PL EN


2018 | 8 | 2 | 227-240
Article title

Sight, touch, hearing – the current digital options and challenges in access to math content for learners with visual impairments

Content
Title variants
PL
Sight, touch, hearing – the current options and challenges in access to math content for learners with visual impairments
Languages of publication
EN
Abstracts
PL
Matematyka, która ponownie stała się obowiązkowym przedmiotem podczas egzaminu dojrzałości jest zdawana między innymi przez uczniów z niepełnosprawnością wzroku. Naczelna Izba Kontroli w opracowaniu z 2012 roku stwierdziła, że 45% polskich szkół nie posiada odpowiednich pomocy edukacyjnych dla uczniów z niepełnosprawnościami. Stąd należało przyjrzeć się, czy dostępne są jakiekolwiek opcje pomocy dydaktycznych, z których mogą skorzystać nauczyciele i uczniowie. Co więcej, aby istniejące informatyczne pomoce dydaktyczne były skuteczne muszą one odpowiadać najefektywniejszej technice pracy ucznia. Dostępne rozwiązania zwykle składają się z różnych metod dostępu - od wzrokowej, słuchowej, po dotykową i wibrująco-dotykową. Autor także przedstawia zalety i wady tradycyjnych oraz informatycznych pomocy dydaktycznych oraz opinie nauczycieli odnośnie dostępnych rozwiązań do nauki matematyki.
EN
Mathematics as a mandatory subject for maturaexams needs to be taken by all high school students, including those with visual impairments. Naczelna Izba Kontroli (or Supreme Audit Office) reported in 2012 that 45% of Polish schools had inadequate learning material for learners with disabilities. It seemed prudent to investigate whether teachers and students have options to choose from. Furthermore the author implies that for any existing digital learning aids to be effective, the best format should be established. Available solutions usually have a combination of input and output methods ranging from visual, auditory to tactile or vibro-tactile systems. The author also discusses advantages and disadvantages of traditional versus digital learning aids and teachers' views of available accessible math instructional solutions.
Year
Volume
8
Issue
2
Pages
227-240
Physical description
Dates
published
2018-10-06
Contributors
References
  • Alajarmeh, N., & Pontelli, E. (2012). A nonvisual electronic workspace for learning algebra, in: K. Miesenberger et al (eds), ICCHP 2012, Part I (158 –165). Heidelberg, Germany: Springer.
  • Archambault, D., Caprotti, O., Ranta, A., & Saludes, J. (2012). Using GF in multimodal assistants for mathematics. Digitization computer-assisted learning facilities for children with visual impairment: Universal design for inclusive learning. Early Childhood Education Journal, 40, 295–303.
  • Audrey C. Rule, Greg P. Stefanich , Robert M. Boody & Belinda Peiffer (2011), Impact of Adaptive Materials on Teachers and their Students with Visual Impairments in Secondary Science and Mathematics Classes, International Journal of Science Education, 33:6, 865–887.
  • Awde, A., Bellik, Y., Tadj, C. (2008). Complexity of mathematical expressions in adaptive multimodal multimedia system ensuring access to mathematics for visually impaired users, International Journal of Computer and Information Science and Engineering 2 (2), 103–115.
  • Bateman, A., Zhao, O. K., Bajcsy, A. V., Jennings, M. C., Toth, B. N., Cohen, A. J., & ... Oliveira, M. A. (2018). A user-centered design and analysis of an electrostatic haptic touchscreen system for students with visual impairments. International Journal Of Human - Computer Studies, 109102–111.
  • Beck-Winchatz, B., & Riccobono, M. A. (2007). Advancing participation of blind students in science, technology, engineering, and math. Advances in Space Research, 42(11), 1855–1858.
  • Bennington, A. (2004). Science and pre-school children with special educational needs: Aspects of home-based teaching sessions. British Journal of Special Education, 31(4), 191–198.
  • Blattner, M. M., Sumikawa, D. A., & Greenberg, R. M. (1989). Earcons and icons: their structure and common design principles. Human-Computer Interaction, 4, 11–44.
  • Bouck, E. C., Joshi, G. S., Meyer, N., & Schleppenbach, D. (2013). Accessing algebra via MathSpeak: Understanding the potentials and pitfalls for students with visual impairments. Journal of Special Education Technology, 28(1), 49 –63.
