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ABSTRACT  

Zaman and Bulut (2018a) developed a class of estimators for a population mean utilising 
LMS robust regression and supplementary attributes. In this paper, a family of estimators is 
proposed, based on the adaptation of the estimators presented by Zaman (2019), followed 
by the introduction of a new family of regression-type estimators utilising robust regression 
tools (LAD, H-M, LMS, H-MM, Hampel-M, Tukey-M, LTS) and supplementary attributes. 
The mean square error expressions of the adapted and proposed families are determined 
through a general formula. The study demonstrates that the adapted class of the Zaman 
(2019) estimators is in every case more proficient than that of Zaman and Bulut (2018a). 
In addition, the proposed robust regression estimators based on robust regression tools and 
supplementary attributes are more efficient than those of Zaman and Bulut (2018a) and 
Zaman (2019).The theoretical findings are supported by real-life examples. 
Key words: supplementary attributes, ratio-type estimators, SRS, robust regression tools, 
percentage relative efficiency..  

1.  Introduction 

The estimation theory is important in different interdisciplinary territories of 
research including financial matters, clinical preliminaries, population studies, 
agriculture, engineering, and so on. Additionally, the issue of estimation of mean is 
critical in research, for example, the estimation of average crop yield, normal life 
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expectancy of people in an area and many others. To improve the efficiency of 
estimation of parameters, an auxiliary variable is widely used in the literature. 
An alternate way to enhance the efficiency of an estimator is to utilize supplementary 
attributes (for more details, interested readers may refer to Naik and Gupta (1996), 
Shahzad (2016), and Shahzad et al. (2018)). Ratio and product estimation techniques 
are widely used under SRS (simple random sampling) scheme. Both of these schemes 
have their own advantages and disadvantages. For instance, a ratio estimator is suitable 
for a positive linear relationship between the study and supplementary attribute, 
a product estimator is suitable for a negative linear relationship between the study and 
supplementary attribute. The usual regression estimator solves this issue and provides 
much better results for both positive and negative correlations. Note that the usual 
regression estimator based on ordinary least square (OLS) regression coefficient. 
However, when data are contaminated with outliers, OLS will not perform well, and as 
a result we get poor results. For solving this issue, Zaman and Bulut (2018a) utilized 
one of the robust regression technique namely LMS (Least Median of Squares), and 
provide a set of estimators utilizing auxiliary attribute under SRS scheme. In the current 
article, a class of robust ratio estimators is constructed by adapting the estimators of 
Zaman (2019), and a new class of robust regression estimators is introduced utilizing 
the supplementary attributes and robust-regression tools (least  absolute deviations 
(LAD), Huber's M-estimator (H-M), least median of squares (LMS), least  trimmed 
squares (LTS), Huber's MM-estimator (H-MM), Hampel-M estimator, Tukey-M 
estimator) under simple random sampling. 

Zaman and Bulut (2018a) developed a class of estimators utilizing the known 
parameters of a supplementary attribute and LMS regression coefficient, as given below: 

 

𝑦ത௭௕భ
ൌ

௬തା௕കሺ೗೘ೞሻሺ௉భି௣భሻ

௣భ
𝑃ଵ ,                                                                         (1) 

𝑦ത௭௕మ
ൌ

௬തା௕കሺ೗೘ೞሻሺ௉భି௣భሻ

ቀ௉భା஼കሺఝሻቁ
൫𝑃ଵ ൅ 𝐶ఝ൯ ,                                                          (2) 

𝑦ത௭௕య
ൌ

௬തା௕കሺ೗೘ೞሻሺ௉భି௣భሻ

൫௉భାఉమሺఝሻ൯
൫𝑃ଵ ൅ 𝛽ଶሺ𝜑ሻ൯ ,                                                    (3) 

𝑦ത௭௕ర
ൌ

௬തା௕കሺ೗೘ೞሻሺ௉భି௣భሻ

ቀ௉భ஼കାఉమሺఝሻቁ
ቀ𝑃ଵ𝐶ఝ ൅ 𝛽ଶሺ𝜑ሻቁ ,                                              (4) 

