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The Complex-Number Mortality Model (CNMM) based on 
orthonormal expansion of membership functions 

Andrzej Szymański1, Agnieszka Rossa2 

ABSTRACT 

The paper deals with a new fuzzy version of the Lee-Carter (LC) mortality model, in which 
mortality rates as well as parameters of the LC model are treated as triangular fuzzy numbers. 
As a starting point, the fuzzy Koissi-Shapiro (KS) approach is recalled. Based on this 
approach, a new fuzzy mortality model – CNMM – is formulated using orthonormal 
expansions of the inverse exponential membership functions of the model components. The 
paper includes numerical findings based on a case study with the use of the new mortality 
model compared to the results obtained with the standard LC model. 

Key words: exponential membership functions, Legendre’s polynomials, mortality 
modelling, orthonormal system. 

1. Introduction  

In the last four decades several approaches were proposed to model human 
mortality and to project future mortality evolution. Among the extrapolative methods, 
a model proposed by Lee and Carter (1992) is one of the most popular approaches, 
although other mortality models have been also developed, e.g. Heligman and Pollard 
(1980), Horiuchi and Coale (1990), Milevsky and Promislow (2001), Currie et al. 
(2004), Bongaarts (2005), Cairns et al. (2006).  

The Lee-Carter model (LC) has been extensively used for many real populations 
and extended in various directions (see, e.g. Renshaw et al. (1996), Tuljapurkar et al. 
(2000), Booth et al. (2002), (2006), Brouhns et al. (2002), Renshaw and Haberman 
(2003), De Jong and Tickle (2006), Koissi and Shapiro (2006), Pitacco et al. (2009), 
Haberman and Renshaw (2012), Danesi et al. (2015)).   

The Lee-Carter method (1992) can be treated as a special case of the principal 
component analysis with a single component (Bozik and Bell (1987)). The focus of this 
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approach is on central age-specific death rates 𝑚௫௧ for a range of ages 𝑥 ൌ 0,1,2, … , 𝑋 
and calendar years 𝑡 ൌ 1,2, … , 𝑇, organized in a two way table with rows referring to 
one-year age groups and columns referring to one-year period intervals.  

The LC method consists of a model of age-specific log-central death rates 𝑦௫௧ ൌ
ln 𝑚௫௧ with time and age components  

𝑦௫௧ ൌ 𝑎௫ ൅ 𝑏௫𝑘௧ ൅ 𝜀௫௧,       𝑥 ൌ 0,1,2, … 𝑋,   𝑡 ൌ 1,2, … , 𝑇,  (1) 

and a model of random walk with a drift to forecast time components 𝑘௧ for 𝑡 ൐ 𝑇 

𝑘௧ ൌ 𝑑 ൅  𝑘௧ିଵ ൅ 𝜁௧,   (2) 

where ሼ𝑎௫ሽ in (1) is a set of age-related effects describing the age profile of mortality, 
ሼ𝑘௧ሽ is a set of the time-related effects representing the general trend of mortality, ሼ𝑏௫ሽ 
is a set of age-related effects describing patterns of deviations from the age profile in 
response to change of the general trend, 𝑑 in (2) is a constant (a drift), whereas 𝜀௫௧, 𝜁௧ 
in (1) and (2), respectively, are random residuals.  

Parameters ሼ𝑏௫ሽ show which death rates decline rapidly and which slowly over time 
in response to change of 𝑘௧. For some values of x,  𝑏௫ may be positive while negative for 
other values, indicating that log-central death rates 𝑦௫௧ ൌ ln 𝑚௫௧ are increasing at some 
ages while decreasing at other ages.  

For the full identification of (1), the following two constraints are imposed 

∑ 𝑏௫ ൌ 1, ∑ 𝑘௧ ൌ 0.்
௧ୀଵ

௑
௫ୀ଴         (3)  

Lee and Carter used the SVD method (Singular Value Decomposition) to estimate 
𝑎௫, 𝑏௫, 𝑘௧ and assumed that error terms 𝜀௫௧ are normally distributed with a small 
constant variance. This is rather a strong assumption, which is often violated especially 
in the case of the imprecise input data. Moreover, prediction errors do not account for 
the estimation errors of the age-specific parameters 𝑎௫, 𝑏௫, except of incorporating 
uncertainty from the forecast of the time component 𝑘௧.  

It is well-known that various kinds of errors can occur in reporting death statistics. 
This could be e.g. incorrect year, area or age. Moreover, the midyear population data 
used to calculate period age-specific mortality rates 𝑚௫௧ are also the subject of errors. 
The midyear population size is the population at July 1 and is assumed to be the point 
at which half of the deaths during the year have occurred. Such estimates can be actually 
underestimated or overestimated and this affects the resulting death rates. Therefore, 
exact age-specific mortality rates are seldom known, hence incorporating the data 
uncertainty into the model structure seems to be a realistic and expected idea. 

The new trends in fuzzy analysis are based on the algebraic approach to fuzzy numbers 
(e.g. Ishikawa (1997), Kosiński et al. (2003), Rossa et al. (2017), Szymański and Rossa (2014), 
(2017)). The essential idea in such an approach is representing the membership function of 
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a fuzzy number as an element of the square-integrable function space. We will use this idea 
to propose a new fuzzy mortality model in the spirit of the Koissi-Shapiro approach.  

The log-central mortality rates as well as parameters of the underlying Koissi-Shapiro 
model are symmetric triangular fuzzy numbers, i.e. numbers with symmetric triangular 
membership functions. We believe that exponential functions could fit the data better. 
Therefore, our model is based on exponential membership functions of the model 
components instead of triangular ones. 

The paper is organized as follows. Section 2 recalls the data fuzzification method 
(Subsection 2.1) and the fuzzy mortality model (Subsection 2.2) as proposed by Koissi and 
Shapiro. The new complex-number fuzzy mortality model is formulated in Section 3. The 
concept is presented in six subsections: theoretical backgrounds (Subsection 3.1), 
formulation of the new mortality model CNMM (Subsection 3.2), estimation of the model 
parameters (Subsection 3.3), description of the modified fuzzification method (Subsection 
3.4), description of the forecasting method (Subsection 3.5) and a case study (Subsection 
3.6). Concluding remarks are contained in Section 4. Formal details about orthonormal 
expansions by means of the Legendre polynomials are included in the Appendix. 

2. The Koissi-Shapiro model  

2.1. Fuzzification of the input data 

In the Koissi-Shapiro model (2006), log-central death rates 𝑦௫௧ ൌ ln 𝑚௫௧ are 
transformed into symmetric triangular fuzzy numbers 

  𝑌௫௧ ൌ ሺ𝑦௫௧, 𝑒௫௧ሻ,   (4) 

where 𝑦௫௧, 𝑒௫௧ are centres and spreads of  fuzzy numbers 𝑌௫௧, respectively. 
The addition ⊕ and multiplication ⊗ of symmetric triangular numbers 𝐴 ൌ

ሺ𝑎, 𝑠஺ሻ and 𝐵 ൌ ሺ𝑏, 𝑠஻ሻ defined in the norm 𝑇௪ are expressed as  
 𝐴 ⊕ 𝐵 ൌ ሺ𝑎 ൅ 𝑏, maxሺ𝑠஺, 𝑠஻ሻሻ,   (5) 
      𝐴 ⊗ 𝐵 ൌ ሺ𝑎𝑏, maxሺ𝑠஺|𝑏|, 𝑠஻|𝑎|ሻሻ,   (6) 

and the multiplication of 𝐴 ൌ ሺ𝑎, 𝑠஺ሻ by a scalar 𝑏 ∈ ℝ reduces to 
 𝐴 ⊗ 𝑏 ൌ ሺ𝑎𝑏, 𝑠஺|𝑏|ሻ.    (7) 

Parameters 𝑒௫௧ in (4) are also called fuzziness parameters. To determine their 
values, Koissi and Shapiro postulated using a fuzzy regression model. They assumed 
existing symmetric triangular fuzzy numbers ሺ𝑐଴௫, 𝑠଴௫ሻ and ሺ𝑐ଵ௫, 𝑠ଵ௫ሻ satisfying for 
each age group 𝑥 the following equalities 

 ሺ𝑦௫௧, 𝑒௫௧ሻ ൌ ሺ𝑐଴௫, 𝑠଴௫ሻ ⊕ ሺ𝑐ଵ௫, 𝑠ଵ௫ሻ ⊗ 𝑡,        𝑡 ൌ 1,2, … , 𝑇.   (8) 

This postulate leads to the equalities (9)–(10) of the form 
 𝑦௫௧ ൌ 𝑐଴௫ ൅ 𝑐ଵ௫ ∙ 𝑡,        𝑡 ൌ 1,2, … , 𝑇.   (9) 
        𝑒௫௧ ൌ maxሺ𝑠଴௫, 𝑠ଵ௫ ∙ 𝑡 ሻ,        𝑡 ൌ 1,2, … , 𝑇.    (10) 
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To find coefficients in (9) the ordinary least-squares regression is used, i.e. 𝑐ଵ௫ and 
𝑐଴௫ are found from formulas 

 𝑐ଵ௫ ൌ
௬ೣ೟⋅௧ି௧⋅௬ೣ೟

௧మି௧
మ ,    (11) 

 𝑐଴௫ ൌ 𝑦௫௧ െ 𝑐ଵ௫ ∙ 𝑡,    (12) 
where 𝑧̅ means averaging over 𝑧௧’s. 

 
To find parameters 𝑠଴௫, 𝑠ଵ௫,‘’the minimum fuzziness criterion’’ is proposed by 

minimizing spreads of  𝑌௫௧ ൌ ሺ𝑦௫௧, 𝑒௫௧ሻ and requiring each log-central death rate 𝑦௫௧ to 
fall within the estimated death rates  𝑦ො௫௧ at a level ℎ ∈ ሾ0,1ሿ. Since 𝑒௫௧ are, by 
assumption, non-negative numbers and the smallest value they can take is 0, it is 
necessary to determine such values of 𝑠଴௫, 𝑠ଵ௫, that at a given 𝑥 they minimize the sum 

 𝑇 ⋅ 𝑠଴௫ ൅ 𝑠ଵ௫ ⋅ ∑ 𝑡,்
௧ୀଵ  (13) 

subject to the constraints  

 𝑐଴௫ ൅ 𝑐ଵ௫ ∙ 𝑡 ൅ ሺ1 െ ℎሻሺ𝑠଴௫ ൅ 𝑠ଵ௫𝑡ሻ ൒ ln 𝑚௫௧,   𝑡 ൌ 1,2, … , 𝑇,     (14) 

 𝑐଴௫ ൅ 𝑐ଵ௫ ∙ 𝑡 െ ሺ1 െ ℎሻሺ𝑠଴௫ ൅ 𝑠ଵ௫𝑡ሻ ൑ ln 𝑚௫௧,   𝑡 ൌ 1,2, … , 𝑇, (15) 

where 𝑠଴௫, 𝑠ଵ௫ ൒ 0, 𝑢 ∈ ሾ0,1ሻ and ℎ ∈ ሾ0,1ሿ is a predetermined value representing the 
degree of fit of the estimated model to the data. As lower h provides a better fit, we can 
use ℎ ൌ 0. After finding the parameters 𝑠଴௫, 𝑠ଵ௫ for each x, the fuzziness parameters 𝑒௫௧ 
can be determined using formula (10). 