  • Bouck, E. C., & Weng, P.-L. (2014a). Reading math: A comparison of reading and listening to algebraic problems. Journal of Special Education Technology, 29(4), 1–13.
  • Bouck E.C. & Weng, P.-L. (2014b) Hearing Math: Algebra Supported eText for Students With Visual Impairments, Assistive Technology, 26(3), 131–139
  • Bouck, C.; Weng, P.-L.; Rajiv, S. (2016). Digital versus Traditional: Secondary Students with Visual Impairments' Perceptions of a Digital Algebra Textbook. Journal of Visual Impairment & Blindness, 110(1): 41–52.
  • Brzostek-Pawłowska, J., Rubin, M., Mikułowski, D., and Terlikowski, G. (2016). Wirtualizacja pisemnej techniki obliczeń arytmetycznych dostępnej dla uczniów z dysfunkcją wzroku. Elektronika: Konstrukcje, Technologie, Zastosowania, 57(1), 33–39.
  • Cattaneo, Z., Vecchi, T., Cornoldi, C., Mammarella, I., Bonino, D., Ricciardi, E., & Pietrini, P. (2008). Imagery and spatial processes in blindness and visual impairment. Neuroscience and Biobehavioral Reviews, 32, 1346–1360.
  • Červenka, P., Hanousková, M., Másilko, L., Nečas, O. (2013). Tactile Graphics Production and its Principles. Brno: Masaryk University Teiresiás – Support Centre for Students with Special Needs.
  • Doush, I.A., Pontelli, E., Son, T.C., Simon, D., Ma, O. (2010). Multimodal presentation of two-dimensional charts: an investigation using open office XML and Microsoft Excel.
  • ACM Transactions on Accessible Computing 3(2).
  • Fraser & Maghuve. (2008). Teaching life sciences to blind and visually impaired learners. Journal of Biological Education. 42(2), p. 84-89.
  • Gardner, J. (2016). Making Scientific Graphics Accessible With Viewplus Iveo®. Accessed from https://viewplus.com/making-scientific-graphics-accessible-with-viewplus-iveo/ on 02.09. 2018.
  • Gardner, J. (2014). The LEAN Math Accessible MathML Editor. In K. Miesenberger et al. (Eds.): ICCHP 2014, Part I, LNCS 8547, pp. 580–587, 2014
  • Giudice, N.A., Palani, Brenner, H.P., Kramer, K.M. (2012). Learning non-visual graphical information using a touch-based vibro-audio interface. In: Proceedings of the 14th international ACM SIGACCESS conference on Computers and accessibility (ASSETS’12). NY, USA. ACM Press, p. 103.
  • Henderson, S. (2014). MiniMatecaVox: Math Teaching Application Aimed to Visually Impaired Children in Literacy Phase. Bibliotheca Digital da Unicamp.
  • Jones, M. G., & Broadwell, B. (2008). Visualization without vision: Students with visual impairment. In J. K. Gilbert, M. Reiner, & M. Nakhleh (Eds.), Visualization: Theory and practice in science education (pp. 283–294). New York: Springer.
  • Jones, M. G., Minogue, J., Oppewal, T., Cook, M. P., & Broadwell, B. (2006). Visualizing without vision at the microscale: Students with visual impairments explore cells with touch. Journal of Science Education and Technology, 15(5–6), 345–351.
  • Koenig, A. J., Holbrook, M. C., Texas School for the Blind and Visually Impaired, A., & Texas Tech Univ., L. E. (1995). Learning Media Assessment of Students with Visual Impairments: A Resource Guide for Teachers. 2nd Edition.
  • Landau, S., Russell, M., Gourgey, K., Erin, J. N., Cowan, J. (2003). Use of the talking tactile tablet in mathematics testing. Journal of Visual Impairment & Blindness, 97, 85–97.
  • Maćkowski, M. S., Brzoza, P. F., & Spinczyk, D. R. (2018). Tutoring math platform accessible for visually impaired people. Computers In Biology And Medicine, 95298–306.
  • Mendelová, E. & Lecký, P. (2008). Accessible Learning Resources for Blind Students. In: Niektoré technologické inovácie v špeciálnej pedagogike. Levoča: Matej Hrebenda Slovak Library for the Blind in Levoča, Volume 38, Number 7. ISSN 1335-6100. 54–65.
