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Poisson Weighted Ishita Distribution: Model for Analysis  
of Over-Dispersed Medical Count Data 

Bilal Ahmad Para1, Tariq Rashid Jan2 

ABSTRACT  

A new over-dispersed discrete probability model is introduced, by compounding the 
Poisson distribution with the weighted Ishita distribution. The statistical properties of the 
newly introduced distribution have been derived and discussed. Parameter estimation has 
been done with the application of the maximum likelihood method of estimation, followed 
by the Monte Carlo simulation procedure to examine the suitability of the ML estimators. 
In order to verify the applicability of the proposed distribution, a real-life set of data from 
the medical field has been analysed for modeling a count dataset representing epileptic 
seizure counts. 
Key words: compounding model, coverage probability, simulation, count data, epileptic 
seizure counts. 

1.  Introduction 

Compounding mechanism for generating new count data probability models has 
received a great attention from researchers to obtain new probability distributions to 
fit data sets not adequately fit by common parametric distributions. Compound 
distributions serve well to describe various phenomena in biology, epidemiology and 
so on. The work has been done in this particular area since 1920. Using compounding 
mechanism, Greenwood and Yule (1920) established a relationship between Poisson 
distribution and a negative binomial distribution by treating the rate parameter in 
Poisson model as gamma variate. Skellam (1948) proposed a probability distribution 
from the binomial distribution by regarding the probability of success as a beta variable 
between sets of trials. Lindely (1958) proposed a one parameter probability distribution 
to illustrate the difference between fiducial distribution and posterior distribution. 
Gerstenkorn (1993,1996) introduced several compound distributions and obtained 
compound of gamma distribution with exponential distribution by treating the 
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parameter of gamma distribution as an exponential variate and also obtained 
compound of polya with beta distribution. Mahmoudi et al. (2010) generalized the 
Poisson-Lindely distribution of Sankaran (1970) and showed that their generalized 
distribution has more flexibility in analysing count data. Zamani and Ismail (2010) 
proposed a new compound distribution by compounding negative binomial with one 
parameter Lindley distribution that provides good fit for count data where the 
probability at zero has an inflated value. A new generalized negative binomial 
distribution was proposed by Gupta and Ong (2004). This distribution arises from 
Poisson distribution if the rate parameter follows generalized gamma distribution; the 
resulting distribution so obtained was applied to various data sets and can be used as a 
better alternative to negative binomial distribution. Rashid, Ahmad and Jan (2016) 
proposed a new competitive count data model, by compounding negative binomial 
distribution with Kumaraswamy distribution, which finds its application in biological 
sciences. Para and Jan (2018) introduced two compounding models with applications 
to handle count data in medical sciences. 

In this paper, we propose a new compounding distribution by compounding 
Poisson distribution with weighted Ishita distribution. Ishita distribution is a flexible 
probability model introduced by Shanker and Shukla (2017) and its weighted version 
was introduced by Shukla and Shanker (2019) as a new life time probability model. 
The new model is introduced as there is a need to find more flexible models for 
analyzing over-dispersed count data. 

2.  Definition of Proposed Model (Poisson Weighted Ishita Distribution) 

If ~|X Poisson   , where  is itself a random variable following weighted Ishita 
distribution with parameter c and  , then determining the distribution that results 
from marginalizing over  will be known as a compound of Poisson distribution with 
that of weighted Ishita distribution, which is denoted by  ,;cXPWID . It may be noted 
that the proposed model will be a discrete since the parent distribution is discrete. 
Theorem 2.1: The probability mass function of a Poisson weighted Ishita distribution, i.e. 

 ,;cXPWID is given by 
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Proof: Using the definition (2), the pmf of a Poisson weighted Ishita distribution, i.e. 

 ,;cXPWID can be obtained as 
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When its parameter  follows weighted Ishita distribution (WID) with pdf 
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0,0;,...3,2,1,0  cx   

which is the pmf of  Poisson weighted Ishita distribution. 

 

Figure 1. pmf plot of Poisson weighted Ishita distribution for different parameter combinations 
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The corresponding cdf of Poisson weighted Ishita distribution is obtained as: 
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Cdf is not in the closed form and it can be solved using software like mathematica 
and MathCAD for getting numerical results. 