𝑦ത௭௕ఱ
ൌ

௬തା௕കሺ೗೘ೞሻሺ௉భି௣భሻ

൫௉భఉమሺఝሻା஼ക൯
൫𝑃ଵ𝛽ଶሺ𝜑ሻ ൅ 𝐶ఝ൯ ,                                               (5) 
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where 𝐶ఝ, the coefficient of variation, yത, the sample mean, 𝛽ଶሺ𝜑ሻ, the coefficient of 
kurtosis, and 𝑏ఝሺ௟௠௦ሻ is the LMS robust regression coefficient. Further, 𝑃ଵ and 𝑝ଵ 
represent population and sample proportions, respectively. For more details about 
proportions, interested readers may refer to Zaman and Bulut (2018a). 

The MSE of Zaman and Bulut (2018a) family of estimators is given below: 

𝑀𝑆𝐸൫𝑦ത௭௕೔
൯ ൌ 𝛾ൣ𝑆௬

ଶ ൅ 𝑔௜
ଶ𝑆ఝ

ଶ ൅ 2𝐵௜𝑔௜𝑆ఝ
ଶ ൅ 𝐵௜

ଶ𝑆ఝ
ଶ െ 2𝑔௜𝑆௬ఝ െ 2𝐵௜𝑆௬ఝ൧; 𝑖 ൌ 1, … ,5

                                                                                                                                               
 

 (6) 

where  

𝑔ଵ ൌ 1,  𝑔ଶ ൌ
௒ത

௉భା஼ക
, 𝑔ଷ ൌ

௒ത

௉భାఉమሺఝሻ
, 𝑔ସ ൌ

஼ക௒ത

஼ക ௉భାఉమሺఝሻ
, 𝑔ହ ൌ

ఉమሺఝሻ௒ത

஼ക ௉భା஼ക
, 𝑆௬ఝ ൌ  𝜌𝑆௬𝑆ఝ 

and ൌ ቀ
ଵ

௡
െ

ଵ

ே
ቁ. Further, 𝑆௬

ଶ and 𝑆ఝ
ଶ  are the unbiased variances of 𝑌 and 𝑃ଵ respectively, 

𝜌 is the coefficient of correlation. 

2. Adapted Family of Estimators 

Zaman (2019) developed a class of estimators utilizing known characteristics of 
supplementary information. By analogy to the approach of Zaman (2019), 
a supplementary attribute is utilized here, as given below: 

𝑦ത௭భ
ൌ 𝑘

௬തା௕കሺ೔ሻሺ௉భି௣భሻ

௣భ
𝑃ଵ ൅ ሺ1 െ 𝑘ሻ

௬തା௕കሺ೔ሻሺ௉భି௣భሻ

ቀ௉భା஼കሺఝሻቁ
൫𝑃ଵ ൅ 𝐶ఝ൯,                           (7) 

𝑦ത௭మ
ൌ 𝑘

௬തା௕കሺ೔ሻሺ௉భି௣భሻ

௣భ
𝑃ଵ ൅ ሺ1 െ 𝑘ሻ 

௬തା௕കሺ೔ሻሺ௉భି௣భሻ

൫௉భାఉమሺఝሻ൯
൫𝑃ଵ ൅ 𝛽ଶሺ𝜑ሻ൯,                    (8) 

𝑦ത௭య
ൌ 𝑘

௬തା௕കሺ೔ሻሺ௉భି௣భሻ

௣భ
𝑃ଵ ൅ ሺ1 െ 𝑘ሻ

௬തା௕കሺ೔ሻሺ௉భି௣భሻ

ቀ௉భ஼കାఉమሺఝሻቁ
ቀ𝑃ଵ𝐶ఝ ൅ 𝛽ଶሺ𝜑ሻቁ,     

                                                                                                                                             
    (9) 