  • Nees, M. A., & Berry, L. F. (2013). Audio assistive technology and accommodations for students with visual impairments: Potentials and problems for delivering curricula and educational assessments. Performance Enhancement & Health, 2, 101–109.
  • Naczelna Izba Kontroli. (2012). Kształcenie Uczniów Z Niepełnosprawnościami O Specjalnych Potrzebach Edukacyjnych. KNO-4101-01-00/2012 Nr ewid. 173/2012/P/12/057/KNO.
  • Naczelna Izba Kontroli. (2018). NIK o kształceniu uczniów z niepełnosprawnościami. Pobrane z https://www.nik.gov.pl/aktualnosci/nik-o-ksztalceniu-uczniow-z-niepelnosprawnosciami-2017.html, 01.09.2018
  • Poppinga, B., Magnusson, C., Pielot, M., Rassmus-Grohn, K., 2011. TouchOver map: audio-tactile exploration of interactive maps. In: Proceedings of the 12th International Conference on Human Computer Interaction with Mobile Devices ACM. Stockholm, Sweden, 545–550.
  • Power, C., & Jurgensen, H. (2010). Accessible presentation of information for people with visual disabilities. Universal Access in the Information Society, 9, 97–119.
  • Regec, V. & Regec, M. (2014). Digital Barriers for Students with Visual Impairments at Universities in the Slovak Republic. In: Proceedings of INTCESS14 - International Conference on Education & Social Sciences. ISBN: 978-605-64453-0-9. 1450–1458.
  • Rubin, M., Faderewski, M., Mikułowski, D. (2015). Badania stanu i potrzeb informatyzacji edukacji matematycznej uczniów niewidomych i słabowidzących w Polsce. E-mentor, 1(58), 34 - 40.
  • Rye, J., Richards, A., Mauk, D., Waterworth, B., Poling, J. R., & Cool, T. (2007). Science as a moving experience for all learners. The Science Teacher, 74(9), 53–57.
  • Sahin, M., & Yorek, N. (2009). Teaching science to visually impaired students: A small-scale qualitative study. US-China Education Review, 6(4), 19–26.
  • Joe Tekli J., Youssef Bou Issa Y., Chbeir R. (2018). Evaluating touch-screen vibration modality for blind users to access simple shapes and graphics. International Journal of Human-Computer Studies 110, 115-133.
  • Tsonos, D., Kaccori, H., Kouroupetroglou, G. (2009). A design-for-all approach towards multimodal accessibility of mathematics, in: P.L. Emiliani, et al. (Eds.), Assistive Technology from Adapted Equipment to Inclusive Environments, in: Assistive Technology Research Series, vol. 25, IOS Press, Amsterdam, pp. 393–397.
  • Wiazowski J. (2009). Audible Books with Acoustic Illustrations, in Edyburn, Dave (ed.). Research and Practice. Journal of Special Education Technology. 24. 60-66.
  • Wiazowski, J. (2010). (In)accessible digital textbooks. Closing the Gap Journal. August/September. 29(3).
  • Wiazowski, J. (2015). Proces efektywnego doboru technologii wspierających edukację osób niewidomych i słabowidzących, in K. Czerwińska, M. Paplińska, M. Walkiewicz–Krutak (eds), Tyflopedagogika wobec współczesnej przestrzeni edukacyjno-rehabilitacyjnej, Warszawa 2015, p. 156–178.
  • Wiazowski, J. (2016). Using the WATI AT Assessment Process: Vision - Part I: Online training module. In Ohio Center for Autism and Low Incidence (OCALI), Assistive Technology Internet Modules, www.atinternetmodules.org. Columbus, OH: OCALI.
  • Wiazowski J. (2017). STEM po polsku – technologiczne możliwości kształcenia osób z niepełnosprawnością wzroku w zakresie przedmiotów ścisłych. SGGW: Warszawa.
  • Widgor D. (2011). Brave NUI World: Designing Natural User Interfaces for Touch and Gesture. Morgan Kaufman.
  • Wongkiaa, W., Naruedomkulb, K., Cercone, N. (2012). i-Math: Automatic math reader for Thai blind and visually impaired students. Computers and Mathematics with Applications 64 p. 2128–2140.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.ojs-doi-10_21697__fp_2018_2_16
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.