2.2. The Koissi-Shapiro model 

Let us recall the fuzzy mortality model as proposed by Koissi and Shapiro (2006). 
The structure of their model is analogous to the Lee-Carter one (1992) and takes the 
form 

 𝑌௫௧ ൌ 𝐴௫ ⊕ ሺ𝐵௫ ⊗ 𝐾௧ሻ, (16) 

with the difference that 𝑌௫௧ ൌ ሺ𝑦௫௧, 𝑒௫௧ሻ for 𝑥 ൌ 0,1, … , 𝑋, 𝑡 ൌ 1,2, … , 𝑇 are fuzzified 
log-central death rates expressed as triangular numbers with centres 𝑦௫௧ and spreads 
𝑒௫௧. 

 
Model parameters are assumed to be symmetric triangular numbers 𝐴௫ ൌ

൫𝑎௫, 𝑠஺ೣ
൯,  𝐵௫ ൌ ൫𝑏௫, 𝑠஻ೣ

൯, 𝐾௧ ൌ ൫𝑘௧, 𝑠௄೟
൯ with unknown centres 𝑎௫, 𝑏௫, 𝑘௧ ∈ ℝ and 

spreads 𝑠஺ೣ
, 𝑠஻ೣ

, 𝑠௄೟
൒ 0, respectively.  

To find parameters 𝑎௫, 𝑏௫, 𝑘௧, 𝑠஺ೣ
, 𝑠஻ೣ

, 𝑠௄೟
, Koissi and Shapiro postulated 

minimizing the Diamond distance 𝐷ଶ (Diamond (1988)) between the left and right-
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hand sides of (16). This leads to the criterion function defined for each separate 𝑥 and 
𝑡 as 

𝐷ଶሺ𝑌௫௧, 𝐴௫ ⊕ ሺ𝐵௫ ⊗ 𝐾௧ሻሻ ൌ ሺ𝑎௫ ൅ 𝑏௫𝑘௧ െ 𝑦௫௧ሻଶ ൅ ൣ𝑎௫ ൅ 𝑏௫𝑘௧ െ

max൛𝑠஺ೣ, |𝑏௫|𝑠௄೟, |𝑘௧|𝑠஻ೣൟ െ ሺ𝑦௫௧ െ 𝑒௫௧ሻ൧
ଶ

൅ ൣ𝑎௫ ൅ 𝑏௫𝑘௧ ൅

max൛𝑠஺ೣ, |𝑏௫|𝑠௄೟, |𝑘௧|𝑠஻ೣൟ െ ሺ𝑦௫௧ ൅ 𝑒௫௧ሻ൧
ଶ

.   
  (17) 

Unfortunately, the criterion function contains a max-type operator 
max൛𝑠஺ೣ

, |𝑏௫|𝑠௄೟
, |𝑘௧|𝑠஻ೣ

ൟ, which does not allow using standard derivative based 
solution algorithms for minimization of (17). 

3. The Complex-Number Mortality Model CNMM 

3.1.   Theoretical backgrounds 

The new trends in fuzzy analysis are based on the algebraic approach to fuzzy 
numbers (see, e.g. Ishikawa (1997), Kosiński et al. (2003), Rossa et al. (2017), Szymański 
and Rossa (2014), (2017)). The essential idea in such an approach is representing the 
membership function of a fuzzy number as an element of the square-integrable 
function space.  

Let us consider the membership function of the exponential form 

 𝜇ሺ𝑧ሻ ൌ ൞

exp ቄെ൫೎ష೥
ഓ

൯
ଶ

ቅ ,       𝑧 ൑ 𝑐,

exp ቄെ൫೥ష೎
ഌ

൯
ଶ

ቅ ,       𝑧 ൐ 𝑐,

 (18) 

where 𝑐 ∈ ℝ, 𝜏, 𝜈 ൐ 0  are some scalar parameters. 

Note that (18) can be decomposed into two parts – strictly increasing and strictly 
decreasing functions ሺ𝑧ሻ and ሺ𝑧ሻ, say, of the form 

 ሺ𝑧ሻ ൌ exp ቄെ൫೎ష೥
ഓ

൯
ଶ

ቅ ,      𝑧 ൑ 𝑐, (19) 

 Φሺ𝑧ሻ ൌ exp ቄെ൫೥ష೎
ഌ

൯
ଶ

ቅ ,      𝑧 ൐ 𝑐. (20) 

Then there exist inverse functions 

  ିଵሺ𝑢ሻ ൌ 𝑐 ൅ 𝜓ሺ𝑢ሻ,    𝑢 ∈ ሾ0,1ሿ, (21) 

 Φିଵሺ𝑢ሻ ൌ 𝑐 ൅ 𝜑ሺ𝑢ሻ,    𝑢 ∈ ሾ0,1ሿ, (22) 

where 𝜓ሺ𝑢ሻ and 𝜑ሺ𝑢ሻ are expressed as  

 𝜓ሺ𝑢ሻ ൌ െ𝜏ሺെln 𝑢ሻ
భ
మ,     𝜑ሺ𝑢ሻ ൌ 𝜈ሺെ ln 𝑢ሻ

భ
మ,     𝑢 ∈ ሾ0,1ሿ. (23) 
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Denoting 𝑓ሺ𝑢ሻ ൌ Ψିଵሺ𝑢ሻ and 𝑔ሺ𝑢ሻ ൌ Φିଵሺ𝑢ሻ for 𝑢 ∈ ሾ0,1ሿ, we can write  

𝑓ሺ𝑢ሻ ൌ 𝑐 ൅ 𝜓ሺ𝑢ሻ ൌ 𝑐 െ 𝜏ሺെln 𝑢ሻ
భ
మ,   𝑔ሺ𝑢ሻ ൌ 𝑐 ൅ 𝜑ሺ𝑢ሻ ൌ 𝑐 ൅ 𝜈ሺെ ln 𝑢ሻ

భ
మ, (24) 

Functions 𝑓, 𝑔  are square-integrable, so the ordered pair ሺ𝑓, 𝑔ሻ belongs to the 
Cartesian product 𝐿ଶሺ0,1ሻ ൈ 𝐿ଶሺ0,1ሻ. The scalar product in the space 𝐿ଶሺ0,1ሻ is given 
by the formula 

 〈𝑓, 𝑔〉 ൌ ׬ 𝑓ሺ𝑢ሻ
ଵ

଴ 𝑔ሺ𝑢ሻ𝑑𝑢.  (25) 

Example 1. Figure 1(a) depicts functions ሺ𝑧ሻ and ሺ𝑧ሻ as defined in (19) and (20), 
while Figure 1(b) shows their inverse counterparts (21) and (22), respectively.  

 

 
(a) (b) 

Figure 1. Exponential functions ሺ𝑧ሻ, ሺ𝑧ሻ and the inverse functions ିଵሺ𝑢ሻ, ିଵሺ𝑢ሻ for 𝑐 ൌ 0.0, 
𝜏 ൌ 0.08, 𝜈 ൌ 0.09. 

Source: Developed by the authors. 

 
It is commonly known that a set of vectors {𝑃௝} in 𝐿ଶሺ0,1ሻ is called an orthonormal 

set if equalities 〈𝑃௝, 𝑃௞〉 ൌ 0 for 𝑗 ് 𝑘 and 〈𝑃௝, 𝑃௝〉 ൌ 1 are true.  
For any orthonormal set ሼ𝑃௝ሽ and 𝑓, 𝑔 ∈ 𝐿ଶሺ0,1ሻ the following relations hold  

 𝑓 ൌ ∑ 〈𝑃௝, 𝑓〉𝑃௝,       
ஶ
௝ୀ଴ 𝑔 ൌ ∑ 〈𝑃௝, 𝑔〉𝑃௝

ஶ
௝ୀଵ . (26) 

Denoting 𝛼௝ ൌ 〈𝑃௝, 𝑓〉 and 𝛽௝ ൌ 〈𝑃௝, 𝑔〉, expressions (26) can also be written as  

 𝑓ሺ𝑢ሻ ൌ ∑ 𝛼௝
ஶ
௝ୀ଴ 𝑃௝ሺ𝑢ሻ,     𝑔ሺ𝑢ሻ ൌ ∑ 𝛽௝𝑃௝ሺ𝑢ሻஶ

௝ୀ଴ . (27) 

Let 𝐴ሺேሻ be a pair of functions ൫𝑓ሺேሻ, 𝑔ሺேሻ൯, where 𝑓ሺேሻ, 𝑔ሺேሻ for 𝑁 ∈ ℕ are some 
orthonormal expansions of inverse exponential functions ሺ24ሻ, i.e. 

 𝑓ሺேሻሺ𝑢ሻ ൌ ∑ 𝛼௝
ே
௝ୀ଴ 𝑃௝ሺ𝑢ሻ,         𝑔ሺேሻሺ𝑢ሻ ൌ ∑ 𝛽௝𝑃௝ሺ𝑢ሻ,ே

௝ୀ଴  (28) 
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where ൛𝑃௝ൟ is a set of the Legendre polynomials and 𝛼௝, 𝛽௝ are some coefficients of the 
orthonormal expansion (see Appendix for more details). 

Example 2. Let us consider functions 𝑓ሺ𝑢ሻ, 𝑔ሺ𝑢ሻ as depicted in Figure 1(b). Their 
approximations for 𝑁 ൌ 3 are plotted in Figure 2. 

 
Figure 2.  Functions 𝑓ሺ𝑢ሻ ൌ 𝑐 െ 𝜏ሺെln 𝑢ሻ

భ
మ,   𝑔ሺ𝑢ሻ ൌ 𝑐 ൅ 𝜈ሺെln 𝑢ሻ

భ
మ (solid lines) and their 

approximations 𝑓ሺଷሻሺ𝑢ሻ ൌ ∑ 𝛼௝𝑃௝
ଷ
௝ୀ଴ ,  𝑔ሺଷሻሺ𝑢ሻ ൌ ∑ 𝛽௝𝑃௝

ଷ
௝ୀ଴  (dashed lines). 

Source: developed by the authors 

Further, we will treat the pairs of functions ሺ𝑓, 𝑔ሻ or ൫𝑓ሺேሻ, 𝑔ሺேሻ൯ given in (24), 
(28), respectively, in terms of the complex analysis. They will be called complex-valued 
fuzzy numbers. 