2.1. Random Data Generation from Poisson weighted Ishita distribution 

In order to simulate the data from Poisson weighted Ishita distribution, we employ 
the discrete version of inverse cdf method. Simulating a sequence of random numbers 

nyyy ,....,, 21  from Poisson weighted Ishita random variable K with pmf 
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In order to generate n random numbers nyyy ,....,, 21  from Poisson weighted Ishita 
distribution, repeat step-1 and step-2 n times. We have employed R studio software for 
running the simulation study of the proposed model. 

3.  Statistical properties 

In this section, structural properties of the Poisson weighted Ishita model have been 
evaluated. These include the moment, moment generating function and probability 
generating function. 
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3.1. Factorial Moments 

Using (2.1), the rth factorial moment about origin of the Poisson weighted Ishita 
distribution (2.1) can be obtained as 
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Taking r=1,2,3,4 in (3.1.1), the first four factorial moments about origin of Poisson 
weighted Ishita distribution can be obtained as 
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3.1.2.  Moments about origin (Raw moments)          

Using the relationship between factorial moments about origin and the moments 
about origin of Poisson weighted Ishita distribution (2.1), we have 
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4.  Reliability Analysis 

In this section, we have obtained the reliability and hazard rate function of the 
proposed Poisson weighted Ishita distribution. 

4.1. Reliability Function R(x) 

The reliability function is defined as the probability that a system survives beyond 
a specified time. It is also referred to as survival function of the distribution. The 
reliability function or the survival function of Poisson weighted Ishita distribution is 
given by 
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4.2. Hazard Function 

The hazard function is also known as the hazard rate, instantaneous failure rate or force of 

mortality, and is given as: 
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5.  Order statistics 

Let        nXXXX ....,,, 321 be the ordered statistics of the random sample 

nXXXX ,....,, 321  drawn from the discrete distribution with cumulative distribution 
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function  xFX and probability mass function  xPX , then the probability mass 
function of rth order statistics  rX  is given by: 
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Using the equations (2.1) and (2.2), the probability mass function of rth order 
statistics of Poisson weighted Ishita distribution is given by: 
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Then, the pmf of first order  1X  Poisson weighted Ishita distribution is given by: 
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and the pmf of nth order  nX Poisson Ishita model is given as: 
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6.  Estimation of Parameters 

In this section, we estimate the parameters of the Poisson weighted Ishita 
distribution using methods of maximum likelihood estimation. 

6.1. Method of Maximum Likelihood Estimation 

This is one of the most useful method for estimating the different parameters of the 
distribution. Let nXXXX ,...,,, 321  be the random size of sample n draw from Poisson 
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weighted Ishita distribution. Then, the likelihood function of Poisson weighted Ishita 
distribution is given as: 
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By differentiating log-likelihood function with respect to c and , and equating 

them to zero we get normal equations for estimating the parameters of the Poisson 
weighted Ishita distribution. 
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These two derivative equations cannot be solved analytically, therefore ̂ ˆ andc

will be obtained by maximizing the log likelihood function numerically using the 
Newton-Raphson method, which is a powerful technique for solving equations 
iteratively and numerically. 

6.2. Monte Carlo Simulation 

In order to investigate the performance of the maximum likelihood estimators for 
a finite sample size n using Monte Carlo simulation procedure. Using the inverse cdf 
method discussed in sub-section 2.1, random data is generated from Poisson weighted 
Ishita distribution. We took four random parameter combinations as 4.0,4.0  c ,

9.0,8.0  c , 7.1,5.1  c  and 2.3,5.2  c , to carry out the simulation study 
and the process was repeated 1000 times by going from small to large sample sizes n = 
(10,25,75,200,300,600). From Table 1, it is clear that the estimated variances and MSEs 
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decrease when the sample size n increases. The coverage probabilities (CP) are near to 
0.95 when the sample size increases. Thus, the agreement between theory and practice 
improves as the sample size n increases. Hence, the maximum likelihood method 
performs quite well in estimating the model parameters of the Poisson weighted Ishita 
distribution. 

