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The Complex-Number Mortality Model (CNMM) based on
orthonormal expansion of membership functions

Andrzej Szymanski', Agnieszka Rossa’

ABSTRACT

The paper deals with a new fuzzy version of the Lee-Carter (LC) mortality model, in which
mortality rates as well as parameters of the LC model are treated as triangular fuzzy numbers.
As a starting point, the fuzzy Koissi-Shapiro (KS) approach is recalled. Based on this
approach, a new fuzzy mortality model - CNMM - is formulated using orthonormal
expansions of the inverse exponential membership functions of the model components. The
paper includes numerical findings based on a case study with the use of the new mortality
model compared to the results obtained with the standard LC model.

Key words: exponential membership functions, Legendre’s polynomials, mortality
modelling, orthonormal system.

1. Introduction

In the last four decades several approaches were proposed to model human
mortality and to project future mortality evolution. Among the extrapolative methods,
a model proposed by Lee and Carter (1992) is one of the most popular approaches,
although other mortality models have been also developed, e.g. Heligman and Pollard
(1980), Horiuchi and Coale (1990), Milevsky and Promislow (2001), Currie et al.
(2004), Bongaarts (2005), Cairns et al. (2006).

The Lee-Carter model (LC) has been extensively used for many real populations
and extended in various directions (see, e.g. Renshaw et al. (1996), Tuljapurkar et al.
(2000), Booth et al. (2002), (2006), Brouhns et al. (2002), Renshaw and Haberman
(2003), De Jong and Tickle (2006), Koissi and Shapiro (2006), Pitacco et al. (2009),
Haberman and Renshaw (2012), Danesi et al. (2015)).

The Lee-Carter method (1992) can be treated as a special case of the principal
component analysis with a single component (Bozik and Bell (1987)). The focus of this
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approach is on central age-specific death rates m,, for a range of ages x = 0,1,2, ..., X
and calendar years t = 1,2, ..., T, organized in a two way table with rows referring to
one-year age groups and columns referring to one-year period intervals.

The LC method consists of a model of age-specific log-central death rates y,, =
In m,, with time and age components

VYt = Ay + bxkt + Exts X = 0,1,2, X, t= 1,2, ...,T, (1)
and a model of random walk with a drift to forecast time components k, fort > T
ke =d+ keq + )

where {a,} in (1) is a set of age-related effects describing the age profile of mortality,
{k.} is a set of the time-related effects representing the general trend of mortality, {b,}
is a set of age-related effects describing patterns of deviations from the age profile in
response to change of the general trend, d in (2) is a constant (a drift), whereas &, {;
in (1) and (2), respectively, are random residuals.

Parameters {b, } show which death rates decline rapidly and which slowly over time
in response to change of k;. For some values of x, b, may be positive while negative for
other values, indicating that log-central death rates y,; = Inm,, are increasing at some
ages while decreasing at other ages.

For the full identification of (1), the following two constraints are imposed

Xoby=1 2T_1 k. =0. (3)

Lee and Carter used the SVD method (Singular Value Decomposition) to estimate
ay, by, k¢ and assumed that error terms &, are normally distributed with a small
constant variance. This is rather a strong assumption, which is often violated especially
in the case of the imprecise input data. Moreover, prediction errors do not account for
the estimation errors of the age-specific parameters a,, by, except of incorporating
uncertainty from the forecast of the time component k.

It is well-known that various kinds of errors can occur in reporting death statistics.
This could be e.g. incorrect year, area or age. Moreover, the midyear population data
used to calculate period age-specific mortality rates m,, are also the subject of errors.
The midyear population size is the population at July 1 and is assumed to be the point
at which half of the deaths during the year have occurred. Such estimates can be actually
underestimated or overestimated and this affects the resulting death rates. Therefore,
exact age-specific mortality rates are seldom known, hence incorporating the data
uncertainty into the model structure seems to be a realistic and expected idea.

The new trends in fuzzy analysis are based on the algebraic approach to fuzzy numbers
(e.g. Ishikawa (1997), Kosinski et al. (2003), Rossa et al. (2017), Szymanski and Rossa (2014),
(2017)). The essential idea in such an approach is representing the membership function of
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a fuzzy number as an element of the square-integrable function space. We will use this idea
to propose a new fuzzy mortality model in the spirit of the Koissi-Shapiro approach.

The log-central mortality rates as well as parameters of the underlying Koissi-Shapiro
model are symmetric triangular fuzzy numbers, i.e. numbers with symmetric triangular
membership functions. We believe that exponential functions could fit the data better.
Therefore, our model is based on exponential membership functions of the model
components instead of triangular ones.

The paper is organized as follows. Section 2 recalls the data fuzzification method
(Subsection 2.1) and the fuzzy mortality model (Subsection 2.2) as proposed by Koissi and
Shapiro. The new complex-number fuzzy mortality model is formulated in Section 3. The
concept is presented in six subsections: theoretical backgrounds (Subsection 3.1),
formulation of the new mortality model CNMM (Subsection 3.2), estimation of the model
parameters (Subsection 3.3), description of the modified fuzzification method (Subsection
3.4), description of the forecasting method (Subsection 3.5) and a case study (Subsection
3.6). Concluding remarks are contained in Section 4. Formal details about orthonormal
expansions by means of the Legendre polynomials are included in the Appendix.

