn:n from cd f F(x).
If k = 1 and m = −1, then (9) will be the joint pd f of the first n record values of
the identically and independently distributed (i.i.d.) random variables with cd f F(x)
and corresponding pd f f (x). In view of (9), the marginal pd f of the r−th GOS,
X(r,n,m,k), 1≤ r ≤ n, is

fX(r,n,m,k)(x) =
Cr−1

(r−1)!
[F̄(x)]γr−1 f (x)gr−1

m (F(x)), (10)

and the joint pd f of X(r,n,m,k) and X(s,n,m,k), 1≤ r < s≤ n, x < y is

fX(r,n,m,k),X(s,n,m,k)(x,y) =
Cs−1

(r−1)!(s− r−1)!
[F̄(x)]m f (x)gr−1

m (F(x))

× [hm(F(y))−hm(F(x))]s−r−1[F̄(y)]γs−1 f (y), (11)

where

F̄(x) = 1−F(x), Cr−1 =
r

∏
i=1

γi ,

hm(x) =
{
− 1

m+1 (1−x)m+1, m 6=−1
−ln(1−x), m=−1

and
gm(x) = hm(x)−hm(1), x ∈ [0,1).

3.1. Relations for single moments of generalized order statistics

We shall first establish explicit expressions for jth single moments of the rth gener-
alized order statistics, E

(
X j(r,n,m,k)

)
. For the GP distribution, as given in (1), the

j−th moments of X(r,n,m,k) is given as,

E[X j(r,n,m,k)] =
∫

∞

0
x j fX(r,n,m,k)(x)dx

=
Cr−1

(r−1)!

∫
∞

0
x j[F̄(x)]γr−1 f (x)gr−1

m (F(x))dx. (12)
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Further, on using the binomial expansion, we can rewrite (12) as

E[X j(r,n,m,k)] =
Cr−1

(r−1)!(m+1)r−1

r−1

∑
u=0

(−1)u
(

r−1
u

)
×

∫
∞

0
x j[F̄(x)]γr−u−1 f (x)dx. (13)

Now, letting t = [F̄(x)]β in (13), we get

E[X j(r,n,m,k)] =
Cr−1

(r−1)!(m+1)r

(
α

β

) j j

∑
p=0

r−1

∑
u=0

(−1)u+p
(

r−1
u

)(
j
p

)
× B

(
k

m+1
+n− r+u+

β (p− j)
m+1

,1
)
, (14)

Since

b

∑
a=0

(−1)a
(

b
a

)
B(a+ k,c) = B(k,c+b), (15)

where B(a,b) denotes the complete beta function and defined by B(a,b) = Γ(a)Γ(b)
Γ(a+b)

Therefore,

E[X j(r,n,m,k)] =
Cr−1

(m+1)r

(
α

β

) j j

∑
p=0

(−1)p
(

j
p

)

×
Γ

(
k+(n−r)(m+1)+β (p− j)

m+1

)
Γ

(
k+n(m+1)+β (p− j)

m+1

) (16)

=

(
α

β

) j j

∑
p=0

(−1)p
(

j
p

)
1

∏
r
a=1

(
1+ β (p− j)

γa

) , (17)

where Γ(.) denotes the complete gamma function and defined by Γ(a)=
∫

∞

0 ta−1e−tdt.
Special Cases
i) Putting m = 0, k = 1, in (16), we get moments of order statistics from GP distribu-
tion as

E[X j
r:n] =

n!
(n− r)!

(
α

β

) j j

∑
p=0

(−1)p
(

j
p

)
Γ(n− r+1+β (p− j))

Γ(n+1+β (p− j))
. (18)

ii) Setting m =−1 in (17), to get moments of k−th record value from GP distribution
as;

E[X(r,n,−1,k)] =
(

α

β

) j j

∑
p=0

(−1)p
(

j
p

)
1(

1+ β (p− j)
k

)r
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for upper record values k = 1

E[X j
U(r)] =

(
α

β

) j j

∑
p=0

(−1)p
(

j
p

)
1

[β (p− j)]r
. (19)

A recurrence relation for single moment of GOS from cd f (2) can be obtained in
the following theorem.
Theorem 1. For the distribution given in (1) and for 2≤ r ≤ n, n≥ 2 k = 1,2, . . . ,(

1− jβ
γr

)
E[X j(r,n,m,k)] = E[X j(r−1,n,m,k)]+

jα
γr

E[X j−1(r,n,m,k)]. (20)

Proof. From (10), we have

E[X j(r,n,m,k)] =
Cr−1

(r−1)!