Let the addition, the subtraction and the multiplication of two complex-valued 
fuzzy numbers 𝐴 ൌ ሺ𝑓஺, 𝑔஺ሻ, 𝐵 ൌ ሺ𝑓஻, 𝑔஻ሻ be defined as  

   A ⊕ 𝐵 ൌ ሺ𝑓஺ ൅ 𝑓஻, 𝑔஺ ൅ 𝑔஻ሻ,  (29) 
 𝐴 ⊖ 𝐵 ൌ ሺ𝑓஺ െ 𝑓஻, 𝑔஺ െ 𝑔஻ሻ,  (30) 
       𝐴 ⨀ 𝐵 ൌ ሺ𝑓஺𝑓஻ െ 𝑔஺𝑔஻, 𝑓஺𝑔஻ ൅ 𝑔஺𝑓஻ሻ,  (31) 

while the multiplication of  𝐴 ൌ ሺ𝑓஺, 𝑔஺ሻ by a scalar 𝑑 ∈ ℝ as 

 𝑑 ⊙ 𝐴 ൌ ሺ𝑑 ∙ 𝑓஺, 𝑑 ∙ 𝑔஺ሻ. (32) 

3.2.   The CNMM model formulation 

We propose the Complex-Number Mortality Model (CNMM) of the form 

 𝑌௫௧
ሺேሻ ൌ 𝐴௫

ሺேሻ ⊕ 𝐾௫௧
ሺேሻ, (33) 

where 𝑥 ൌ 0,1, … , 𝑋, 𝑡 ൌ 1,2, … , 𝑇 are age and time indices, respectively,  𝑌௫௧
ሺேሻ ൌ

ቀ𝑓௒ೣ ೟

ሺேሻ,  𝑔௒ೣ ೟

ሺேሻቁ are complex-valued fuzzy numbers representing fuzzified log-central 

mortality rates, and 𝐴௫
ሺேሻ ൌ ቀ𝑓஺ೣ

ሺேሻ,  𝑔஺ೣ

ሺேሻቁ , 𝐾௫௧
ሺேሻ ൌ ቀ𝑓௄ೣ೟

ሺேሻ, 𝑔௄ೣ೟

ሺேሻቁ  are some complex-
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valued fuzzy numbers with functions 𝑓஺ೣ

ሺேሻ,  𝑔஺ೣ

ሺேሻ, 𝑓௄ೣ೟

ሺேሻ, 𝑔௄ೣ೟

ሺேሻ and 𝑓௒ೣ ೟

ሺேሻ,  𝑔௒ೣ ೟

ሺேሻ being 
orthonormal expansions (28) of the following functions  

 𝑓஺ೣ
ሺ𝑢ሻ ൌ 𝑎௫ െ 𝜏஺ೣ

ሺെln 𝑢ሻ
భ
మ ,   𝑔஺ೣ

ሺ𝑢ሻ ൌ 𝑎௫ ൅ 𝜈஺ೣ
ሺെln 𝑢ሻ

భ
మ,   (34) 

   𝑓௄ೣ೟
ሺ𝑢ሻ ൌ 𝑏௫𝑘௧ െ 𝜏஻ೣ

𝜔௧ሺെln 𝑢ሻ
భ
మ,   𝑔௄ೣ೟

ሺ𝑢ሻ ൌ 𝑏௫𝑘௧ ൅ 𝜈஻ೣ
𝜛௧ሺെln 𝑢ሻ

భ
మ,  (35) 

   𝑓௒ೣ ೟
ሺ𝑢ሻ ൌ 𝑦௫௧ െ 𝑒௫௧ሺെln 𝑢ሻ

భ
మ ,   𝑔௒ೣ ೟

ሺ𝑢ሻ ൌ 𝑦௫௧ ൅ 𝜐௫௧ሺെln 𝑢ሻ
భ
మ,   (36) 

Coefficients 𝑎௫, 𝑏௫, 𝑘௧, 𝜏஺ೣ
, 𝜈஺ೣ

 𝜏஻ೣ
, 𝜈஻ೣ

, 𝜔௧, 𝜛௧ in (34)–(36) constitute a set of 
unknown parameters,  𝑦௫௧ ൌ ln 𝑚௫௧ are log-central death rates, and 𝑒௫௧, 𝜐௫௧ represent 
fuzziness of log-central mortality rates evaluated at the fuzzification stage (see 
Subsection 3.4). 

Let us express the model in terms of complex analysis using an algebraic 
representation, i.e. 

 𝑌௫௧
ሺேሻ ൌ 𝑓௒ೣ ೟

ሺேሻ ൅ 𝑖 ∙ 𝑔௒ೣ ೟

ሺேሻ,     𝐴௫
ሺேሻ ൌ 𝑓஺ೣ

ሺேሻ ൅ 𝑖 ∙ 𝑔஺ೣ

ሺேሻ,      𝐾௫௧
ሺேሻ ൌ 𝑓௄ೣ೟

ሺேሻ ൅ 𝑖 ∙ 𝑔௄ೣ೟

ሺேሻ, (37) 

where 𝑖 ൌ √െ1 is an imaginary unit. 

Then, taking into account (28) we can write  

 𝐴௫
ሺேሻ ൌ ∑ 𝛼௫௝

ே
௝ୀ଴ 𝑃௝ ൅ 𝑖 ∑ 𝛽௫௝

ே
௝ୀ଴ 𝑃௝ ൌ ∑ ሺ𝛼௫௝ ൅ 𝑖ே

௝ୀ଴ 𝛽௫௝ሻ𝑃௝, (38) 

 𝐾௫௧
ሺேሻ ൌ ∑ 𝜂௧௫௝

ே
௝ୀ଴ 𝑃௝ ൅ 𝑖 ∑ 𝜆௧௫௝

ே
௝ୀ଴ 𝑃௝ ൌ ∑ ሺ𝜂௧௫௝ ൅ 𝑖ே

௝ୀ଴ 𝜆௧௫௝ሻ𝑃௝. (39) 

Thus, the right-hand side of (33) can be expressed as  

 𝐴௫
ሺேሻ ⊕ 𝐾௫௧

ሺேሻ ൌ ∑ ൣሺ𝛼௫௝ ൅ 𝜂௫௧௝ሻ ൅ 𝑖ሺ𝛽௫௝ ൅ 𝜆௫௧௝ሻ൧ே
௝ୀ଴ 𝑃௝. (40) 

By analogy, the left-hand side of (33) can be written in the form  

 𝑌௫௧
ሺேሻ ൌ ∑ 𝜖௫௧௝

ே
௝ୀ଴ 𝑃௝ ൅ 𝑖 ∑ 𝜃௫௧௝

ே
௝ୀ଴ 𝑃௝ ൌ ∑ ሺ𝜖௫௧௝ ൅ 𝑖ே

௝ୀ଴ 𝜃௫௧௝ሻ𝑃௝. (41) 

Coefficients 𝛼௫௝, 𝜂௫௧௝, 𝛽௫௝, 𝜆௧௫௝ and 𝜖௫௧௝, 𝜃௫௧௝ in expansions (40), (41), respectively, 
correspond to parameters 𝑎௫, 𝑏௫, 𝑘௧, 𝜏஺ೣ

, 𝜈஺ೣ
 𝜏஻ೣ

, 𝜈஻ೣ
, 𝜔௧, 𝜛௧ via relations (42), (43).  

For 𝑗 ൌ 0 we have 
 𝛼௫଴ ൌ 𝑎௫ െ  𝜏஺ೣ

𝑐଴, 𝛽௫଴ ൌ 𝑎௫ ൅ 𝜈஺௫𝑐଴,  
 𝜂௧௫଴ ൌ 𝑏௫𝑘௧ െ 𝜏஻௫𝜔௧𝑐଴, 𝜆௧௫଴ ൌ 𝑏௫𝑘௧ ൅ 𝜈஻ೣ

𝜛௧𝑐଴, (42) 
 𝜖௫௧଴ ൌ 𝑦௫௧ െ  𝑒௫௧𝑐଴, 𝜃௫௧଴ ൌ 𝑦௫௧ ൅ 𝜐௫௧𝑐଴,  

and for 𝑗 ൌ 1,2, … , 𝑁 there is 
 𝛼௫௝ ൌ  െ𝜏஺௫𝑐௝,  𝛽௫௝ ൌ 𝜈஺௫𝑐௝,   
 𝜂௫௧௝ ൌ  െ𝜏஻௫𝜔௧𝑐௝, 𝜆௫௧௝ ൌ 𝜈஻ೣ

𝜛௧𝑐௝,                      (43) 
 𝜖௫௧௝ ൌ  െ𝑒௫௧𝑐௝, 𝜃௫௧௝ ൌ 𝜐௫௧𝑐௝,  

where 𝑐௝ are some known constants (see Appendix for more details).  
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For 𝑗 ൌ 0,1,2,3 we get 𝑐଴ ൌ √గ

ଶ
, 𝑐ଵ ൌ √3𝜋 ቀ

ଵ

ଶ√ଶ
െ

ଵ

ଶ
ቁ ,  𝑐ଶ ൌ √5𝜋 ቀ 

ଵ

√ଷ
െ

ଷ

ଶ√ଶ
൅

ଵ

ଶ
ቁ ,  𝑐ଷ ൌ √7𝜋 ቀെ

ହ

√ଷ
൅

ଵହ

ସ√ଶ
െ

ଷ

ସ√ଶ
൅

ଷ

ସ
ቁ. 

3.3.   Estimation of the model parameters 

To estimate parameters of the CNMM model we apply the metric in the Hilbert 
space 𝐿ଶሺ0,1ሻ between the left and right-hand sides of (33), i.e. between 𝑌௫௧

ሺேሻ and 
𝐴௫

ሺேሻ ⊕ 𝐾௫௧
ሺேሻ. The estimation problem requires minimizing functional 𝐹ሺேሻ in the 

Hilbert space 𝐿ଶሺ0,1ሻ of the form  

 𝐹ሺேሻ ൌ ∑ ∑ ቛ𝑌௫௧
ሺேሻ ⊖ ቀ𝐴௫

ሺேሻ ⊕ 𝐾௫௧
ሺேሻቁቛ

ଶ
்
௧ୀଵ

௑
௫ୀ଴ .  (44) 

Thus, 𝑌௫௧
ሺேሻ ⊖ ቀ𝐴௫

ሺேሻ ⊕ 𝐾௫௧
ሺேሻቁ can be expressed as  

𝑌௫௧
ሺேሻ ⊖ ቀ𝐴௫

ሺேሻ ⊕ 𝐾௫௧
ሺேሻቁ ൌ 

ൌ ∑ ൣ𝜖௫௧௝ െ ሺ𝛼௫௝ ൅ 𝜂௫௧௝ሻ ൅ 𝑖ሺ𝜃௫௧௝ െ ሺ𝛽௫௝ ൅ 𝜆௫௧௝ሻሻ൧𝑃௝.ே
௝ୀ଴  (45) 

After some rearrangements, we get 

𝐹ሺேሻ ൌ ∑ ∑ ቛ𝑌௫௧
ሺேሻ ⊖ ቀ𝐴௫

ሺேሻ ⊕ 𝐾௫௧
ሺேሻቁቛ

ଶ
ൌ ∑ ∑ ฮ∑ ൣ𝜖௫௧௝ െ ሺ𝛼௫௝ ൅ே

௝ୀ଴
்
௧ୀଵ

௑
௫ୀ଴

்
௧ୀଵ

௑
௫ ୀ଴

𝜂௫௧௝ሻ ൅ 𝑖ሺሺ𝜃௫௧௝ െ ሺ𝛽௫௝ ൅ 𝜆௫௧௝ሻሻ൧𝑃௝ฮ
ଶ

.  (46) 

Using Pythagorean theorem for the Hilbert space of complex functions, i.e.  