2. The Koissi-Shapiro model

2.1. Fuzzification of the input data

In the Koissi-Shapiro model (2006), log-central death rates y,; = Inm,, are
transformed into symmetric triangular fuzzy numbers

Yee = Wars €xe), (4)
where y,;, e,; are centres and spreads of fuzzy numbers Y,,, respectively.
The addition @ and multiplication @ of symmetric triangular numbers A =
(a,s4) and B = (b, sp) defined in the norm T, are expressed as

A @ B = (a+ b,max(sy, sg)), (5)

A ® B = (ab,max(s,|bl, sglal)), (6)
and the multiplication of A = (a, s,) by a scalar b € R reduces to

A® b = (ab,s4|b)). )

Parameters e,; in (4) are also called fuzziness parameters. To determine their
values, Koissi and Shapiro postulated using a fuzzy regression model. They assumed
existing symmetric triangular fuzzy numbers (coy, Sox) and (cqx, S1x) satisfying for
each age group x the following equalities

(yxtr ext) = (COX' SOx) D (c1x:51x) VL, t=12..,T. (8)
This postulate leads to the equalities (9)-(10) of the form
Vet = Cox T C1x " L, t=12,..,T. 9)

ey = max(Soy, S1x°t), t=12,..,T. (10)
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To find coefficients in (9) the ordinary least-squares regression is used, i.e. ¢, and
Coyx are found from formulas

_ Yxt't—Uyxt
Clx - t—z_EZ ] (11)
Cox = yxt — Cix 't (12)

where Z means averaging over z;’s.

To find parameters Sy, S1y, the minimum fuzziness criterion” is proposed by
minimizing spreads of Yy, = (V,, €x¢) and requiring each log-central death rate y,, to
fall within the estimated death rates J,.at a level h € [0,1]. Since e,, are, by
assumption, non-negative numbers and the smallest value they can take is 0, it is
necessary to determine such values of s, S1,, that at a given x they minimize the sum

T * SOx + Slx ° ZZ=1 t, (].3)

subject to the constraints
Cox + Cix "t + (1 —h)(Sox + S1xt) 2 Inmy,, t=12,..,T, (14)
Cox + Cix t — (1 — h)(Sgx + S1xt) <Inmy, t=1,2,..,T, (15)

where Sgy, 51, = 0, u € [0,1) and h € [0,1] is a predetermined value representing the
degree of fit of the estimated model to the data. As lower h provides a better fit, we can
use h = 0. After finding the parameters Sy, 51, for each x, the fuzziness parameters ey,
can be determined using formula (10).

2.2. The Koissi-Shapiro model

Let us recall the fuzzy mortality model as proposed by Koissi and Shapiro (2006).
The structure of their model is analogous to the Lee-Carter one (1992) and takes the
form

Yxt = Ax @ (Bx ® Kt); (16)
with the difference that Y, = (¥4 €4e) for x = 0,1, ..., X, t = 1,2, ..., T are fuzzified
log-central death rates expressed as triangular numbers with centres y,; and spreads

ext.

Model parameters are assumed to be symmetric triangular numbers A, =
(ax, SAX), B, = (bx, SBX),KL» = (kt, sKt) with unknown centres a,,b,, k; € R and
spreads Sar SBy Sk, 2 0, respectively.

To find parameters a,, by, k;, Sa, S, Sk,» Koissi and Shapiro postulated
minimizing the Diamond distance D? (Diamond (1988)) between the left and right-
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hand sides of (16). This leads to the criterion function defined for each separate x and
t as
DZ(Yxt:Ax @ (Bx ® Kt)) = (ax + bxkt - yxt)z + [ax + bxkt -
2
maX{SAx: |bx|SKt’ |kt|SBx} = YVat — ext)] + [ax + bk, +
2
max{s,,, |bylsk, [kelsp,} — Dxe + €x0)] )
17

Unfortunately, the criterion function contains a max-type operator
max{sAx, |by sk, IktlsBx}, which does not allow using standard derivative based
solution algorithms for minimization of (17).

3. The Complex-Number Mortality Model CNMM

3.1. Theoretical backgrounds

The new trends in fuzzy analysis are based on the algebraic approach to fuzzy
numbers (see, e.g. Ishikawa (1997), Kosiniski et al. (2003), Rossa et al. (2017), Szymanski
and Rossa (2014), (2017)). The essential idea in such an approach is representing the
membership function of a fuzzy number as an element of the square-integrable
function space.

Let us consider the membership function of the exponential form
2
(-, sz
u(z) = (18)
2
exp {—(?) }, zZ>c,
where c € R, 7,v > 0 are some scalar parameters.

Note that (18) can be decomposed into two parts - strictly increasing and strictly
decreasing functions W(z) and ®(z), say, of the form

¥(z) =exp{-()°}, z=c (19)

o(2) =exp{-(59)°}, z>c. (20)
Then there exist inverse functions

Y w) =c+ @), uelol], (1)

>t w)=c+ o), uel01], (22)

where (1) and @(u) are expressed as

Y(u) = —1(~In u)%, o) =v(=In u)%, u € [0,1]. (23)
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Denoting f(u) = Y~ (u) and g(u) = ®~*(u) for u € [0,1], we can write
fw)=c+yp) =c— t(—lnu)%, gw)=c+eow) =c+v(- lnu)%, (24)

Functions f, g are square-integrable, so the ordered pair (f, g) belongs to the
Cartesian product L2(0,1) X L2(0,1). The scalar product in the space L?(0,1) is given
by the formula

(f.9) = [ fF(w) gwydu. (25)

Example 1. Figure 1(a) depicts functions ¥ (z) and ®(z) as defined in (19) and (20),
while Figure 1(b) shows their inverse counterparts (21) and (22), respectively.