∫
∞

0
x j[F̄(x)]γr−1 f (x)gr−1

m (F(x))dx.

Integrating by parts and using (3) and simplifying the resultant expression we get
the result given in (20).

Remark 1: Under the assumption of Theorem 1 with m = 0, k = 1, we shall
deduced the recurrence relations for single moments of ordinary order statistics of
the GP distribution(

1− jβ
n− r+1

)
E(X j

r:n) = E(X j
r−1:n)+

jα
(n− r+1)

E(X j−1
r:n ).

Remark 2: Putting m = −1 in Theorem 1 we obtain the recurrence relations for
single moments of k record values of the GP distribution.(

1− jβ
k

)
E(X j

U(r)) = E(X j
U(r−1))+

jα
k

E(X j−1
U(r)).

All the tables and figures are made by using R software. The codes of the program
are available from the author on request. Table 2-3 lists some numerical values
for the first four moments, variances, skewness and kurtosis of order statistics and
upper record values from equation (18) and (19) and using numerical integration.
The parameter values are taken as α = 2 and β = 0.5. The results in this table show
a good agreement between the two methods.
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3.2. Relations for product moments of generalized order statistics

We shall first establish explicit expressions for the product moment of ith and jth
generalized order statistics, E

(
X (i, j)

r,s,n,m,k

)
= µ

(i, j)
r,s,n,m,k. For GP distribution, the product

moment of X(r,n,m,k) and X(s,n,m,k) is given as

E[X i(r,n,m,k),X j(s,n,m,k)] =
∫

∞

0

∫
∞

x
xix j fX(r,n,m,k)X(s,n,m,k)(x,y)dxdy.

On using (11) and binomial expansion, we have

E[X i(r,n,m,k),X j(s,n,m,k)] =
Cs−1(m+1)2−s

(r−1)!(s− r−1)!

r−1

∑
u=0

s−r−1

∑
v=0

(−1)u+v

×
(

r−1
u

)(
s− r−1

v

)∫
∞

0
xi[F̄(x)](s−r+u−v)(m+1)−1 f (x)G(x)dx, (21)

where

G(x) =
∫

∞

x
x j[F̄(y)]γs−v−1 f (y)dy. (22)

By setting t = [F̄(y)]β in (22), we obtain

G(x) =
(

α

β

) j j

∑
p=0

(−1)p
(

j
p

)
[F̄(x)]γs−v+β (p− j)

[γs−v +β (p− j)]
.

On substituting the above expression of G(x) in (22), and simplifying the resulting
equation, we get.

E[X i(r,n,m,k),X j(s,n,m,k)] =
Cs−1

(r−1)!(s− r−1)!(m+1)s

(
α

β

)i+ j j

∑
p=0

i

∑
q=0

(−1)p+q

×
(

j
p

)(
i
q

)
B
(

k
m+1

+n− r+
β (p+q− i− j)

m+1
,r
)

× B
(

k
m+1

+n− s+
β (p− j)

m+1
,s− r

)
, (23)

which after simplification yields

E[X i(r,n,m,k),X j(s,n,m,k)] =

(
α

β

)i+ j j

∑
p=0

i

∑
q=0

(−1)p+q
(

j
p

)(
i
q

)
× 1

∏
r
a=1

(
1+ β (p+q−i− j)

γa

)
∏

s
b=r+1

(
1+ β (p− j)

γb

) .(24)

Special cases
i) Putting m = 0, k = 1 in (23), we shall deduced the explicit formula for product
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moments of ordinary order statistics of GP distribution.
ii) Setting m =−1 in (24), we obtain the explicit expression for product moments of
k record values of GP distribution.

Making use of (3), we can derive recurrence relations for product moments of
GOS from (11).