𝑦ത௭ర
ൌ 𝑘

௬തା௕കሺ೔ሻሺ௉భି௣భሻ

௣భ
𝑃ଵ ൅ ሺ1 െ 𝑘ሻ

௬തା௕കሺ೔ሻሺ௉భି௣భሻ

൫௉భఉమሺఝሻା஼ക൯
൫𝑃ଵ𝛽ଶሺ𝜑ሻ ൅ 𝐶ఝ൯,     

                                                                                                                                        
    (10) 

In general form, we can write the adapted class of estimators as given below: 

𝑦ത௭೔
ൌ 𝑘

௬തା௕കሺ೔ሻሺ௉భି௣భሻ

௣భ
𝑃ଵ ൅ ሺ1 െ 𝑘ሻ

௬തା௕കሺ೔ሻሺ௉భି௣భሻ

൫௉భ௎കା௏ക൯
൫𝑃ଵ𝑈ఝ ൅ 𝑉ఝ൯,              (11) 

where 𝑈ఝ and 𝑉ఝ are the known characteristics of an auxiliary attribute. The MSE of 
MSE൫yത୸౟

൯ is as follows: 

𝑀𝑆𝐸൫𝑦ത௭೔
൯ ൌ 𝛾ൣ𝑆௬

ଶ െ 2𝛿𝑆௬ఝ ൅ 𝛿ଶ𝑆ఝ
ଶ൧,                                         (12) 
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where 𝛿 ൌ ൣ𝑘൫𝐵ఝሺ௜ሻ ൅ 𝑔ଵ൯ ൅ ሺ1 െ 𝑘ሻ൫𝐵ఝሺ௜ሻ ൅ 𝑔௜൯൧. 
By replacing  ሺ𝛿 ൌ 𝐵ሻ in the above MSE expression, we get the minimum MSE of 

𝑦ത௭೔
 as follows: 

𝑀𝑆𝐸൫𝑦ത௭೔
൯ ൌ 𝛾𝑆௬

ଶሺ1 െ 𝜌ଶሻ,                                                     (13) 

which is the MSE of traditional regression estimator, i.e.  𝑦ത௥௘௚ ൌ 𝑦ത ൅ 𝑏ఝሺ௜ሻሺ𝑃ଵ െ 𝑝ଵሻ. 
Note that Abd-Elfattah et al. (2010) consider same class in the same context utilizing 
OLS regression coefficient. However, Zaman (2019) introduced robust regression 
techniques instead of OLS regression in the presence of outliers. 

3. Proposed Estimators 

Taking motivation from ratio type estimators of Zaman (2019), we propose the 
following family of robust regression estimators as given by 

𝑦ത෠௣భ
ൌ 𝑤ଵൣ𝑦ത ൅ 𝑏ఝሺ௠௠ሻሺ𝑃ଵ െ 𝑝ଵሻ൧ ൅ 𝑤ଶൣ𝑦ത ൅ 𝑏ఝሺ௟௠௦ሻሺ𝑃ଵ െ 𝑝ଵሻ൧,                         (14) 

𝑦ത෠௣మ
ൌ 𝑤ଵൣ𝑦ത ൅ 𝑏ఝሺ௟௔ௗሻሺ𝑃ଵ െ 𝑝ଵሻ൧ ൅ 𝑤ଶൣ𝑦ത ൅ 𝑏ఝሺ௧௨௞௘௧ሻሺ𝑃ଵ െ 𝑝ଵሻ൧,                       (15) 

𝑦ത෠௣య
ൌ 𝑤ଵൣ𝑦ത ൅ 𝑏ఝሺ௟௧௦ሻሺ𝑃ଵ െ 𝑝ଵሻ൧ ൅ 𝑤ଶൣ𝑦ത ൅ 𝑏ఝሺ௛௨௕௘௥ሻሺ𝑃ଵ െ 𝑝ଵሻ൧,                       (16) 