1 01

(@) | b

Figure 1. Exponential functions W(z), ®(z) and the inverse functions Y1), @1 (w) for ¢ = 0.0,
7 =0.08,v = 0.09.

Source: Developed by the authors.

It is commonly known that a set of vectors {P;} in L%(0,1) is called an orthonormal
set if equalities (P;, Py) = O for j # k and (P;, P;) = 1 are true.
For any orthonormal set {P;} and f, g € L?(0,1) the following relations hold

f=252dP )P, g = X52.(P;, 9)P;. (26)
Denoting a; = (P}, f) and 8; = (P;, g), expressions (26) can also be written as
f@) =X7Z0a Pi(w), g) = X70B;PwW). (27)

Let AM be a pair of functions (f ™), g™), where f™, g™ for N € N are some
orthonormal expansions of inverse exponential functions (24), i.e.

f®wW =Y B,  g™Mw =X 8P W, (28)
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where {P]} is a set of the Legendre polynomials and «;, ; are some coefficients of the
orthonormal expansion (see Appendix for more details).
Example 2. Let us consider functions f(u), g(u) as depicted in Figure 1(b). Their

approximations for N = 3 are plotted in Figure 2.
0,1 -

0,2
Figure 2. Functions f(u) = ¢ —t(-In u)%, gw) =c+v(-In u)% (solid lines) and their
approximations f(S)(u) = Z?:o a;P;, g(S)(u) = 213-:0 B;P; (dashed lines).
Source: developed by the authors

Further, we will treat the pairs of functions (f, g) or (f ), g(N)) given in (24),
(28), respectively, in terms of the complex analysis. They will be called complex-valued
fuzzy numbers.

Let the addition, the subtraction and the multiplication of two complex-valued
fuzzy numbers A = (fy, g4), B = (f5, gp) be defined as

ADB = (fa+ fz, ga+9s) (29)
AOB=(fs—f5: 94— 9B): (30)
AQ®B = (fafg — 9a9sr fads + gafs), (31)

while the multiplication of A = (f}, g4) by ascalard € R as

dOA=(d"fa d-ga). (32)
3.2. The CNMM model formulation
We propose the Complex-Number Mortality Model (CNMM) of the form

Yy =AM @ k" (33)

xt

where x =0,1,...,X,t = 1,2,...,T are age and time indices, respectively, Yx(év) =

(f w) g}(,:’t)) are complex-valued fuzzy numbers representing fuzzified log-central

Yyt
ottty s, and 4 = (19, 620), K = (50, 6 ne some comples



38 A. Szymatiski ,A. Rossa: The Complex-Number Mortality Model ...

valued fuzzy numbers with functions A(’I:’), ggIZ), K(:?, g,((lzg and fygy), gg:’t) being

orthonormal expansions (28) of the following functions

fa, (W) = ay — 14 (—In u)%, ga, (W) = ay +v, (—In u)%, (34)
fiiee W) = byke — Tp 0 (—In wy?, Ik, (W) = byk; + v @ (—In w?, (35)

1 1
fot () = Yxt — €xt (=Inu)z, 9Yy: W) = Yxt T Uxt(_ln u)z, (36)

Coefficients ay, by, k¢, Ta ,Va, T, Ve, W, @ in (34)-(36) constitute a set of
unknown parameters, y,; = Inm,, are log-central death rates, and e,;, v, represent
fuzziness of log-central mortality rates evaluated at the fuzzification stage (see
Subsection 3.4).

Let us express the model in terms of complex analysis using an algebraic
representation, i.e.

V) =fy +igns, AL =L +ign) Ky = fo) + g, (37)
where i = V—1isan imaginary unit.
Then, taking into account (28) we can write
AL = B P+ 180 By By = Eioo( + 18P, (39)
Kt = 2o exs Py + i 80 e By = Z)ooCley + EAex)Bye (39)
Thus, the right-hand side of (33) can be expressed as
AL @ K = To[(@ + 1)) + 1B + )] P (40)
By analogy, the left-hand side of (33) can be written in the form
Yx(év) = ij=o Exej P+ iZ?’:o Oxej P = Zy=o(5xtj +i0x)P.  (41)

Coefficients @y, Nyt j) Pxj» Aexj a0 €x¢j, Ox¢j in expansions (40), (41), respectively,
correspond to parameters ay, by, k¢, Ta , Va, Tp,, Vp,, W¢, @ Via relations (42), (43).
For j = 0 we have

Axo = Ax — Ty, Co» Bxo = Qx + Va,Co,
Nexo = byky — Tp,wiCo,  Aixo = byky + vp @ico, (42)
Exto = Yxt — ©€xtCo Oxto = Yxt + UxtCo

and for j = 1,2, ..., N there is
Uxj = ~TayCjy Bxj = VaxSp»
Nxtj = —Tp, WG, Axtj = VB, @WCj, (43)
€xtj = —€xtCj, gxtj = UxCj)

where ¢; are some known constants (see Appendix for more details).
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For j=0,1,23 we get ¢o = g'ﬁ = 1/371(