 ฮ∑ 𝛼௝𝑃௝
ே
௝ୀ଴ ฮ

ଶ
ൌ ∑ ห𝛼௝ห

ଶே
௝ୀ଴ ,  (47) 

the criterion function 𝐹ሺேሻ takes the form 

𝐹ሺேሻ ൌ ∑ ∑ ∑ ห𝜖௫௧௝ െ ሺ𝛼௫௝ ൅ 𝜂௫௧௝ሻ ൅ 𝑖ሺ𝜃௫௧௝ െ ሺ𝛽௫௝ ൅ 𝜆௫௧௝ሻሻห
ଶே

௝ୀ଴
்
௧ୀଵ

௑
௫ୀ଴ ൌ

∑ ∑ ∑ ቄൣ𝜖௫௧௝ െ ሺ𝛼௫௝ ൅ 𝜂௫௧௝ሻ൧
ଶ

൅ ൣ𝜃௫௧௝ െ ሺ𝛽௫௝ ൅ 𝜆௫௧௝ሻ൧
ଶ

ቅே
௝ୀ଴

்
௧ୀଵ

௑
௫ୀ଴ .       (48) 

On the basis of relations (42) and (43), we have also  
𝐹ሺேሻ ൌ ∑ ∑ ൣ𝑦௫௧ െ 𝑎௫ െ 𝑏௫𝑘௧ ൅  𝑐଴൫െ𝑒௫௧ ൅  𝜏஺ೣ

൅  𝜏஻௫𝜔௧൯൧
ଶ

൅்
௧ୀଵ

௑
௫ୀ଴

∑ ∑ ൣ𝑦௫௧ െ 𝑎௫ െ 𝑏௫𝑘௧ ൅ 𝑐଴ሺ𝜐௫௧ െ 𝜈஺௫ െ 𝜈஻ೣ
𝜛௧ሻ൧

ଶ
൅்

௧ୀଵ
௑
௫ୀ଴

𝐷ሺேሻ ∑ ∑ ቄ൫െ𝑒௫௧ ൅ 𝜏஺௫ ൅ 𝜏஻௫𝜔௧൯
ଶ

൅ ൫𝜐௫௧ െ 𝜈஺௫ െ 𝜈஻ೣ
𝜛௧൯

ଶ
ቅ ,்

௧ୀଵ
௑
௫ୀ଴     

(49) 
where 𝐷ሺேሻ ൌ ∑ 𝑐௝

ଶே
௝ୀଵ . 
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The criterion function 𝐹ሺேሻ can also be written as 

𝐹ሺேሻ ൌ ∑ ∑ ቂ2ሺ𝑦௫௧ െ 𝑎௫ െ 𝑏௫𝑘௧ሻଶ ൅ 𝐶ሺேሻ൫𝑒௫௧ െ  𝜏஺ೣ
െ 𝜏஻௫𝜔௧൯

ଶ
൅்

௧ୀଵ
௑
௫ୀ଴

𝐶ሺேሻ൫𝜐௫௧ െ  𝜈஺ೣ
െ 𝜈஻ೣ

𝜛௧൯
ଶ

െ 2𝑐଴ሺ𝑦௫௧ െ 𝑎௫ െ 𝑏௫𝑘௧ሻ൫𝑒௫௧ െ  𝜏஺ೣ
െ 𝜏஻௫𝜔௧൯ ൅

2𝑐଴ሺ𝑦௫௧ െ 𝑎௫ െ 𝑏௫𝑘௧ሻ൫𝜐௫௧ െ  𝜈஺ೣ
െ 𝜈஻ೣ

𝜛௧൯ቃ ,  
(50) 

where 𝐶ሺேሻ ൌ 𝑐଴
ଶ ൅ 𝐷ሺேሻ. 

To satisfy identifiability of the model, we impose constraints analogous to (3) as 
well as some additional constraints, i.e. 

   ∑ 𝑘௧
்
௧ୀଵ ൌ 0,    ∑ 𝑏௫

௑
௫ୀ଴ ൌ 1, 

   ∑ 𝜏஻ೣ
௑
௫ୀ଴ ൌ 1, ∑ 𝜈஻ೣ

௑
௫ୀ଴ ൌ 1, (51) 

   ∑ 𝜔௧
்
௧ୀଵ ൌ 𝐶, ∑ 𝜛௧

்
௧ୀଵ ൌ 𝐷,  

where 𝐶, 𝐷 ൐ 0 are some fixed constants. 

Moreover, we impose also boundary constraints of the form 
∑ 𝑦௫௧

்
௧ୀଵ ൌ ∑ ሺ𝑎௫ ൅ 𝑏௫𝑘௧ሻ்

௧ୀଵ ,     ∑ 𝑦௫௧
௑
௫ୀ଴ ൌ ∑ ሺ𝑎௫ ൅ 𝑏௫𝑘௧ሻ௑

௫ୀ଴ ,      (52) 

∑ 𝑒௫௧
்
௧ୀଵ ൌ  ∑ ൫𝜏஺ೣ

൅  𝜏஻௫𝜔௧൯்
௧ୀଵ ,     ∑ 𝑒௫௧

௑
௫ୀ଴ ൌ  ∑ ൫𝜏஺ೣ

൅  𝜏஻௫𝜔௧൯,௑
௫ୀ଴  (53) 

∑ 𝜐௫௧
்
௧ୀଵ ൌ ∑ ൫𝜈஺௫ ൅ 𝜈஻ೣ

𝜛௧൯்
௧ୀଵ ,     ∑ 𝜐௫௧

௑
௫ୀ଴ ൌ ∑ ൫𝜈஺௫ ൅ 𝜈஻ೣ

𝜛௧൯௑
௫ୀ଴  . (54) 

It follows from requirements (51)(54) that the following equalities hold 

𝑎௫ ൌ
ଵ

்
∑ 𝑦௫௧,்

௧ୀଵ  (55) 

𝑘௧ ൌ ∑ ሺ𝑦௫௧ െ 𝑎௫ሻ௑
௫ୀ଴ ,  (56) 

𝜏஺ೣ
ൌ

ଵ

்
∑ 𝑒௫௧ െ

஼

்
𝜏஻ೣ

்
௧ୀଵ ,   𝜈஺ೣ

ൌ
ଵ

்
∑ 𝜐௫௧ െ

஽

்
𝜈஻ೣ

்
௧ୀଵ . (57) 

𝜔௧ ൌ ∑ ൫𝑒௫௧ െ 𝜏஺ೣ
൯௑

௫ୀ଴ ,       𝜛௧ ൌ ∑ ൫𝜐௫௧ െ 𝜈஺ೣ
൯௑

௫ୀ଴ . (58) 

Partial derivatives of  𝐹ሺேሻ with respect to the remaining parameters 𝑏௫ and 
𝜏஻ೣ

, 𝜈஻ೣ
 are of the form 

డிሺಿሻ

డ௕ೣ
ൌ െ ∑ 𝑘௧൛4ሺ𝑦௫௧ െ 𝑎௫ െ 𝑏௫𝑘௧ሻ െ 2𝑐଴ൣ൫𝑒௫௧ െ  𝜏஺ೣ

െ 𝜏஻௫𝜔௧൯ െ்
௧ୀଵ

            ൫𝜐௫௧ െ  𝜈஺ೣ
െ 𝜈஻ೣ

𝜛௧൯൧ൟ,    (59) 

డிሺಿሻ

డఛಳೣ
ൌ െ2 ∑ 𝜔௧ൣ𝐶ሺேሻ൫𝑒௫௧ െ  𝜏஺ೣ

െ 𝜏஻௫𝜔௧൯ െ 𝑐଴ሺ𝑦௫௧ െ 𝑎௫ െ 𝑏௫𝑘௧ሻ൧,்
௧ୀଵ   (60) 

డிሺಿሻ

డఔಳೣ
ൌ െ2 ∑ 𝜛௧ൣ𝐶ሺேሻ൫𝜐௫௧ െ  𝜈஺ೣ

െ 𝜈஻ೣ
𝜛௧൯ ൅ 𝑐଴ሺ𝑦௫௧ െ 𝑎௫ െ 𝑏௫𝑘௧ሻ൧.்

௧ୀଵ   (61) 
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Setting (59)(61) equal to zero we receive 

 𝑏௫ ൌ
∑ ௞೟ൣଶ௬ೣ೟ି௖బ൫௘ೣ೟ିజೣ೟ିఛಳೣఠ೟ାఔಳೣధ೟൯൧೅

೟సభ

ଶ ∑ ௞೟
మ೅

೟సభ
, (62) 

 𝜏஻ೣ
ൌ

஼ሺಿሻ ∑ ఠ೟൫௘ೣ೟ିఛಲೣ൯ି௖బ ∑ ఠ೟ሺ௬ೣ೟ି௔ೣି௕ೣ௞೟ሻ೅
೟సభ

೅
೟సభ

஼ሺಿሻ ∑ ఠ೟
మ೅

೟సభ
, (63) 

 𝜈஻ೣ
ൌ

஼ሺಿሻ ∑ ధ೟൫జೣ೟ିఔಲೣ൯ା௖బ ∑ ధ೟ሺ௬ೣ೟ି௔ೣି௕ೣ௞೟ሻ೅
೟సభ

೅
೟సభ

஼ሺಿሻ ∑ ధ೟
మ೅

೟సభ
.  (64) 

The exact solution can be found  using  an iterative procedure. After choosing a set 
of starting values for unknown parameters, expressions  (57), (58) and (62)(64) can be 
computed sequentially using the most recent set of estimates. 