𝑦ത෠௣ర
ൌ 𝑤ଵൣ𝑦ത ൅ 𝑏ఝሺ௠௠ሻሺ𝑃ଵ െ 𝑝ଵሻ൧ ൅ 𝑤ଶൣ𝑦ത ൅ 𝑏ఝሺ௛௔௠௣௟௘ሻሺ𝑃ଵ െ 𝑝ଵሻ൧,                  (17) 

𝑦ത෠௣ఱ
ൌ 𝑤ଵൣ𝑦ത ൅ 𝑏ఝሺ௛௨௕௘௥ሻሺ𝑃ଵ െ 𝑝ଵሻ൧ ൅ 𝑤ଶൣ𝑦ത ൅ 𝑏ఝሺ௠௠ሻሺ𝑃ଵ െ 𝑝ଵሻ൧,                    (18) 

𝑦ത෠௣ల
ൌ 𝑤ଵൣ𝑦ത ൅ 𝑏ఝሺ௛௨௕௘௥ሻሺ𝑃ଵ െ 𝑝ଵሻ൧ ൅ 𝑤ଶൣ𝑦ത ൅ 𝑏ఝሺ௟௠௦ሻሺ𝑃ଵ െ 𝑝ଵሻ൧,                     (19) 

In general form, we can write the proposed family of estimators as 

𝑦ത෠௣೔
ൌ 𝑤ଵൣ𝑦ത ൅ 𝑏ఝሺ௜ሻሺ𝑃ଵ െ 𝑝ଵሻ൧ ൅ 𝑤ଶൣ𝑦ത ൅ 𝑏ఝሺ௝ஷ௜ሻሺ𝑃ଵ െ 𝑝ଵሻ൧; ሺ𝑖, 𝑗 ് 𝑖ሻ ൌ 1, … ,6 

                                                                                                                                      
 

(20) 

However, it is interesting to note that if we put ሺ𝑤ଵ, 𝑤ଶሻ ൌ ሺ0, 1ሻ, 𝑦ത෠௣೔
will be 

converted into a traditional robust regression type estimator introduced by Nasir et al. 
(2018) under SRS for quantitative sensitive study variable. Hence, these estimator is 
a special case of the proposed class. The proposed family relies on the robust-regression 
tools, i.e. 𝑏ఝሺ௜ሻ (LAD, H-M, LMS, LTS, H-MM, Hampel-M, Tukey-M) for ሺ𝑖 ൌ 1, … ,6ሻ 
respectively. For deep knowledge of 𝑏ఝሺ௜ሻ, interested readers may refer to Zaman and 
Bulut (2018b). 
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To obtain MSE, let us define 𝑦ത ൌ ൫1 ൅ 𝜂௬൯𝑌 ഥ , 𝑝ଵ ൌ ൫1 ൅ 𝜂ఝ൯𝑃ଵ. Utilizing these 
notations 𝜂௜ሺ𝑖 ൌ 𝑦, 𝜑ሻ, we can write 
𝐸൫𝜂௬൯ ൌ 𝐸൫𝜂ఝ൯ ൌ 0, 𝐸൫𝜂௬

ଶ൯ ൌ 𝛾𝐶௬
ଶ, 𝐸൫𝜂ఝ

ଶ ൯ ൌ 𝛾𝐶ఝ
ଶ  and ൫𝜂௬𝜂ఝ൯ ൌ 𝛾𝐶௬ఝ . 

Now, expanding 𝑦ത෠௣೔
 in terms of 𝜂௬ and 𝜂ఝ as 

𝑦ത෠௣೔
ൌ ൣ𝑤ଵ𝑌ത൫1 ൅ 𝜂௬൯ െ 𝑏ఝሺ௜ሻ𝑃ଵ𝜂ఝ൧ ൅ ൣ𝑤ଶ𝑌ത൫1 ൅ 𝜂௬൯ െ 𝑏ఝሺ௝ஷ௜ሻ𝑃ଵ𝜂ఝ൧.         (21) 