I

3.3. Estimation of the model parameters

1
V2 2

To estimate parameters of the CNMM model we apply the metric in the Hilbert
space L,(0,1) between the left and right-hand sides of (33), i.e. between Yx(év ) and

A;N) D K,EItV). The estimation problem requires minimizing functional F®™) in the
Hilbert space L,(0,1) of the form

2
FM =3X 3T, .

rP e e x| (44)
Thus, Yx(év ) ) (AECN) (4>) K,gltv)) can be expressed as
o (Al e k) =
= Z?’:o[fxtj - (ax]- + 77xtj) + i(extj - (ﬁx} + Axtj))]Pj- (45)
After some rearrangements, we get
2

FO = 5% o3 [ © (4 @ k)| = Z¥oo Bl Zolexe) — (o +
Neey) + 1(Bne; — Boj + L D]P (46)

Using Pythagorean theorem for the Hilbert space of complex functions, i.e.
2 2
1250 @ Pil1" = Zizole] (47)
the criterion function F(") takes the form
. 2
F(N) = §:O ZZzl Z?:O'Extj - (axj + 77xtj) + l(extj - (ﬁx} + Axtj))l =

Z§=O Z{=1 Zy:o{[gxtj - (axj + nxtj)]z + [gxtj - (ﬁx} + Axtj)]z}- (48)

On the basis of relations (42) and (43), we have also
FM =3X, Z?:l[yxt —a, — bk + co(—ex + Tg, T Twat)]z +
x=0 ZZ:l[yxt — Ay — byke + co(Vye — Vo, — Vwat)]z +
DM Y, ZZ:l{(_ext + 174, + Twat)Z + Uy — Va, = Vwat)z}:

(49)
where D™ = ¥, 7.
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The criterion function F™) can also be written as
FW) = §c{=0 Z?=1 [Z(yxt —Qy — bxkt)2 + C(N)(ext = Ta, — TBx(Ut)Z +
cm (Uxt — Va, — Vwat)z = 200(Yxe — Ax — bxkt)(ext = Ta, — TBx‘Ut) +
200(Yxe — ay — bxkt)(vxt — Va4, — Vwat)]'
(50)
where CV) = ¢2 + DM,

To satisfy identifiability of the model, we impose constraints analogous to (3) as
well as some additional constraints, i.e.

Yimike=0, Xiobr=1,
Yiots, =1, XX ove, =1, (51)
ZZ:1 wy =C, Z{:1 w; =D,

where C,D > 0 are some fixed constants.

Moreover, we impose also boundary constraints of the form

ZZ=1 Vxt = ZZ:l(ax + bxkt): ch{:o Yxt = Z§=O(ax + bxkt)' (52)
Yio1exe = Z{=1(TAX + Twat)v Yx=0ext = ch(:o(TAx + Twat)' (53)
Yie1 VUt = ZZ:l(VAx + Vwat)' Yx=oUxt = ch{:o(VAx + Vwat) . (54)

It follows from requirements (51)—(54) that the following equalities hold
1

Ay = 7 ut=1Yxt> (55)
ke = 2%zoWae — @), (56)
T4, = %ZZ:l €xt — %TBX’ Va, = %Z{:l Uyt — ?VBX' (57)
we = Yxcolexe = 1a,), @ = Tioo(Var — Va,)- (58)

Partial derivatives of F) with respect to the remaining parameters b, and
Tp.,Vp. are of the form
X X

gr(N)

by — Xl k{4 — ax — beke) — 2¢o[(exe — Tay — Twat) -

(Uxt — Vg, — Vwat)]}' (59)
(N)

Zin = =230 0 [C™ (ex - Tay — TBxa’t) — Co(Vxe — ax — byeky)],  (60)

ar()

= =231 @ [CM) (vy — Va, — Vwat) + co(yxe — ax — byeky)]. (61)

6va
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Setting (59)—(61) equal to zero we receive

by = Y1 ke[2yxe—co(ext—Vxt—Tpwe+vE, @) (62)
231, k? ’
Tp = c™ Z’{=1 wt(ext_TAx)—Co Z{=1 wt(Yxr—ax—bykt) (63)
. O, o7 :

_ WYL @ (vxe—va,)+Co Tier @ (Vxe—ax—bxke)
B = COST '

The exact solution can be found using an iterative procedure. After choosing a set

(64)

of starting values for unknown parameters, expressions (57), (58) and (62)—(64) can be
computed sequentially using the most recent set of estimates.