It is worth noting that coefficients 𝑘௧, 𝑏௫, 𝜏஻ೣ
, 𝜈஻ೣ

, 𝜔௧, 𝜛௧ satisfy conditions (51). 
Indeed, we have 

∑ 𝑘௧ ൌ ∑ ∑ ሺ𝑦௫௧ െ 𝑎௫ሻ ൌ ∑ ∑ 𝑦௫௧ െ ∑ ∑ ቀ
ଵ

்
∑ 𝑦௫௧

்
௧ୀଵ ቁ்

௧ୀଵ
௑
௫ୀ଴

௑
௫ୀ଴

்
௧ୀଵ ൌ௑

௫ୀ଴
்
௧ୀଵ

்
௧ୀଵ

∑ ∑ 𝑦௫௧ െ ∑ ∑ 𝑦௫௧ ൌ 0்
௧ୀଵ

௑
௫ୀ଴

௑
௫ୀ଴

்
௧ୀଵ ,  (65) 

and similarly, there is 

∑ 𝜏஻ೣ
௑
௫ୀ଴ ൌ

ଵ

஼ሺಿሻ ∑ ఠ೟
మ೅

೟సభ
∑ ൣ𝐶ሺேሻ ∑ 𝜔௧൫𝑒௫௧ െ 𝜏஺ೣ

൯ െ 𝑐଴ ∑ 𝜔௧ሺ𝑦௫௧ െ்
௧ୀଵ

்
௧ୀଵ

௑
௫ୀ଴

𝑎௫ െ 𝑏௫𝑘௧ሻ൧ ൌ
ଵ

஼ሺಿሻ ∑ ఠ೟
మ೅

೟సభ
ൣ𝐶ሺேሻ ∑ 𝜔௧ ∑ ൫𝑒௫௧ െ 𝜏஺ೣ

൯௑
௫ୀ଴ െ்

௧ୀଵ

𝑐଴ ∑ 𝜔௧ ∑ ሺ𝑦௫௧ െ 𝑎௫ሻ ൅ 𝑐଴ ∑ 𝑏௫
௑
௫ୀ଴ ∑ 𝜔௧𝑘௧

்
௧ୀଵ

௑
௫ୀ଴

்
௧ୀଵ ൧.   

(66) 

From (51), (56), (58) we have  ∑ 𝑏௫ ൌ 1,௑
௫ୀ଴  ∑ ሺ𝑦௫௧ െ 𝑎௫ሻ ൌ௑

௫ୀ଴  𝑘௧, ∑ ൫𝑒௫௧ െ௑
௫ୀ଴

𝜏஺ೣ
൯ ൌ 𝜔௧. Thus, we can write 

∑ 𝜏஻ೣ
௑
௫ୀ଴ ൌ

ଵ

஼ሺಿሻ ∑ ఠ೟
మ೅

೟సభ
ൣ𝐶ሺேሻ ∑ 𝜔௧

ଶ െ 𝑐଴ ∑ 𝜔௧𝑘௧ ൅ 𝑐଴ ∑ 𝜔௧
்
௧ୀଵ 𝑘௧

்
௧ୀଵ

்
௧ୀଵ ൧ ൌ 1.  (67) 

We also have 

 ∑ 𝜔௧
்
௧ୀଵ ൌ ∑ ∑ ൫𝑒௫௧ െ 𝜏஺ೣ

൯ ൌ ∑ ∑ ൫𝑒௫௧ െ 𝜏஺ೣ
൯ ൌ்

௧ୀଵ
௑
௫ୀ଴ ∑ ∑ 𝑒௫௧ െ்

௧ୀଵ
௑
௫ୀ଴

௑
௫ୀ଴

்
௧ୀଵ

𝑇 ∑ 𝜏஺ೣ
௑
௫ୀ଴ ൌ ∑ ∑ 𝑒௫௧ െ ∑ ∑ 𝑒௫௧ ൅்

௧ୀଵ
௑
௫ୀ଴

்
௧ୀଵ

௑
௫ୀ଴ 𝐶 ∑ 𝜏஻ೣ

ൌ 𝐶 ∙ 1 ൌ 𝐶.௑
௫ୀ଴        (68) 

Similar derivations refer to ∑ 𝜈஻ೣ
௑
௫ୀ଴  and ∑ 𝜛௧

்
௧ୀଵ . Hence, there following equalities 

hold 
    ∑ 𝜏஻ೣ

௑
௫ୀ଴ ൌ ∑ 𝜈஻ೣ

ൌ 1௑
௫ୀ଴     and    ∑ 𝜔௧

்
௧ୀଵ ൌ 𝐶,    ∑ 𝜛௧

்
௧ୀଵ ൌ 𝐷.  (69) 

There is also 

∑ 𝑏௫ ൌ ∑
∑ ௞೟ൣଶ௬ೣ೟ା௖బ൫௘ೣ೟ିజೣ೟ିఛಳೣఠ೟ାఔಳೣధ೟൯൧೅

೟సభ

ଶ ∑ ௞೟
మ೅

೟సభ
ൌ௑

௫ୀ଴
௑
௫ୀ଴

ଵ

ଶ ∑ ௞೟
మ೅

೟సభ
ൣ2 ∑ 𝑘௧ ∑ ሺ𝑦௫௧ െ 𝑎௫ሻ ൅ 𝑐଴ ∑ 𝑘௧ ∑ ൫𝑒௫௧ െ 𝜏஺ೣ

൯ െ௑
௫ୀ଴

்
௧ୀଵ

௑
௫ୀ଴

்
௧ୀଵ

𝑐଴ ∑ 𝑘௧ ∑ ൫𝜐௫௧ െ 𝜈஺ೣ
൯௑

௫ୀ଴ െ்
௧ୀଵ 𝑐଴ ∑ 𝑘௧൫𝜔௧ ∑ 𝜏஻ೣ

௑
௫ୀ଴ െ 𝜛௧ ∑ 𝜈஻ೣ

௑
௫ୀ଴ ൯்

௧ୀଵ ൧.  
(70) 
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Using relations (56), (58) and (51) we obtain 

 ∑ 𝑏௫
௑
௫ୀ଴ ൌ

ଶ ∑ ௞೟
మା௖బൣ∑ ௞೟ሺఠ೟ିధ೟ሻ೅

೟సభ ି∑ ௞೟ሺఠ೟ିధ೟ሻ೅
೟సభ ൧೅

೟సభ

ଶ ∑ ௞೟
మ೅

೟సభ
ൌ 1. (71) 

The special case. Let us assume that 𝑒௫௧ ൌ 𝜐௫௧ for 𝑥 ൌ 0,2, … , 𝑋, 𝑡 ൌ 1,2 … , 𝑇, 
then the criterion function (50) reduces to 

 𝐹ሺேሻ ൌ 2 ∑ ∑ ቂሺ𝑦௫௧ െ 𝑎௫ െ 𝑏௫𝑘௧ሻଶ ൅ 𝐶ሺேሻ൫𝑒௫௧ െ  𝜏஺ೣ
െ 𝜏஻ೣ

𝜔௧൯
ଶ

ቃ்
௧ୀଵ

௑
௫ୀ଴        (72) 

and formulas (62) and (63) defining parameters  𝑏௫ and 𝜏஻ೣ
 simplify to the following 

ones 

𝑏௫ ൌ
∑ ௞೟௬ೣ೟

೅
೟సభ

∑ ௞೟
మ೅

೟సభ
. (73) 

 

𝜏஻ೣ
ൌ

∑ ఠ೟൫௘ೣ೟ିఛಲೣ൯೅
೟సభ

∑ ఠ೟
మ೅

೟సభ
, (74) 

where ∑ 𝑏௫ ൌ 1,௑
௫ୀ଴  ∑ 𝜏஻ೣ

௑
௫ୀ଴ ൌ 1.  

It follows from these derivations that the main parameters 𝑎௫, 𝑏௫, 𝑘௧ have similar 
interpretation as in the standard Lee-Carter model (see Section 1). The age-related 
effects 𝑎௫ describe the age profile of mortality, time-related effects 𝑘௧ describe the 
overall trend of mortality, and 𝑏௫ represent the mean change of log-central mortality 
rate 𝑦௫௧ in response to change of  the time component 𝑘௧. However, the CNMM model 
also has additional parameters 𝜏஺ೣ

, 𝜏஻ೣ
, 𝜔௧ and 𝜈஺ೣ

, 𝜈஻ೣ
, 𝜛௧ treated as fuzziness of the 

model parameters. They will be used to determine the fuzziness boundaries of mortality 
forecasts. 

3.4. Data fuzzification  

There are several methods proposed to fuzzify the data. One of them  is an approach 
proposed by Koissi and Shapiro (2006) discussed in Subsection 2.1. 

What we propose here is to consider a modified version of the Koissi-Shapiro 
fuzzification method. Let the fuzziness parameters 𝑒௫௧ and 𝜐௫௧ satisfy the following 
respective equations for each fixed x 

 𝑒௫௧ ൌ  𝑠଴௫ ൅ 𝑠ଵ௫𝑡,   𝜐௫௧ ൌ 𝑟଴௫ ൅ 𝑟ଵ௫𝑡,         𝑡 ൌ 1,2, … , 𝑇, (75) 

where 𝑠଴௫, 𝑠ଵ௫, 𝑟଴௫, 𝑟ଵ௫ are found by solving the following optimization problem  

 minimize  ∑ ሺ𝑒௫௧ ൅ 𝜐௫௧ሻ்
௧ୀଵ ൌ  𝑇 ⋅ ሺ𝑠଴௫ ൅ 𝑟଴௫ሻ ൅ ሺ𝑠ଵ௫ ൅ 𝑟ଵ௫ሻ ∑ 𝑡,்

௧ୀଵ   (76) 

subject to the constraints  

 𝑎௫ ൅ 𝑏௫ ∙ 𝑘௧ ൅ ሺ𝑠଴௫ ൅ 𝑠ଵ௫𝑡ሻ ൒ ln 𝑚௫௧,   𝑡 ൌ 1,2, … , 𝑇, (77) 

 𝑎௫ ൅ 𝑏௫ ∙ 𝑘௧ െ ሺ𝑟଴௫ ൅ 𝑟ଵ௫𝑡ሻ ൑ ln 𝑚௫௧,   𝑡 ൌ 1,2, … , 𝑇, (78) 
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where 𝑎௫, 𝑘௧, 𝑏௫ are defined in (55), (56) and (73), and 𝑠଴௫, 𝑠ଵ௫ ൒ 0 as well as 𝑟଴௫, 𝑟ଵ௫ ൒
0 are the smallest values satisfying inequalities (77) and (78), respectively. Once, the 
coefficients 𝑠଴௫, 𝑠ଵ௫, 𝑟଴௫, 𝑟ଵ௫ are found, the fuzziness parameters 𝑒௫௧ and 𝜐௫௧ can be 
determined from equations (75). 