Squaring (21), applying expectation, we get theoretical MSE of the estimator  𝑦ത෠௣೔
 

up to the order  𝑛ିଵ , as 

𝑀𝑆𝐸൫𝑦ത෠௣೔
൯ ൌ 𝑌തଶ ൅  𝑤ଵ

ଶ𝛿஺ ൅  𝑤ଶ
ଶ𝛿஻ ൅ 2𝑤ଵ𝑤ଶ𝛿஼ െ 2𝑤ଵ𝛿஽ െ 2𝑤ଶ𝛿ா ,     (22) 

where 

𝛿஺ ൌ ൣ𝑌തଶ ൅ 𝛾൛𝑆௬
ଶ ൅ 𝐵ఝሺ௜ሻ ൫𝐵ఝሺ௜ሻ𝑆ఝ െ 2𝜌𝑆௬൯𝑆ఝൟ൧,                      

  𝛿஻ ൌ ൣ𝑌തଶ ൅ 𝛾൛𝑆௬
ଶ ൅ 𝐵ఝሺ௝ஷ௜ሻ ൫𝐵ఝሺ௝ஷ௜ሻ𝑆ఝ െ 2𝜌𝑆௬൯𝑆ఝൟ൧,                

  𝛿஼ ൌ ൣ𝑌തଶ ൅ 𝛾൛𝑆௬
ଶ െ ൫𝐵ఝሺ௜ሻ ൅ 𝐵ఝሺ௝ஷ௜ሻ൯𝑆௬ఝ ൅ 𝐵ఝሺ௜ሻ𝐵ఝሺ௝ஷ௜ሻ𝑆ఝ

ଶൟ൧, 

𝛿஽ ൌ 𝛿ா ൌ 𝑌തଶ.                                                                                                     

By partially differentiating (22) w.r.t.  𝑤ଵ and 𝑤ଶ, we obtained the optimum values 
as given by 

𝑤ଵ
௢௣௧ ൌ ቈ

𝛿஻𝛿஽ െ 𝛿஼𝛿ா

𝛿஺𝛿஻ െ 𝛿஼
ଶ ቉,  

and 

𝑤ଶ
௢௣௧ ൌ ቈ

𝛿஺𝛿ா െ 𝛿஼𝛿஽

𝛿஺𝛿஻ െ 𝛿஼
ଶ ቉, 

Substitution of 𝑤ଵ
௢௣௧ and 𝑤ଶ

௢௣௧ in (22) provides the minimum MSE of 𝑦ത෠௣೔
 as 

𝑀𝐸𝑆௠௜௡൫𝑦ത෠௣೔
൯ ൌ ൤𝑌തଶ െ

ఋಳఋವ
మ ିଶఋ಴ఋವఋಶାఋಲఋಶ

మ

ఋಲఋಳିఋ಴
మ ൨.                        (23) 

The general theoretical condition of proposed vs. existing estimators as given 
below: 

𝑀𝑆𝐸ሺ𝑦ത௭௜ሻ െ 𝑀𝑆𝐸൫𝑦ത෠௣௜൯ ൐ 0 
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4. Numerical Illustration 

A numerical illustration is performed utilizing the previous studies of Koyuncu 
(2012). 

Data 1 [Source: Sukhatme and Sukhatme (1970)] 

∅ = A circle consisting of more than five villages. 

𝑌 = Number of villages in the circles. 

𝐵௟௔ௗ ൌ 4, 𝐵௟௠௦ ൌ 5, 𝐵௛௨௕௘௥ ൌ 4.660824, 𝐵௛௔௠௣௟௘ ൌ 4.672494,         
𝐵௟௧௦ ൌ 5, 𝐵௧௨௞௘௬ ൌ 4.655754, 𝐵௠௠ ൌ 4.647839, varሺ𝑦തሻ ൌ 4.0738 .  

Data 2 [Source: Sukhatme and Sukhatme (1970)] 

∅ = A circle consisting of more than five villages. 

𝑌  = Area under the wheat crop within the circles. 