It is worth noting that coefficients k;, by, g , Vp,, ¢, @, satisty conditions (51).
Indeed, we have

1
STy ke = By o Oee — ) = Zhey Teo Vi — Tieo Thea (501 vt ) =
t=123=0Yxt — Lx=0Li=1Yxt =0, (65)
and similarly, there is

X _ 1 X T T
Yix=0 1B, = 3T w? x:o[C(N) D=1 ‘Ut(ext - TAX) — Co =1 0t YVxe —

1
ay — bek)] = ST [CM YT, we X o(exe — Ta,) —

CoXte1 Wt YamoWxt — @x) + Co Xpeo by Xty wtkt]-
(66)

From (51), (56), (58) we have X3_oby =1, ZXoo(xe — @x) = ke, Eizo(exe —
‘L'Ax) = w;. Thus, we can write
i(:o Tp, = WE;IQ)? [C(N) ZZ:l (u? —Cp ZZ=1 weke + ¢ ZZ=1 We kt] =1. (67)
We also have
Z?:l Wy = ZZ:l Zf:o(ext - TAx) = ch(:o Z{:l(ext - TAx) = Z§=0 ZZ=1 Cxt —
T ¥ ¥=0Ta, = D=0 Dt=1Cxt — 2x=0 Li=1xt +CYx=0Tp, =C-1=C. (68)
Similar derivations refer to ¥.¥_ vp_and Y.{_; @,. Hence, there following equalities
hold
¥=0Tp, = Ya=oVp, =1 and ¥{_,w,=C, X[_;@ =D. (69)
There is also

X po—§X O ke[2yxe+co(ext—vxt—Tp,we+vp, @) _
x=0"x — Zx:o T 2 -
2%¢=1 ki

1
m [2 Z?=1 ke ch{:o(Yxt —a,) + ¢ Zf=1 ky ch{:o(ext - TAx) -

CoXt=1ke Zic(:o(vxt - VAx) —CoXte1 kt(wt Y=o Tp, — Wt Y=o VBX)]-

(70)
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Using relations (56), (58) and (51) we obtain

X 23T kEtco[Yie ke(wi—wm)-21_q ke(we—wp)]
x=0bx = 2T K2 =1. (71)

The special case. Let us assume that e,; = v, for x =0,2,...,X, t =1,2...,T,
then the criterion function (50) reduces to

2
FM =2 ch{:o ZZ=1 [(yxt —ay — bxkt)2 + C(N)(ext - Ta, — Twat) ] (72)
and formulas (62) and (63) defining parameters b, and 7p_simplify to the following

ones
Y kv
be = 73
ZT= we(ep—T
= Lol 2

where ¥X_ob, = 1, ¥%_, 7p, = L.

It follows from these derivations that the main parameters a,, by, k; have similar
interpretation as in the standard Lee-Carter model (see Section 1). The age-related
effects a, describe the age profile of mortality, time-related effects k; describe the
overall trend of mortality, and b, represent the mean change of log-central mortality
rate Y, in response to change of the time component k. However, the CNMM model
also has additional parameters t,_, 75, w; and v,_, vy , @, treated as fuzziness of the

X X X X
model parameters. They will be used to determine the fuzziness boundaries of mortality
forecasts.

3.4. Data fuzzification

There are several methods proposed to fuzzify the data. One of them is an approach
proposed by Koissi and Shapiro (2006) discussed in Subsection 2.1.

What we propose here is to consider a modified version of the Koissi-Shapiro
fuzzification method. Let the fuzziness parameters ey, and v,, satisfy the following
respective equations for each fixed x

€xt = Sox + S1xt, Uyt = Tox + T1xt, t=12,..T, (75)
where Sgy, S1x, Tox, T1x are found by solving the following optimization problem
minimize Y{_1(exe + V) = T (Sox + Tox) + (S1x +712) Xi=a t,  (76)
subject to the constraints

Ay + by ke + (Sox +S1t) =Inmy,, t=12,..,T, (77)

Ay + by ke — (o +1ixt) <lnmy,, t=1,2,...,T, (78)
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where a,, k;, b, are defined in (55), (56) and (73), and Sy, S1, = 0 as well as 1gy, 17, =
0 are the smallest values satisfying inequalities (77) and (78), respectively. Once, the
coefficients Sgy, S1x, Tox T1x are found, the fuzziness parameters e,; and v, can be
determined from equations (75).

3.5. Mortality prediction

To forecast log-central mortality rates, time component k; can be viewed,
analogously to the Lee-Carter approach, as a stochastic process. The estimated or
forecasted values ,; of log-central death rates y,, will be derived for from the
following formula

j}Xt = ax + bxkt: (79)
where a,, b, are time invariant, and k, is a time dependent component. For t > T, the
time component will be forecasted via a time series model of the form

ky =6+ kiq + ¢, (80)
with 6 and {;’s denoting, respectively, a drift and independent and identically
distributed Gaussian random terms.

Similar approach applies to parameters ey, Uy, expressing fuzziness of log-central
death rates. The estimated or forecasted values é,;,7,; will be derived from the
following formulas

bxe = Ta, + 75,04, Uyt = Vg, +Vp, @, (81)
where 17, ,Tg ,V, , Vg are time invariant, while w,, @, are time dependent model
X X X X
parameters. Thus, for t > T, both w, and @, will be forecasted using the following time
series models

wr=pt+we1+¢, @W=y+weq+E, (82)
with u,y denoting some drifts and ¢;,&; denoting independent and identically
distributed Gaussian random terms.

The ML estimates &, [, 7 of parameters &, i1, y are as follows

(83)

3.6. The case study

To illustrate theoretical discussions presented in this section, the estimates of
Ay, by, ky and Ta,) Tg Wiy Va,, Vp,, Wy Were estimated using the real mortality data.
Next, the ex-post forecasts from the model (33) were derived and the prediction
accuracy with results yielded by the Lee-Carter model compared.
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The analysis was based on the central death rates in Poland from the years 1965-
2019. For computational reasons, age-specific death rates multiplied by 1000 were used.
The necessary data were sourced from the Human Mortality Database
(www.mortality.org), separately for males and females. The 2014-2019 death rates

served the purpose of evaluating predicted rates and were not used in the estimation.
Estimates of the parameters were obtained using scaled central death rates for males
and females recorded in the years 1965-2013. To ensure the clarity of data presentation,
estimates of a,, by, k;’s vs. x or t are plotted in the separate Figures 3-5.