Theorem 2. For the distribution given in (1) and for 1 ≤ r < s ≤ n, n ≥ 2 and
k = 1,2...(

1− jβ
γs

)
E[X i(r,n,m,k)X j(s,n,m,k)] = E[X i(r,n,m,k)X j(s−1,n,m,k)]

+
jα
γs

E[X i(r,n,m,k)X j−1(s,n,m,k)]. (25)

Proof: Using (11), we have

E[X i(r,n,m,k)X j(s,n,m,k)] =
Cs−1

(r−1)!(s− r−1)!

×
∫

∞

0
xi[F̄(x)]m f (x)gr−1

m (F(x))I(x),dx (26)

where

I(x) =
∫

∞

x
y j[hm(F(y))−hm(F(x))]s−r−1[F̄(y)]γs−1 f (y)dy.

Solving the integral in I(x) by parts and using (3) and substituting the resulting ex-
pression in (26), we get the result given in (25).
Remark 3 Under the assumption of Theorem 2 with m = 0, k = 1 we shall deduced
the recurrence relations for product moments of order statistics of the GP distribu-
tion.
Remark 4 Putting m = −1 in Theorem 2 we obtain the recurrence relations for
product moments of k−th record values from GP distribution.
Remark 5 At j = 0 in (25), we have

E[X i(r,n,m,k)] =
(

α

β

)i i

∑
q=0

(−1)q
(

i
q

)
1

∏
r
a=1

(
1+ β (q−i)

γa

) .
Remark 6 At i = 0, Theorem 2 reduces to Theorem 1.

4. Characterization

Let X(r,n,m,k), r = 1,2, . . . ,n be GOS, then from a continuous population with cd f
F(x) and pd f f (x), then the conditional pd f of X(s,n,m,k) given X(r,n,m,k) = x,
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1≤ r < s≤ n, in view of (10) and (11), is

fX(s,n,m,k)|X(r,n,m,k)(y|x) =
Cs−1

(s− r−1)!Cr−1

× [hm(F(y))−hm(F(x))]s−r−1[F(y)]γs−1

[F̄(x)]γr+1
f (y). x < y (27)

Theorem 3: Let X be a non-negative random variable having an absolutely contin-
uous distribution function F(x) with F(0) = 0 and 0 < F(x)< 1 for all x > 0, then

E[X(s,n,m,k)|X(l,n,m,k) = x] =
(βx+α)

β

{
s−l

∏
j=1

(
γl+ j

γl+ j−β

)
−α

}
, l = r, r+1 (28)

if and only if

F(x;α,β ) = 1−
(

α

βx+α

) 1
β

x > 0, α,β > 0.

Proof. From (27), we have

E[X(s,n,m,k)|X(r,n,m,k) = x] =
Cs−1

(s− r−1)!Cr−1(m+1)s−r−1

∫
∞

x
y
(

F̄(y)
F̄(x)

)γs−1

×

[
1−
(

F̄(y)
F̄(x)

)m+1
]s−r−1

f (y)
F̄(x)

dy. (29)

By setting u = F̄(y)
F̄(x) from (2) in (29), we obtain

E[X(s,n,m,k)|X(r,n,m,k) = x] =
Cs−1

β (s− r−1)!Cr−1(m+1)s−r−1 [(βx+α)A1−αA2], (30)

where

A1 =
∫ 1

0
uγs−β−1(1−um+1)s−r−1du (31)

and

A2 =
∫ 1

0
uγs−1(1−um+1)s−r−1du. (32)

Again by setting t = um+1 in (31) and (32) and substituting the values of A1 and A2

in (30) and simplifying the resultant expression we get the result given in (28).
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To prove sufficient part, we have from (27) and (28)

Cs−1

(s− r−1)!Cr−1(m+1)s−r−1

∫
∞

x
y[(F̄(x))m+1− (F̄(y))m+1]s−r−1

×[F̄(y)]γs−1 f (y)dy = [F̄(x)]γr+1Hr(x), (33)

where

Hr(x) =
(βx+α)

β

{
s−r

∏
j=1

(
γr+ j

γr+ j−β

)
−α

}
.