Table 1. Simulation study of ML estimators of Poisson weighted Ishita distribution 

Sample 
size (n) 

Parameters 
4.0,4.0  c  9.0,8.0  c  

Bias Variance MSE Coverage 
Probability 

Bias Variance MSE Coverage 
Probability 

10 
c  -0.0948 0.008298 0.017285 0.899 0.054353 0.016773 0.0197272 0.919 

  0.214834 0.091871 0.1380246 0.922 0.033567 0.039843 0.0409697 0.911 

25 
c  -0.07802 0.005691 0.0117781 0.939 -0.00876 0.005471 0.0055477 0.929 

  0.078574 0.043124 0.0492979 0.943 0.037584 0.010208 0.0116206 0.922 

75 
c  -0.06463 0.003127 0.007304 0.949 0.016155 0.000861 0.001122 0.942 

  -0.05445 0.031839 0.0348038 0.953 0.011167 0.000993 0.0011177 0.949 

200 
c  -0.04363 0.003372 0.0052756 0.959 -0.00825 0.001847 0.0019151 0.956 

  -0.01411 0.007967 0.0081661 0.957 0.007271 0.001054 0.0011069 0.955 

300 
c  -0.02236 0.001644 0.002144 0.958 0.001713 0.000411 0.0004139 0.959 

  -0.00354 0.004377 0.0043895 0.961 0.006739 0.000308 0.0003534 0.966 

600 
c  -0.01746 0.000182 0.0004869 0.959 0.006854 0.000149 0.000196 0.963 

  -0.00046 0.002975 0.0029752 0.971 0.002234 0.000175 0.000180 0.969 

Sample 
size (n) 

Parameters 
7.1,5.1  c  2.3,5.2  c  

Bias Variance MSE 
Coverage 

Probability Bias Variance MSE 
Coverage 

Probability 

10 
c  -0.050778 0.000497 0.003075 0.939 0.054253 0.016673 0.054253 0.829 

  0.040750 0.003891 0.005552 0.889 0.033467 0.039743 0.033467 0.915 

25 
c  -0.044688 0.000719 0.002716 0.938 -0.00886 0.005371 -0.00886 0.927 

  -0.016717 0.002150 0.002429 0.952 0.037484 0.010108 0.037484 0.943 

75 
c  -0.032848 0.000382 0.001461 0.956 0.016055 0.000761 0.016055 0.949 

  0.000015 0.000310 0.000310 0.953 0.011067 0.000893 0.011067 0.943 

200 
c  0.003141 0.000628 0.000638 0.962 -0.00835 0.001747 -0.00835 0.959 

  0.003232 0.000001 0.000011 0.958 0.007171 0.000954 0.007171 0.959 

300 
c  -0.005717 0.000003 0.000036 0.961 0.001613 0.000311 0.001613 0.962 

  -0.001419 0.000012 0.000014 0.959 0.006639 0.000208 0.006639 0.961 

600 
c  0.002955 0.000040 0.000049 0.965 0.006754 0.000049 0.006754 0.972 

  0.000943 0.000036 0.000037 0.962 0.002134 0.000075 0.002134 0.968 
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7. Applications of Poisson Weighted Ishita Distribution 

In this section, we fit our proposed model and other related models to a vaccine 
adverse event count data studied by Rose et al. (2006). The data are the frequencies 
which correspond to 4020 observed systemic adverse events for four injections for each 
of the 1005 study participants. The data set is given in Table 2. 

Table 2.  Data set representing vaccine adverse event count data studied by Rose et al. (2006) 

Vaccine adverse 
event 

0 1 2 3 4 5 6 7 8 9 10 11 12 

Frequency 1437 1010 660 428 236 122 62 34 14 8 4 4 1 

Maximum likelihood estimation method is used in estimating the parameters for 
all the suggested models using R software. Parameter estimates with standard errors in 
parenthesis for each fitted model are given in Table 3. 

Table 3.  Estimated Parameters by ML method for fitted distributions for data set representing 
epileptic seizure counts 

Distribution 
Parameter Estimates 

(Standard Error) 
Model function 
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Zero Inflated Poisson 
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We compute the expected frequencies for fitting Poisson weighted Ishita, Poisson 
Ishita, Poisson, Geometric, Negative Binomial, Zero Inflated Poisson, Poisson Lindley 
and discrete Weibull distributions with the help of R studio statistical software, and 
Pearson’s chi-square test is applied to check the goodness of fit of the models discussed. 
The calculated expected frequencies for each fitted model are given in Table 4. For 
Poisson weighted Ishita, negative binomial and discrete Weibull distributions, p-value 
is >0.05, hence it fits the data statistically good. Poisson Ishita, Poisson, Geometric, zero 
inflated Poisson and Poisson Lindley does not fit the data at all as p-value in the case of 
these models is <0.05. Based on the chi-square, we observe that Poisson weighted Ishita 
distribution has the highest p-value (0.8162), which signifies that  Poisson weighted 
Ishita provides a better fit for the data set representing vaccine adverse event count data 
studied by Rose et al. (2006) as compared to other fitted models. 