6 -
4 -
2 |
0
03 ZQ__," 40 60 80 100
Rl age x
o hie males ====- females

Figure 3. Estimates of parameters a,,, x = 0,1,2, ..., X (Poland, males and females)

Source: Developed by the authors.

Curves illustrated in Figure 3 show the average profiles of mortality for males and
females over the age range [0,100]. Both curves exhibit a typical “bath tube” shapes
with high values around the infant ages, followed by minimal rates at the childhood
ages, higher accidental mortality at young adulthood ages and increasing mortality at
adulthood and old ages with nearly constant rate of increase. The “accident hump” at
adolescence stands for higher mortality rates due to accidental deaths caused by
augmented risk-taking behaviour as well as increased suicide rates. Note that the more
demonstrable hump refers to the subpopulation of males.

The arrangement of curves in Figure 4 shows that log-central mortality rates for
males in young and old age groups are more sensitive to temporal changes in mortality
than analogous rates for females. The reverse relationship applies to other age groups.
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Figure 4. Estimates of parameters by, x = 0,1,2, ..., X (Poland, males and females)
Source: Developed by the authors.
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Figure 5. Estimates of parameters k;, t = 1,2, ..., T (Poland, males and females) and forecasts up to
2019

Source: Developed by the authors.

Figure 5 illustrates the trend of mortality both for males and females and forecasts
up to 2019. It can be seen that curves are generally decreasing, with the decline being
faster for women. However, the trend in mortality before 1991 shows a slight flattening,
apart from certain fluctuations, which can be explained by the health crisis of the 1970s
and 1980s in Poland.

Figures 6—11 exhibit both the real and estimated mortality rates for selected age
groups. Estimates of log-central death rates y,; were obtained for males and females by
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using formula (79). In this case, as before, the estimation period was 1965-2013 and the
period of ex-post forecasts spanned the years 2014—2019. Forecasts of k, after 2013
were determined from the model (80). Similar models (81), (82) were used to estimate
and forecast fuzziness parameters e,, U,; necessary to determine fuzziness boundaries
for mortality forecasts up to 2019.
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4,0 -
‘..... -7\
forecasts
3,0 1
Y
Ne
2,0 A Seao
\ -
\ W)
®  empirical log-central death rates (age x=0)=~<_ _ _ Y ..
1,0 - predicted log-central death rates (LC model) SS ¢
predicted log-central death rates (CNMM model) =~
----- boundaries of fuzziness (CNMM model) T e~a
0,0 T T T T T 1
1965 1974 1983 1992 2001 2010 2019

Figure 6. The real and predicted log-central death rates obtained with the LC and CNMM models
together with the fuzziness areas (Poland, males aged 0 years)

Source: Developed by the authors.
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Figure 7. The real and predicted log-central death rates obtained with the LC and CNMM models
together with the fuzziness boundaries (Poland, females aged 0 years)

Source: Developed by the authors.
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Figure 8. The real and predicted log-central death rates obtained with the LC and CNMM models
together with the fuzziness boundaries (Poland, males at the age of 30 years)

Source: Developed by the authors.
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Figure 9. The real and predicted log-central death rates obtained with the LC and CNMM models
together with the fuzziness boundaries (Poland, females at the age of 30 years)

Source: Developed by the authors.
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4,0 -

_’~o~’\_\,-—_\’\--—-‘~ ‘.‘b - fe
[ ] ( ] G~~~ orecasts
O .‘ 00.. °

3,0 ®e
Seao o (I I'Y
® empirical log-central death rates (age x=60) T~ —————
predicted log-central death rates (LC model)
predicted log-central death rates (CNMM model)
----- boundaries of fuzziness (CNMM model)
2,0 T T T T T 1
1965 1974 1983 1992 2001 2010 2019

Figure 10. The real and predicted log-central death rates obtained with the LC and CNMM models
together with the fuzziness boundaries (Poland, males at the age of 60 years)

Source: Developed by the authors.
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Figure 11. The real and predicted log-central death rates obtained with the LC and CNMM models
together with the fuzziness boundaries (Poland, females at the age of 60 years)

Source: Developed by the authors.
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The CNMM model as well as the LC model were then compared using ex-post mean
squared prediction error (MSE) based on the differences between real and estimated
log-central mortality rates, i.e.

1

MSE, = X+1

Zic(zo(yxt - )/}xt)z' t>T, (84)
where J,; are estimated log-central death rates obtained from the CNMM or LC model.