Differentiating (33) both sides with respect to x and rearranging the terms, we get

− Cs−1[F̄(x)]m f (x)
(s− r−2)!Cr−1(m+1)s−r−2

∫
∞

x
y[(F̄(x))m+1− (F̄(y))m+1]s−r−2

×[F̄(y)]γs−1 f (y)dy = H ′r(x)[F̄(x)]γr+1 − γr+1Hr(x)[F̄(x)]γr+1−1 f (x)

Therefore,

f (x)
F̄(x)

=− H ′r(x)
γr+1[Hr+1(x)−Hr(x)]

=
1

(βx+α)
,

which proves that

F(x;α,β ) = 1−
(

α

βx+α

) 1
β

x > 0, α,β > 0.

5. Estimation of model parameters

In this section we discuss the process of obtaining the maximum likelihood estima-
tors of the parameters α and β . Let X1,X2, . . . ,Xn be random sample with observed
values x1,x2, . . . ,xn from GP distribution. Let Θ = (α,β ) be the parameter vector.
The likelihood function based on the random sample of size n is obtained from

L(α,β |x) = α
n/β

n

∏
i=1

(βxi +α), (34)

The maximum likelihood estimates are the values of α and β that maximize this
likelihood function.
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5.1. Maximum likelihood estimation

The log likelihood function l(α,β |x) = logL(α,β |x), dropping terms that do not in-
volve α and β , is

l(α,β |x) = n
β

logα−
(

1+
1
β

) n

∑
i=1

log(βxi +α). (35)

We assume that the parameters α and β are unknown. To obtain the normal equa-
tions for the unknown parameters, we differentiate (35) partially with respect to α

and β and equate to zero. The resulting equations are

0 =
∂ l(α,β |x)

∂α
=

n
αβ
−
(

1+
1
β

) n

∑
i=1

1
(βxi +α)

, (36)

and

0 =
∂ l(α,β |x)

∂β
=− n

β 2 logα +
1

β 2

n

∑
i=1

log(βxi +α)−
(

1+
1
β

) n

∑
i=1

xi

(βxi +α)
. (37)

The solutions of the above equations are the maximum likelihood estimators of the
GP distribution parameters α and β , denoted as α̂MLE and β̂MLE , respectively. As
the equations expressed in (36) and (37) cannot be solved analytically, one must
use a numerical procedure to solve them.

5.2. Approximate confidence intervals

In this section, we present the asymptotic confidence intervals for the parameters
of the GP distribution. Since the MLEs of the unknown parameters α and β can-
not be derived in closed form, it is not easy to derive the exact distributions of the
MLEs. Hence, we cannot obtain exact confidence intervals for the parameters. We
must use the large sample approximation. It is known that the asymptotic distribu-
tion of the MLEs is [

√
n(α̂MLE −α),

√
n(β̂MLE −β )]→ N2(0, I−1(Θ)), we can refer to

Lawless (1982), where I−1(Θ), the inverse of the observed information matrix of the
unknown parameters Θ = (α,β ), is

I−1(Θ) =

− ∂ 2l(α,β )
∂ 2α

− ∂ 2l(α,β )
∂α∂β

− ∂ 2l(α,β )
∂α∂β

− ∂ 2l(α,β )
∂ 2β


−1

(α,β )=(α̂,β̂ )

=

(
Var(α̂) Cov(α̂, β̂ )

Cov(α̂, β̂ ) Var(α̂)

)
.
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The derivatives in I(Θ) are given in

∂ 2l(α,β |x)
∂α2 =− n

α2β
+

(
1+

1
β

) n

∑
i=1

1
(βxi +α)2

∂ 2l(α,β |x)
∂α ∂β

=− n
αβ 2 +

1
β 2

n

∑
i=1

1
(βxi +α)

−
(

1+
1
β

) n

∑
i=1

xi

(βxi +α)2 =
∂ 2l(α,β |x)

∂β ∂α

∂ 2l(α,β |x)
∂β 2 =

2n
β 3 lnα− 2

β 3

n

∑
i=1

ln(βxi +α)+
2

β 2

n

∑
i=1

xi

(βxi +α)

+ +

(
1+

1
β

) n

∑
i=1

(
xi

βxi +α

)2

.