3.5.  Mortality prediction 

To forecast log-central mortality rates, time component 𝑘௧ can be viewed, 
analogously to the Lee-Carter approach, as a stochastic process. The estimated or 
forecasted values 𝑦ො௫௧ of log-central death rates 𝑦௫௧ will be derived for from the 
following formula  

 𝑦ො௫௧ ൌ 𝑎௫ ൅ 𝑏௫𝑘௧,  (79) 
where 𝑎௫, 𝑏௫ are time invariant, and 𝑘௧ is a time dependent component. For 𝑡 ൐ 𝑇, the 
time component will be forecasted via a time series model of the form 

 𝑘௧ ൌ 𝛿 ൅  𝑘௧ିଵ ൅ 𝜁௧,  (80) 
with 𝛿 and 𝜁௧’s denoting, respectively, a drift and independent and identically 
distributed Gaussian random terms. 

Similar approach applies to parameters 𝑒௫௧, 𝜐௫௧ expressing fuzziness of log-central 
death rates. The estimated or forecasted values 𝑒̂௫௧, 𝜐ො௫௧ will be derived from the 
following formulas 

 𝑒̂௫௧ ൌ 𝜏஺ೣ
൅ 𝜏஻ೣ

𝜔௧,         𝜐ො௫௧ ൌ 𝜈஺ೣ
൅ 𝜈஻ೣ

𝜛௧,        (81) 
where 𝜏஺ೣ

, 𝜏஻ೣ
, 𝜈஺ೣ

, 𝜈஻ೣ
 are time invariant, while 𝜔௧, 𝜛௧ are time dependent model 

parameters. Thus, for 𝑡 ൐ 𝑇, both 𝜔௧ and 𝜛௧ will be forecasted using the following time 
series models 

 𝜔௧ ൌ 𝜇 ൅ 𝜔௧ିଵ ൅ 𝜍௧,      𝜛௧ ൌ 𝛾 ൅ 𝜛௧ିଵ ൅ 𝜉௧,  (82) 
with 𝜇, 𝛾 denoting some drifts and 𝜍௧, 𝜉௧ denoting independent and identically 
distributed Gaussian random terms. 

The ML estimates  𝛿መ, 𝜇̂, 𝛾ො of parameters 𝛿, 𝜇, 𝛾 are as follows 

 𝛿መ ൌ
௞೅ି௞భ

்ିଵ
,         𝜇̂ ൌ

ఠ೅ିఠభ

்ିଵ
,     𝛾ො ൌ

ధ೅ିధభ

்ିଵ
 .   (83) 

 

3.6.   The case study 

To illustrate theoretical discussions presented in this section, the estimates of 
𝑎௫, 𝑏௫, 𝑘௧  and 𝜏஺ೣ

, 𝜏஻ೣ
, 𝜔௧, 𝜈஺ೣ

, 𝜈஻ೣ
, 𝜛௧  were estimated using the real mortality data. 

Next, the ex-post forecasts from the model (33) were derived and the prediction 
accuracy with results yielded by the Lee-Carter model compared. 
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The analysis was based on the central death rates in Poland from the years 1965–
2019. For computational reasons, age-specific death rates multiplied by 1000 were used. 
The necessary data were sourced from the Human Mortality Database 
(www.mortality.org), separately for males and females. The 2014–2019 death rates 
served the purpose of evaluating predicted rates and were not used in the estimation. 
Estimates of the parameters were obtained using scaled central death rates for males 
and females recorded in the years 1965–2013. To ensure the clarity of data presentation, 
estimates of  𝑎௫, 𝑏௫, 𝑘௧’s vs. 𝑥 or 𝑡 are plotted in the separate Figures 3–5. 

 
 

 
Figure 3.  Estimates of parameters 𝑎௫, 𝑥 ൌ 0,1,2, … , 𝑋 (Poland, males and females) 

Source: Developed by the authors. 
 
 
Curves illustrated in Figure 3 show the average profiles of mortality for males and 

females over the age range ሾ0,100ሿ. Both curves exhibit a typical “bath tube” shapes 
with high values around the infant ages, followed by minimal rates at the childhood 
ages, higher accidental mortality at young adulthood ages and increasing mortality at 
adulthood and old ages with nearly constant rate of increase. The “accident hump” at 
adolescence stands for higher mortality rates due to accidental deaths caused by 
augmented risk-taking behaviour as well as increased suicide rates. Note that the more 
demonstrable hump refers to the subpopulation of males. 

The arrangement of curves in Figure 4 shows that log-central mortality rates for 
males in young and old age groups are more sensitive to temporal changes in mortality 
than analogous rates for females. The reverse relationship applies to other age groups. 
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Figure 4.  Estimates of parameters 𝑏௫,   𝑥 ൌ 0,1,2, … , 𝑋 (Poland, males and females) 

Source: Developed by the authors. 

 
Figure 5. Estimates of parameters 𝑘௧, 𝑡 ൌ 1,2, … , 𝑇 (Poland, males and females) and forecasts up to 

2019 
Source: Developed by the authors. 

Figure 5 illustrates the trend of mortality both for males and females and forecasts 
up to 2019. It can be seen that curves are generally decreasing, with the decline being 
faster for women. However, the trend in mortality before 1991 shows a slight flattening, 
apart from certain fluctuations, which can be explained by the health crisis of the 1970s 
and 1980s in Poland. 

Figures 6െ11 exhibit both the real and estimated mortality rates for selected age 
groups. Estimates of log-central death rates 𝑦௫௧ were obtained for males and females by 
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using formula (79). In this case, as before, the estimation period was 19652013 and the 
period of ex-post forecasts spanned the years 2014െ2019. Forecasts of 𝑘௧ after 2013 
were determined from the model (80). Similar models (81), (82) were used to estimate 
and forecast fuzziness parameters 𝑒௫௧, 𝜐௫௧ necessary to determine fuzziness boundaries 
for mortality forecasts up to 2019.  

 
Figure 6.  The real and predicted log-central death rates obtained with the LC and CNMM models 

together with the fuzziness areas (Poland, males aged 0 years) 
Source: Developed by the authors.  

 
Figure 7.  The real and predicted log-central death rates obtained with the LC and CNMM models 

together with the fuzziness boundaries (Poland, females aged 0 years) 

Source: Developed by the authors. 
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Figure 8.  The real and predicted log-central death rates obtained with the LC and CNMM models 
together with the fuzziness boundaries (Poland, males at the age of 30 years) 

Source: Developed by the authors. 

 
 

 

Figure 9. The real and predicted log-central death rates obtained with the LC and CNMM models 
together with the fuzziness boundaries (Poland, females at the age of 30 years) 

Source: Developed by the authors. 
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Figure 10. The real and predicted log-central death rates obtained with the LC and CNMM models  
  together with the fuzziness boundaries (Poland, males at the age of 60 years) 

Source: Developed by the authors. 

 

 

 

Figure 11. The real and predicted log-central death rates obtained with the LC and CNMM models  
  together with the fuzziness boundaries (Poland, females at the age of 60 years) 

Source: Developed by the authors. 
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The CNMM model as well as the LC model were then compared using ex-post mean 
squared prediction error (𝑀𝑆𝐸) based on the differences between real and estimated 
log-central mortality rates, i.e. 

 𝑀𝑆𝐸௧ ൌ ට ଵ

௑ାଵ
∑ ሺ𝑦௫௧ െ 𝑦ො௫௧ሻଶ௑

௫ୀ଴ ,    𝑡 ൐ 𝑇, (84) 

where 𝑦ො௫௧ are estimated log-central death rates obtained from the CNMM or LC model. 

Table 1. Prediction accuracy of the LC model vs. the CNMM model  in terms of the ex-post MSE 
errors  

Year 
Males Females 

LC CNMM LC CNMM 

POLAND 

2014 0.166 0.112 0.118 0.116 

2015 0.152 0.107 0.111 0.105 

2016 0.167 0.116 0.140 0.131 

2017 0.174 0.124 0.126 0.125 

2018 0.158 0.117 0.150 0.158 

2019 0.171 0.129 0.134 0.142 

NORWAY 

2014 0.265 0.243 0.305 0.302 

2015 0.297 0.273 0.272 0.234 

2016 0.294 0.270 0.255 0.248 

2017 0.302 0.269 0.340 0.328 

2018 0.308 0.283 0.316 0.310 

CHECHIA 

2014 0.227 0.220 0.230 0.227 

2015 0.281 0.276 0.247 0.238 

2016 0.253 0.247 0.235 0.222 

2017 0.245 0.242 0.265 0.251 

Source: Developed by the authors. 

Table 1 summarizes the results of comparisons between the LC and CNMM models 
in terms of their prediction accuracy for Poland and for two selected European 
countries. MSE errors were assessed for those years for which the real mortality rates 
were available. 

On the basis of the results obtained, it can be noticed that the CNMM model 
utilizing complex-valued fuzzy numbers provides comparable or smaller ex-post 
forecast errors, in terms of the MSE measure, than the LC model. 
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4. Concluding remarks 

In the paper an algebraic approach to mortality modelling was introduced. For the 
formal purposes, the concept of complex-valued fuzzy numbers was also discussed.  

The popularity of the widely used Lee-Carter mortality model lies in its simplicity 
and ease of interpretation. However, due to the uncertainty and imprecision of 
empirical age-specific mortality rates, it seems justified to use a fuzzy mortality model 
instead. In our approach, the log-central death rates were viewed as complex-valued 
fuzzy numbers derived for each age-time cell. The parameters of fuzzified log-central 
death rates were found in the data fuzzification stage, which was the first step of the 
model estimation. Next, fuzzy log-central death rates were transformed into complex-
valued fuzzy numbers and modelled using the complex analysis. 

What makes the CNMM model superior to the standard LC model is that the 
proposed approach allows for determination of fuzziness boundaries for the mortality 
trajectories. For the standard LC model, the confidence intervals for log-central 
mortality rates can also be derived, but they reflect the error term in the random walk 
model, ignoring the estimation errors of other parameters, so the confidence intervals 
can only be derived for the prediction window. 
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APPENDIX 

A.1. The orthogonal expansion  
Two vectors 𝜑, 𝜓 ∈ 𝐿ଶሺ0,1ሻ are called orthogonal ሺ𝜑 ⊥ 𝜓ሻ if 〈𝜑, 𝜓〉 ൌ 0 and 

parallel if one is multiple of the other. If φ and ψ are orthogonal ሺ𝜑 ⊥ 𝜓ሻ, then the 
Pythagorean theorem is satisfied 

∥ 𝜑 ൅ 𝜓 ∥ଶൌ∥ 𝜑 ∥ଶ൅∥ 𝜓 ∥ଶ. 

A vector φ is called a unit vector if ∥ 𝜑 ∥ൌ 1.  
Suppose φ is a unit vector. Then, the projection of ψ in the direction of φ is given 

by 

𝜓∥ ൌ൏ 𝜑, 𝜓 ൐ 𝜑 
and 𝜓ୄ, defined as 

𝜓ୄ ൌ 𝜓െ൏ 𝜑, 𝜓 ൐ 𝜑, 

is orthogonal to φ. 