Table 1. Prediction accuracy of the LC model vs. the CNMM model in terms of the ex-post MSE
errors

Males Females
Year
LC CNMM LC CNMM
POLAND
2014 0.166 0.112 0.118 0.116
2015 0.152 0.107 0.111 0.105
2016 0.167 0.116 0.140 0.131
2017 0.174 0.124 0.126 0.125
2018 0.158 0.117 0.150 0.158
2019 0.171 0.129 0.134 0.142
NORWAY
2014 0.265 0.243 0.305 0.302
2015 0.297 0.273 0.272 0.234
2016 0.294 0.270 0.255 0.248
2017 0.302 0.269 0.340 0.328
2018 0.308 0.283 0.316 0.310
CHECHIA
2014 0.227 0.220 0.230 0.227
2015 0.281 0.276 0.247 0.238
2016 0.253 0.247 0.235 0.222
2017 0.245 0.242 0.265 0.251

Source: Developed by the authors.

Table 1 summarizes the results of comparisons between the LC and CNMM models
in terms of their prediction accuracy for Poland and for two selected European
countries. MSE errors were assessed for those years for which the real mortality rates
were available.

On the basis of the results obtained, it can be noticed that the CNMM model
utilizing complex-valued fuzzy numbers provides comparable or smaller ex-post
forecast errors, in terms of the MSE measure, than the LC model.
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4. Concluding remarks

In the paper an algebraic approach to mortality modelling was introduced. For the
formal purposes, the concept of complex-valued fuzzy numbers was also discussed.

The popularity of the widely used Lee-Carter mortality model lies in its simplicity
and ease of interpretation. However, due to the uncertainty and imprecision of
empirical age-specific mortality rates, it seems justified to use a fuzzy mortality model
instead. In our approach, the log-central death rates were viewed as complex-valued
fuzzy numbers derived for each age-time cell. The parameters of fuzzified log-central
death rates were found in the data fuzzification stage, which was the first step of the
model estimation. Next, fuzzy log-central death rates were transformed into complex-
valued fuzzy numbers and modelled using the complex analysis.

What makes the CNMM model superior to the standard LC model is that the
proposed approach allows for determination of fuzziness boundaries for the mortality
trajectories. For the standard LC model, the confidence intervals for log-central
mortality rates can also be derived, but they reflect the error term in the random walk
model, ignoring the estimation errors of other parameters, so the confidence intervals
can only be derived for the prediction window.
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APPENDIX

A.1. The orthogonal expansion

Two vectors ¢,y € L?>(0,1) are called orthogonal (¢ L ¥) if (p,3) =0 and
parallel if one is multiple of the other. If ¢ and y are orthogonal (¢ L ), then the
Pythagorean theorem is satisfied

@+ I2=Il @ 17+ ¥ II%.

A vector ¢ is called a unit vector if | ¢ [|= 1.
Suppose ¢ is a unit vector. Then, the projection of y in the direction of ¢ is given

by

Yy =<p,P>¢
and ¢, defined as

Y, =9Y—<@,yP>o0,
is orthogonal to ¢.
It is commonly known that a set of vectors {P;} in L?(0,1) is called an orthonormal set

if (P;, P) = 0 for j # k and (P}, P;) = 1.

A.2. The Legendre polynomials as the basis of the orthonormal expansion

Let us consider the set of orthonormal Legendre polynomials. The first four
polynomials take the form
P 0 (u) = 1,

Pr(w) = V3(2u 1),
P, = 2 13u- 17 - 1),

Py = g [52u—1)3-3Qu-1)],

and recursively

2 1)(2 3 2 3
Proa@) = YEEDCRED) gy - P 23

By putting j = n + 1 we have forn = 2,3, ...

j-D2j+1) i—1 [2j+1
P =Y - / (2u—1)P,-_1<u)—J]—. /zj.—_gp,-_z(u).

We will use the recursive formula to find the Legendre polynomials P, Ps

orthonormal on the interval [0, 1]. We get

P, = 2 [35(2u - 1)* - 30(2u — 1)* + 3],
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ﬁ

Ps = [63(2u — 1) —70(2u — 1)3 + 15Q2u — 1)].
For j = 3 thereis P; = g [5u —1)3 —3Qu—-1)].

Let us calculate the scalar products (Py, P3), (Py, P3), (P, P3).

For Po(u) = 1, Py = [5(2u — 1)* — 3(2u — 1)] there is

(Po, P5) =T[5 [} (2w~ 1)* du — 3 [} (2u — Ddu]| = 0.

11
8

7
2

IS

For P;(u) = V3Qu — 1), P; = = [5(2u — 1)® — 3(2u — 1)] we have

\/ﬁ[ 1 1 ]
Py, P;) =——|5 2u—1)* -3 2u — 1)%du]| = 0.
(b =[5 [ @u-Dt=3 ] u-nidu

For P, = §[3(2u -1%2-1],P; = g[S(Zu —1)3 = 3(2u — 1)] we get
35 1 ! !
(P,, P3) = g[ﬁj (Qu — 1)°du — 14-[ (Qu —1)%du + 3_[ Qu — 1)du] = 0.
0 0 0

Hence, it follows that Py L P;, P; L P;, P, L Ps.
Now, let us verify the normality of the element P; € L,(0,1), i.e. we will verify the
equality || P; I= 1. Note that PZ is equal to

Pz = %[S(Zu -1)3-3Qu-1]?
- %[25(211 — 1)6 = 30(2u — D]* +92u — 1)2].