𝐵௟௔ௗ ൌ 1678.281, 𝐵௟௠௦ ൌ 1896, 𝐵௛௨௕௘௥ ൌ 1462.839, 𝐵௛௔௠௣௟௘ ൌ 1438.403,      
𝐵௟௧௦ ൌ 1896, 𝐵௧௨௞௘௬ ൌ 1574.684, 𝐵௠௠ ൌ 1573.993, varሺ𝑦തሻ ൌ 513592 .             

 
For remaining characteristics of the data sets, interested readers may refer to 

Koyuncu (2012). The data sets are also available in the appendix. 

Figures 1- 4 clearly show that our considered data sets suffer from non-normality 
and the presence of outliers. Hence, suitable for robust regression tools. In Table 1, 
results of PRE, which are figured utilizing PRE equations displayed in Sections 1, 2, and 
3, are provided. Note that by ignoring fractional values in the proposed class, all 
members of the proposed class are providing the same results. So, we ignore the 
fractional part and provide a single value of PRE in Table 1. When we look at Table 1, 
we see that the proposed class has the maximum PRE among all estimators given 
in Sections 1 and 2. From the consequence of this numerical delineation, it is 
unmistakably concluded that all new estimators are more effective than existing and 
adapting estimators.  
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Figure 1. Population-1 Figure 2. Boxplot Population-1 

  

 
 

Figure 3. Population-2 Figure 4. Boxplot Population-2 

 
Table 1. The MSE and PRE of Proposed and Existing Estimators w.r.t. var(𝑦ത) 

Estimator 
Pop-1 Pop-2 

MSE PRE MSE PRE 
𝑦ത௭௕భ

 2.72724 149.37 326355.7 157.37 
𝑦ത௭௕మ

 0.06246 6521.38 13236.41 3880.14 
𝑦ത௭௕య

 0.05682 7169.33 11947.89 4298.59 
𝑦ത௭௕ర

 0.06021 6764.89 12766.2 4023.06 
𝑦ത௭௕ఱ

 0.06442 6323.61 13621.23 3770.52 
𝑦ത௥௘௚ 0.05423 7511.55 10120.65 5074.69 
𝑦ത௣ 0.05397 7547 10037 5116 
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5. Conclusion 

This paper proposes two classes of estimators. It was discovered that the proposed 
robust regression estimators were more efficient than the estimators of Zaman and 
Bulut (2018a) and Zaman (2019). The outcomes displayed here support this conclusion 
by hypothetical improvement and numerical examination. 
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APPENDIX 

 

Data 1 
∅ = 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 
0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0. 

𝒀 = 6, 5, 4, 5, 4, 2, 4, 2, 5, 1, 3, 4, 3, 1, 1, 3, 4, 8, 2, 4, 3, 4, 4, 3, 5, 2, 3, 1, 2, 4, 3, 2, 4, 4, 
1, 7, 3, 2, 2, 5, 2, 4, 6, 1, 2, 2, 3, 1, 1, 10, 5, 9, 2, 2, 3, 8, 3, 2, 5, 2, 2, 2, 2, 3, 4, 1, 5, 4, 3, 5, 7, 
3, 2, 7, 4, 1, 2, 1, 1, 8, 2, 1, 3, 2, 6, 1, 1, 4, 4. 

Data 2 
∅ = 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 
0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0. 

𝒀 = 1562, 1003, 1691, 271, 458, 736, 1224, 996, 475, 34, 1027, 1393, 692, 524, 602, 
1522, 2087, 2474, 461, 846, 1036, 948, 1412, 438, 2111, 977, 814, 319, 583, 1150, 670, 
499, 714, 1081, 389, 2675, 868, 1412, 445, 706, 642, 2050, 2530, 247, 421, 687, 941, 710, 
387, 3516, 2002, 3622, 1400, 1584, 830, 167, 622, 591, 273, 781, 1101, 799, 601, 928, 1141, 
1208, 1633, 902, 1286, 1299, 1947, 741, 574, 2554, 669, 1187, 852, 51, 1265, 1423, 794, 
1604, 1621, 1764, 2668, 1076, 348, 1224, 1490. 

 