Table 4.  Fitted proposed distribution and other competing models to a data set representing epileptic 
seizure counts 

Epileptic 
seizure 

(X) 

Observ
ed 

Poisson 
Weighte
d Ishita 

Poisson 
Ishita Poisson Geometric Negative 

Binomial 

Zero 
Inflated 
Poisson

Poisson 
Lindley 

Discrete 
Weibull 

0 1437 1427.4 1518.0 890.8 1603.5 1409.1 1437.0 1500.1 1410.7 

1 1010 1035.2 965.9 1342.3 963.9 1068.7 787.3 1003.5 1065.4 

2 660 665.7 620.3 1011.4 579.4 670.7 803.3 629.2 667.7 

3 428 401.0 386.5 508.1 348.3 391.6 546.4 378.7 393.1 

4 236 229.5 231.9 191.4 209.4 220.2 278.7 221.6 222.6 

5 122 126.0 134.4 57.7 125.9 120.9 113.8 127.0 122.6 

6 62 66.9 75.5 14.5 75.7 65.3 38.7 71.7 66.0 

7 34 34.5 41.4 3.1 45.5 34.9 11.3 39.9 34.9 

8 14 17.4 22.2 0.6 27.3 18.5 2.9 22.0 18.2 

9 8 8.6 11.7 0.1 16.4 9.7 0.7 12.1 9.3 

10 4 4.2 6.1 0.0 9.9 5.1 0.1 6.6 4.7 

11 4 2.0 3.1 0.0 5.9 2.6 0.0 3.5 2.4 

12 1 1.8 3.1 0.0 9.0 2.8 0.0 4.1 2.3 

P-value 0.8162 0.0036 0.0003 0.0001 0.2619 <0.0001 0.0322 0.3564 
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Furthermore, in order to compare our proposed distribution and other competing 
models, we consider the criteria like AIC (Akaike information criterion), AICC 
(corrected Akaike information criterion) and BIC (Bayesian information criterion). 
The better distribution corresponds to lesser AIC, AICC and BIC values. From Table 5, 
it is observed that the Poisson weighted Ishita distribution has lesser AIC, AICC and 
BIC values as compared to other competing models. Hence, we can conclude that the 
Poisson weighted Ishita distribution leads to a better fit than the other competing 
models for analysing the data set given in Table 2. 

Table 5.   Model comparison criterion for fitted models to a data set  

Criterion 
Poisson 

Weighted 
Ishita 

Poisson 
Ishita 

Poisson Geometric
Negative 
Binomial 

Zero 
Inflated 
Poisson 

Poisson 
Lindley 

Discrete 
Weibull 

-logL 6737.2 6747.5 7231.1 6778.0 6740.6 6868.8 6746.0 6739.7 

AIC 13478.4 13496.9 14464.3 13558.1 13485.2 13741.6 13494.0 13483.4 

BIC 13491.0 13503.2 14470.6 13564.4 13497.8 13754.2 13500.3 13496.0 

 

We also use Likelihood Ratio (LR) test to check whether the fitted Poisson weighted 
Ishita distribution for a given data set is statistically “superior” to the fitted Poisson 
Ishita distribution. In any case, hypothesis tests of the type   : 00 H versus 

01  : H  can be performed using LR statistics. In this case, the LR statistic for testing 

H0 versus H1 is ))ˆ()ˆ((2 0 LL where ̂and 0̂ are the MLEs under H1 and H0. 
The statistic   is asymptotically nas ( ) distributed as 2

k , with k degrees of 

freedom, which is equal to the difference in dimensionality of ̂and 0̂ . H0 will be 
rejected if the LR-test p-value is <0.05 at 95% confidence level. 

Table 6.  Likelihood Ratio test of Poisson weighted Ishita distribution versus Poisson Ishita 
distribution 

Model Model Function -logl 
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We have 35.62
1  < Likelihood Ratio Statistic (20.60), thus the null hypothesis is 

rejected and it is concluded that parameter c is playing a significant role in Poisson 
weighted Ishita distribution for analysing the data set given in Table 2. 

8.  Conclusion 

A new over-dispersed probability distribution is introduced using the 
compounding technique. Statistical properties of the proposed model are studied and 
application in handling count data set representing epileptic seizure counts is analyzed. 
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