The squared norm of the element P; € L,(0,1) is as follows

7 1 1 1
Il P II2= Z[zsf Qu—1)°du — 3of QQu— 1*du + 9f Qu — 1)2du]
0 0 0

_7(25 30+9>_1
T4\7 5 '3/ 7

Thus, P; € L,(0,1) belongs to the orthonormal system {Pf}jzo'

A.3. Orthonormal expansions of inverse triangular functions
Let us assume that f, g take the following forms
f@=a-s1-uw), g =a+sd-w), uelo1]

and let {P;} be an orthonormal set of Legendre polynomials in L?(0,1).
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First, we will find coefficients a;, §; for j = 0, 1. We have
1 ! s
ag = (Py, f) =J. fwdu = a—sf(l—u)du = a—z,
0
0

S
_I

1 1
.30=(Po.g)=f0f(u)du=a+sj(1—u)du=a+2
0

1
ay =(Py, f) = fo V3Qu — 1)[a — (1 — u)s]du Z;ﬁ'

! s
B =(P1,g) = fo V3Qu—1[a+ (1 —u)s]du = 35

Thus, we obtain

1

f(u)=f<1>(u)=;ajp, —a-S+s(u-g)=a-s-w,
1

g(u)=g(1)(u)=Z,8]-Pj=a+%+s(—u+%>=a+s(1—u).
=0

A 4. Orthonormal expansions of inverse exponential functions
Suppose that f, g are expressed as
f(w) =c—1(—In u)%, gw) =c+v(- lnu)%, u € [0,1]. (A1)
First, we will find coefficients a;, B; for j = 0,1,2,3. We have

a; = (P, f) = (P, c + ) = (P, c) +(P,y),

Bj = (P;, g) = (P, c + @) = (P;,c) + (P, ).
For scalar products (P;,y)and (P;, ) we need to calculate the integral
. 1
fol u’/ (—Inu)z du. After some basic calculations we obtain
1 ) p-
f w(—Inu)zdu = L3
0 2 +1):

For j = 0, we get Py(u) = 1 and
1

(Po,c) = (1,¢) =f cdu = c.
0
Thus,

1
ay = (P, f) = (L,c)+ (L, f) =c+f Y(u)du,
0

1
Bo =(Po,g) = (L,c)+ (1,9) = C+f pw)du.
0
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Hence, there is

1
ay=c— Tfol(—lnu)2 du,

ﬁo =c+ vfl(—ln u)%du.

Forj = 0, we havef (=In u)2du = \/_, and ag, B, can be reduced to

ay = fo fwdu =c— T% (A.2)
Bo = folg(u)du =c+ vg. (A.3)

Using the recursive formula, we can obtain next orthonormal expansion for j =
1,2,3,...

Let us take j = 1, then P;(u) = v3(2u — 1) and

(P;,c) =+3c fol(Zu —1du=+3(c—-c)=0.

We have also

1 1 1 .
(P, Y) = —rf Pi(—Inu)zdu = —T\/§f QCu—-1)(—Inwzdu
0

0

(P, @) = vf Pl(—lnu)%du = V\/§f (2u—1)(—lnu)%du
0 0
= v@(%—l).
Thus, we receive
=(P,f) = —r—(%— 1), (A4)
Br=(PLg) = v:T(L-1). (A5)
£

For j = 2, thereis P, = —[3(2u — 1)? — 1] and

az =Py, f) =(Py,c) + (P, ), Bz =(Ppg) =(Py¢)+ (P, 0),
(Py,c) = C_f BQu—1)% — 1du = 2¢V5 — 3¢V5 + 36\/_ C\2/§ _

(P, ) = —Tf P,(—1In u)z du = —1V57 (ﬁ _ % ;)

where

(P, @) =vj PZ(—lnu)Zdu— v\/_(\/_ 23_ ;)
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Hence,
3 1
a; = (P, f) = —1V5 <T—? 2)

B2 = (P2, 9) —v\/_(ﬁ_% ;)

Let us find coefficients a3 and [, i.e.
az =(Ps, f) =(P3,c) +(P3,9),

B3 =(P3,g) =(Ps,c) +(Ps, ).
We have Py = ¥ [5(2u — 1)* — 3(2u — 1)] and
1
(Ps,c) = cﬁf (52u — 1)® — 3(2u — 1))du = ﬂ(10 —20+12-2)=0,
5 15 3 3
(P3,ll)> = —‘L'f P3(—lnu)2 du = —T\/_(—T F—F 4)
5 15 3 3
(P3, @) :vf P3(—lnu)2du—v\/_7r( \/_ 4\/_ 4\/_ 4)

Hence,
(A.6)

=(Ps, f) :—T\/_( +?—?+ )
Bs=(Psg) = WIn (- S+ —T5+3). (A7)

Thus, orthonormal expansions of f(u) and g(u) defined in (A.1) are as follows
3 3

F=fOw =) ap, 9w =gOw =) fP
j=0

j=0
where
ayPy(u) =c—17ﬂ, BoPo(w) =c+vgﬁ,
P @ = -t (L-1)Qu-1), APW =vEE(L-1)@u-1),
5 3 1
a,P, (1) = —TT‘/E(E 5 2) [3(2u — 1)? — 1],
5 3 1
BaPy() = W(ﬁ o5 tg) B =D -1
7 5 15 3 3
azP;(u) = — \/E( \/_ 4\/_ 4\/_ 4) [5Qu—1)3-3Qu—-1)],
5 15 3 3
BsPs(u) = ﬁ( NERN R 4) [5(2u — 1)* — 3(2u — 1)].