It is commonly known that a set of vectors {𝑃௝} in 𝐿ଶሺ0,1ሻ  is called an orthonormal set 
if 〈𝑃௝, 𝑃௞〉 ൌ 0 for 𝑗 ് 𝑘 and 〈𝑃௝, 𝑃௝〉 ൌ 1. 

A.2. The Legendre polynomials as the basis of the orthonormal expansion 
Let us consider the set of orthonormal Legendre polynomials. The first four 

polynomials take the form  
𝑃଴ሺ𝑢ሻ ൌ 1, 

𝑃ଵሺ𝑢ሻ ൌ √3ሺ2𝑢 െ 1ሻ, 

𝑃ଶ ൌ
√5
2

ሾ3ሺ2𝑢 െ 1ሻଶ െ 1ሿ, 

𝑃ଷ ൌ
√7
2

ሾ5ሺ2𝑢 െ 1ሻଷ െ 3ሺ2𝑢 െ 1ሻሿ, 
and recursively 

𝑃௡ାଵሺ𝑢ሻ ൌ
ඥሺ2𝑛 ൅ 1ሻሺ2𝑛 ൅ 3ሻ

ሺ𝑛 ൅ 1ሻ
ሺ2𝑢 െ 1ሻ𝑃௡ሺ𝑢ሻ െ

𝑛
𝑛 ൅ 1

ඨ
2𝑛 ൅ 3
2𝑛 െ 1

𝑃௡ିଵሺ𝑢ሻ. 

By putting 𝑗 ൌ 𝑛 ൅ 1 we have for 𝑛 ൌ 2, 3, … 

𝑃௝ሺ𝑢ሻ ൌ
ඥሺ2𝑗 െ 1ሻሺ2𝑗 ൅ 1ሻ

𝑗
ሺ2𝑢 െ 1ሻ𝑃௝ିଵሺ𝑢ሻ െ

𝑗 െ 1
𝑗

ඨ
2𝑗 ൅ 1
2𝑗 െ 3

𝑃௝ିଶሺ𝑢ሻ. 

We will use the recursive formula to  find the  Legendre polynomials 𝑃ସ, 𝑃ହ 
orthonormal on the interval ሾ0, 1ሿ. We get 

𝑃ସ ൌ √ଽ

଼
ሾ35ሺ2𝑢 െ 1ሻସ െ 30ሺ2𝑢 െ 1ሻଶ ൅ 3ሿ, 
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𝑃ହ ൌ √ଵଵ

଼
ሾ63ሺ2𝑢 െ 1ሻହ െ 70ሺ2𝑢 െ 1ሻଷ ൅ 15ሺ2𝑢 െ 1ሻሿ. 

For 𝑗 ൌ 3 there is 𝑃ଷ ൌ √଻

ଶ
ሾ5ሺ2𝑢 െ 1ሻଷ െ 3ሺ2𝑢 െ 1ሻሿ.   

Let us calculate the scalar products 〈𝑃଴, 𝑃ଷ〉, 〈𝑃ଵ, 𝑃ଷ〉, 〈𝑃ଶ, 𝑃ଷ〉.  

For 𝑃଴ሺ𝑢ሻ ൌ 1, 𝑃ଷ ൌ √଻

ଶ
ሾ5ሺ2𝑢 െ 1ሻଷ െ 3ሺ2𝑢 െ 1ሻሿ there is 

〈𝑃଴, 𝑃ଷ〉  ൌ √଻

ଶ
ቂ5 ׬ ሺ2𝑢 െ 1ሻଷଵ

଴ 𝑑𝑢 െ 3 ׬ ሺ2𝑢 െ 1ሻ𝑑𝑢
ଵ

଴ ሿቃ ൌ 0.  
 

For 𝑃ଵሺ𝑢ሻ ൌ √3ሺ2𝑢 െ 1ሻ,  𝑃ଷ ൌ √଻

ଶ
ሾ5ሺ2𝑢 െ 1ሻଷ െ 3ሺ2𝑢 െ 1ሻሿ we have 

 

〈𝑃ଵ, 𝑃ଷ〉  ൌ
√21

2
ቈ5 න ሺ2𝑢 െ 1ሻସ

ଵ

଴
െ 3 න ሺ2𝑢 െ 1ሻଶ𝑑𝑢

ଵ

଴
ሿ቉ ൌ 0. 

 

For 𝑃ଶ ൌ √ହ

ଶ
ሾ3ሺ2𝑢 െ 1ሻଶ െ 1ሿ, 𝑃ଷ ൌ √଻

ଶ
ሾ5ሺ2𝑢 െ 1ሻଷ െ 3ሺ2𝑢 െ 1ሻሿ we get 

 

〈𝑃ଶ, 𝑃ଷ〉 ൌ
√35

4
ቈ15 න ሺ2𝑢 െ 1ሻହ𝑑𝑢

ଵ

଴
െ 14 න ሺ2𝑢 െ 1ሻଷ𝑑𝑢 ൅ 3 න ሺ2𝑢 െ 1ሻ𝑑𝑢

ଵ

଴

ଵ

଴
቉ ൌ 0. 

Hence, it follows that 𝑃଴ ⊥ 𝑃ଷ,   𝑃ଵ ⊥ 𝑃ଷ,    𝑃ଶ ⊥ 𝑃ଷ. 
Now, let us verify the normality of the element 𝑃ଷ ∈ 𝐿ଶሺ0,1ሻ, i.e. we will verify the 

equality ∥ 𝑃ଷ ∥ଶൌ 1. Note that 𝑃ଷ
ଶ is equal to 

𝑃ଷ
ଶ ൌ

7
4

ሾ5ሺ2𝑢 െ 1ሻଷ െ 3ሺ2𝑢 െ 1ሻሿଶ

ൌ
7
4

ሾ25ሺ2𝑢 െ 1ሻ଺ െ 30ሺ2𝑢 െ 1ሻሿସ ൅ 9ሺ2𝑢 െ 1ሻଶሿ. 

The squared norm of the element 𝑃ଷ ∈ 𝐿ଶሺ0,1ሻ is as follows 

∥ 𝑃ଷ ∥ଶൌ
7
4

ቈ25 න ሺ2𝑢 െ 1ሻ଺
ଵ

଴
𝑑𝑢 െ 30 න ሺ2𝑢 െ 1ሻସ𝑑𝑢

ଵ

଴
൅ 9 න ሺ2𝑢 െ 1ሻଶ𝑑𝑢

ଵ

଴
቉

ൌ
7
4

൬
25
7

െ
30
5

൅
9
3

൰ ൌ 1. 

Thus, 𝑃ଷ ∈ 𝐿ଶሺ0,1ሻ belongs to the orthonormal system ൛𝑃௝ൟ
௝ୀ଴

ଷ . 

A.3. Orthonormal expansions of inverse triangular functions 

Let us assume that 𝑓, 𝑔 take the following forms 

𝑓ሺ𝑢ሻ ൌ 𝑎 െ 𝑠ሺ1 െ 𝑢ሻ,     𝑔ሺ𝑢ሻ ൌ 𝑎 ൅ 𝑠ሺ1 െ 𝑢ሻ,     𝑢 ∈ ሾ0,1ሿ, 

and let ሼ𝑃௝ሽ be an orthonormal set of Legendre polynomials in 𝐿ଶሺ0,1ሻ.  
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First, we will find coefficients 𝛼௝, 𝛽௝ for 𝑗 ൌ 0, 1. We have 

𝛼଴ ൌ 〈𝑃଴, 𝑓〉 ൌ න 𝑓ሺ𝑢ሻ𝑑𝑢 ൌ 𝑎 െ 𝑠
ଵ

଴
නሺ1 െ 𝑢ሻ𝑑𝑢 ൌ 𝑎 െ

𝑠
2

,

ଵ

଴

 

𝛽଴ ൌ 〈𝑃଴, 𝑔〉 ൌ න 𝑓ሺ𝑢ሻ𝑑𝑢 ൌ 𝑎 ൅ 𝑠
ଵ

଴
නሺ1 െ 𝑢ሻ𝑑𝑢 ൌ 𝑎 ൅

𝑠
2

,

ଵ

଴

 

𝛼ଵ ൌ 〈𝑃ଵ, 𝑓〉 ൌ න √3ሺ2𝑢 െ 1ሻሾ𝑎 െ ሺ1 െ 𝑢ሻ𝑠ሿ𝑑𝑢 ൌ
ଵ

଴

𝑠

2√3
 , 

 𝛽ଵ ൌ 〈𝑃ଵ, 𝑔〉 ൌ න √3ሺ2𝑢 െ 1ሻሾ𝑎 ൅ ሺ1 െ 𝑢ሻ𝑠ሿ𝑑𝑢 ൌ
ଵ

଴
െ

𝑠

2√3
 . 

Thus, we obtain 

𝑓ሺ𝑢ሻ ൌ 𝑓ሺଵሻሺ𝑢ሻ ൌ ෍ 𝛼௝𝑃௝ ൌ

ଵ

௝ୀ଴

𝑎 െ
𝑠
2

൅ 𝑠 ൬𝑢 െ
1
2

൰ ൌ 𝑎 െ 𝑠ሺ1 െ 𝑢ሻ, 

𝑔ሺ𝑢ሻ ൌ 𝑔ሺଵሻሺ𝑢ሻ ൌ ෍ 𝛽௝𝑃௝

ଵ

௝ୀ଴

ൌ 𝑎 ൅
𝑠
2

൅ 𝑠 ൬െ𝑢 ൅
1
2

൰ ൌ 𝑎 ൅ 𝑠ሺ1 െ 𝑢ሻ. 

A.4. Orthonormal expansions of inverse exponential functions 
Suppose that 𝑓, 𝑔 are expressed as 

𝑓ሺ𝑢ሻ ൌ 𝑐 െ 𝜏ሺെln 𝑢ሻ
భ
మ,    𝑔ሺ𝑢ሻ ൌ 𝑐 ൅ 𝜈ሺെ ln 𝑢ሻ

భ
మ,   𝑢 ∈ ሾ0,1ሿ.    (A.1) 

First, we will find coefficients 𝛼௝, 𝛽௝ for 𝑗 ൌ 0,1,2,3. We have 

𝛼௝ ൌ 〈𝑃௝, 𝑓〉 ൌ 〈𝑃௝, 𝑐 ൅ 𝜓〉  ൌ 〈𝑃௝, 𝑐〉 ൅ 〈𝑃௝, 𝜓〉, 

𝛽௝ ൌ 〈𝑃௝, 𝑔〉 ൌ 〈𝑃௝, 𝑐 ൅ 𝜑〉 ൌ 〈𝑃௝, 𝑐〉 ൅ 〈𝑃௝, 𝜑〉. 
For scalar products 〈𝑃௝, 𝜓〉 and 〈𝑃௝, 𝜑〉  we need to calculate the integral 

׬ 𝑢௝ሺെ ln 𝑢ሻ
భ
మ 𝑑𝑢

ଵ
଴ .  After some basic calculations we obtain 

න 𝑢௝ሺെ ln 𝑢ሻ
భ
మ 𝑑𝑢 ൌ

√𝜋

2ሺ𝑗 ൅ 1ሻ
య
మ

ଵ

଴
. 