The above approach is used to derive approximate 100(1− τ)% confidence in-
tervals of the parameters α and β of the forms

α̂± zτ/2
√

var(α̂)

and

β̂ ± zτ/2

√
var(β̂ ),

where zτ/2 is the upper (τ/2)th percentile of the standard normal distribution.

6. Numerical Experiments and Discussion

In this section, we examine the performance of maximum likelihood estimates for
the two parameter GP distribution by conducting simulation study for different sam-
ple sizes n = 20,30,50,100,150. We simulate 1000 samples with four different sets
of parameters. The results are presented in Table 4, which shows the averages
of MLEs[Av(α̂, β̂ )] together with the 95% confidence intervalsfor parameters of GP
distribution [C(α,β )] and their variances, [Var(α̂),Var(β̂ )]. These results suggest
that ML estimates performed adequately. The variances of MLEs decrease when
the sample size n increases.

The following observations can be drawn from the Tables 4

1. All the estimators show the property of consistency i.e., the MLEs decreases
as sample size increases.

2. The variances of MLEs decrease when n increases.
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Table 4: Mean of the MLEs, their variances and confidence interval

n (α,β ) Av(α̂, β̂ ) C(α,β ) Var(α̂) Var(β̂ )
20 (2.0, 1.5) (2.3172, 1.2835) (0.7983, 0.8972) 1.4585 0.8074

(0.5, 4.0) (0.5132, 7.0972) (0.9732, 0.9636) 0.0820 34.8920
(4.0, 0.5) (4.8230, 0.4973) (0.9201, 0.9930) 7.8013 0.0723
(2.0, 2.0) (2.3672, 2.0874) (0.8920, 0.9874) 1.3210 1.5672

30 (2.0, 1.5) (2.3124, 1.2213) (0.9230, 0.9972) 0.6707 0.4872
(0.5, 4.0) (0.5217, 6.0132) (0.9731, 0.9835) 0.0631 23.7234
(4.0, 0.5) (4.6133, 0.4017) (0.8937, 0.9083) 4.5983 0.0692
(2.0, 2.0) (1.9967, 2.0313) (0.9538, 0.9876) 0.9012 1.5078

50 (2.0, 1.5) (2.0891,1.1942) (0.9074, 0.9920) 0.3948 0.2672
(0.5, 4.0) (0.4838, 5.0120) (0.9235, 0.9574) 0.0572 13.0789
(4.0, 0.5) (4.6103, 0.3031) (0.9318, 0.9927) 1.9071 0.0563
(2.0, 2.0) (1.9956, 1.9897) (0.9536, 0.9897) 0.6752 0.9032

100 (2.0, 1.5) (1.9762, 1.0701) (0.9975, 0.9432) 0.3572 0.2014
(0.5, 4.0) (0.4702, 4.9673) (0.9432, 0.9784) 0.0132 7.3210
(4.0, 0.5) (4.0259, 0.2123) (0.9810, 0.9374) 1.8270 0.0513
(2.0, 2.0) (1.8130, 1.2704) (0.9714, 0.9905) 0.3412 0.2715

150 (2.0, 1.5) (1.8352, 1.0250) (0.9512, 0.9930) 0.1327 0.0978
(0.5, 4.0) (0.3976, 3.9989) (0.9618, 0.9568) 0.0115 0.2560
(4.0, 0.5) (3.9859, 0.2262) (0.9805, 0.9907) 0.5098 0.0099
(2.0, 2.0) (1.7894, 1.1359) (0.9758, 0.9853) 0.2081 0.2315
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7. Concluding Remarks

In this paper, the various structural properties of the distribution are derived in-
cluding explicit expressions for moments, mean deviation, Bonferroni and Lorenz
curves, Renyi entropy and quantile function. The explicit expressions and recur-
rence relations for single and product moments of GOS are obtained from the GP
distribution. The characterizing result of the GP distribution has been studied us-
ing conditional moments of generalized order statistics. The method of maximum
likelihood is adopted for estimating the model parameters. For different parameter
settings and sample sizes, the simulation studies are performed and compared to
the performance of the GP distribution.
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