For 𝑗 ൌ 0, we get 𝑃଴ሺ𝑢ሻ ൌ 1 and 

〈𝑃଴, 𝑐〉 ൌ 〈1, 𝑐〉 ൌ න 𝑐𝑑𝑢 ൌ 𝑐.
ଵ

଴
 

Thus, 

𝛼଴ ൌ  〈𝑃଴, 𝑓〉  ൌ  〈1, 𝑐〉 ൅  〈1, 𝑓〉  ൌ 𝑐 ൅ න 𝜓ሺ𝑢ሻ𝑑𝑢
ଵ

଴
, 

𝛽଴ ൌ 〈𝑃଴, 𝑔〉  ൌ  〈1, 𝑐〉 ൅  〈1, 𝑔〉  ൌ 𝑐 ൅ න 𝜑ሺ𝑢ሻ𝑑𝑢
ଵ

଴
. 
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Hence, there is 

𝛼଴ ൌ 𝑐 െ 𝜏 ׬ ሺെln 𝑢ሻଵ
଴

భ
మ 𝑑𝑢,  

 𝛽଴ ൌ 𝑐 ൅ 𝜈 ׬ ሺെln 𝑢ሻ
భ
మ𝑑𝑢.

ଵ
଴  

For 𝑗 ൌ 0, we have ׬ ሺെln 𝑢ሻ
భ
మ𝑑𝑢

ଵ
଴ ൌ √

ଶ
, and 𝛼଴,  𝛽଴ can be reduced to 

𝛼଴ ൌ ׬ 𝑓ሺ𝑢ሻ𝑑𝑢
ଵ

଴ ൌ 𝑐 െ 𝜏 √
ଶ

,  (A.2) 

𝛽଴ ൌ ׬ 𝑔ሺ𝑢ሻ𝑑𝑢
ଵ

଴ ൌ 𝑐 ൅ 𝜈 √
ଶ

.  (A.3) 
 
Using the recursive formula, we can obtain next orthonormal expansion for  𝑗 ൌ

1,2,3, …. 
 
Let us take 𝑗 ൌ 1, then  𝑃ଵሺ𝑢ሻ ൌ √3ሺ2𝑢 െ 1ሻ and 
 

〈𝑃ଵ, 𝑐〉  ൌ √3𝑐 ׬ ሺ2𝑢 െ 1ሻଵ
଴ 𝑑𝑢 ൌ √3ሺ𝑐 െ 𝑐ሻ ൌ 0. 

We have also 

〈𝑃ଵ, 𝜓〉  ൌ െ𝜏 න 𝑃ଵሺെ ln 𝑢ሻ
భ
మ

ଵ

଴
𝑑𝑢 ൌ െ𝜏 √3 න ሺ2𝑢 െ 1ሻሺെ ln 𝑢ሻ

భ
మ

ଵ

଴
𝑑𝑢 

ൌ െ𝜏 √ଷగ
ଶ

ቀ ଵ

√ଶ
െ 1ቁ, 

〈𝑃ଵ, 𝜑〉  ൌ   𝜈 න 𝑃ଵሺെ ln 𝑢ሻ
భ
మ

ଵ

଴
𝑑𝑢 ൌ   𝜈 √3 න ሺ2𝑢 െ 1ሻሺെ ln 𝑢ሻ

భ
మ

ଵ

଴
𝑑𝑢 

ൌ    𝜈 √ଷగ
ଶ

ቀ ଵ

√ଶ
െ 1ቁ. 

Thus, we receive 
 𝛼ଵ ൌ 〈𝑃ଵ, 𝑓〉  ൌ  െ𝜏 √యഏ

మ
ቀ భ

√మ
െ 1ቁ, (A.4) 

𝛽ଵ ൌ 〈𝑃ଵ, 𝑔〉  ൌ  𝜈 √యഏ
మ

ቀ భ

√మ
െ 1ቁ. (A.5) 

For 𝑗 ൌ 2, there is 𝑃ଶ ൌ √ହ

ଶ
ሾ3ሺ2𝑢 െ 1ሻଶ െ 1ሿ and 

𝛼ଶ ൌ 〈𝑃ଶ, 𝑓〉  ൌ 〈𝑃ଶ, 𝑐〉 ൅ 〈𝑃ଶ, 𝜓〉 ,    𝛽ଶ ൌ 〈𝑃ଶ, 𝑔〉  ൌ 〈𝑃ଶ, 𝑐〉 ൅ 〈𝑃ଶ, 𝜑〉, 
where 

〈𝑃ଶ, 𝑐〉  ൌ 𝑐
√5
2

න ሺ3ሺ2𝑢 െ 1ሻଶ െ 1ሻ𝑑𝑢
ଵ

଴
ൌ 2𝑐√5 െ 3𝑐√5 ൅

3𝑐√5
2

െ
𝑐√5

2
ൌ 0 

〈𝑃ଶ, 𝜓〉  ൌ െ𝜏 න 𝑃ଶሺെ ln 𝑢ሻ
భ
మ

ଵ

଴
𝑑𝑢 ൌ െ𝜏√5𝜋 ൬

1

√3
െ

3

2√2
൅

1
2

൰, 

〈𝑃ଶ, 𝜑〉  ൌ 𝜐 න 𝑃ଶሺെ ln 𝑢ሻ
భ
మ

ଵ

଴
𝑑𝑢 ൌ  𝜐√5𝜋 ൬

1

√3
െ

3

2√2
൅

1
2

൰. 
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Hence,  

𝛼ଶ ൌ 〈𝑃ଶ, 𝑓〉  ൌ  െ𝜏√5𝜋 ൬
1

√3
െ

3

2√2
൅

1
2

൰, 

𝛽ଶ ൌ 〈𝑃ଶ, 𝑔〉   ൌ 𝜐√5𝜋 ൬ 
1

√3
െ

3

2√2
൅

1
2

൰. 

Let us find coefficients 𝛼ଷ and 𝛽ଷ, i.e. 
𝛼ଷ ൌ 〈𝑃ଷ, 𝑓〉  ൌ 〈𝑃ଷ, 𝑐〉 ൅ 〈𝑃ଷ, 𝜓〉, 

𝛽ଷ ൌ 〈𝑃ଷ, 𝑔〉  ൌ 〈𝑃ଷ, 𝑐〉 ൅ 〈𝑃ଷ, 𝜑〉. 
We have 𝑃ଷ ൌ √଻

ଶ
ሾ5ሺ2𝑢 െ 1ሻଷ െ 3ሺ2𝑢 െ 1ሻሿ and 

〈𝑃ଷ, 𝑐〉  ൌ 𝑐
√7
2

න ሺ5ሺ2𝑢 െ 1ሻଷ െ 3ሺ2𝑢 െ 1ሻሻ𝑑𝑢
ଵ

଴
ൌ

𝑐√7
2

ሺ10 െ 20 ൅ 12 െ 2ሻ ൌ 0, 

〈𝑃ଷ, 𝜓〉  ൌ െ𝜏 න 𝑃ଷሺെ ln 𝑢ሻ
భ
మ

ଵ

଴
𝑑𝑢 ൌ െ𝜏√7𝜋 ൬െ

5

√3
൅

15

4√2
െ

3

4√2
൅

3
4

൰. 

〈𝑃ଷ, 𝜑〉  ൌ 𝜐 න 𝑃ଷሺെ ln 𝑢ሻ
భ
మ

ଵ

଴
𝑑𝑢 ൌ 𝜐√7𝜋 ൬െ

5

√3
൅

15

4√2
െ

3

4√2
൅

3
4

൰ 

Hence,  
𝛼ଷ ൌ 〈𝑃ଷ, 𝑓〉  ൌ െ𝜏√7𝜋 ቀെ

ହ

√ଷ
൅

ଵହ

ସ√ଶ
െ

ଷ

ସ√ଶ
൅

ଷ

ସ
ቁ, (A.6) 

𝛽ଷ ൌ 〈𝑃ଷ, 𝑔〉  ൌ  𝜐√7𝜋 ቀെ
ହ

√ଷ
൅

ଵହ

ସ√ଶ
െ

ଷ

ସ√ଶ
൅

ଷ

ସ
ቁ. (A.7) 

 
Thus, orthonormal expansions of 𝑓ሺ𝑢ሻ and 𝑔ሺ𝑢ሻ defined in (A.1) are as follows 

𝑓ሺ𝑢ሻ ≅ 𝑓ሺଷሻሺ𝑢ሻ ൌ ෍ 𝛼௝𝑃௝

ଷ

௝ୀ଴

,     𝑔ሺ𝑢ሻ ≅ 𝑔ሺଷሻሺ𝑢ሻ ൌ ෍ 𝛽௝𝑃௝

ଷ

௝ୀ଴

, 

where 

𝛼଴𝑃଴ሺ𝑢ሻ ൌ 𝑐 െ 𝜏
√
2

,            𝛽଴𝑃଴ሺ𝑢ሻ ൌ 𝑐 ൅ 𝜈
√
2

, 

   𝛼ଵ𝑃ଵሺ𝑢ሻ ൌ െ𝜏 ଷ√గ
ଶ

ቀ ଵ

√ଶ
െ 1ቁ ሺ2𝑢 െ 1ሻ,      𝛽ଵ𝑃ଵሺ𝑢ሻ ൌ 𝜈 ଷ√గ

ଶ
ቀ ଵ

√ଶ
െ 1ቁ ሺ2𝑢 െ 1ሻ, 

𝛼ଶ𝑃ଶሺ𝑢ሻ ൌ െ𝜏
5√𝜋

2
൬

1

√3
െ

3

2√2
൅

1
2

൰ ሾ3ሺ2𝑢 െ 1ሻଶ െ 1ሿ, 

𝛽ଶ𝑃ଶሺ𝑢ሻ ൌ 𝜈
5√𝜋

2
൬

1

√3
െ

3

2√2
൅

1
2

൰ ሾ3ሺ2𝑢 െ 1ሻଶ െ 1ሿ, 

𝛼ଷ𝑃ଷሺ𝑢ሻ ൌ െ𝜏
7√𝜋

2
൬െ

5

√3
൅

15

4√2
െ

3

4√2
൅

3
4

൰ ሾ5ሺ2𝑢 െ 1ሻଷ െ 3ሺ2𝑢 െ 1ሻሿ, 

𝛽ଷ𝑃ଷሺ𝑢ሻ ൌ 𝜈
7√𝜋

2
൬െ

5

√3
൅

15

4√2
െ

3

4√2
൅

3
4

൰ ሾ5ሺ2𝑢 െ 1ሻଷ െ 3ሺ2𝑢 െ 1ሻሿ. 


