Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


2021 | 12 | 3 | 539-556

Article title

The use of the dynamic time warping (DTW) method to describe the COVID-19 dynamics in Poland

Content

Title variants

Languages of publication

Abstracts

EN
Research background: In recent times, the whole world has been severely affected by the COVID-19 pandemic. The influence of the epidemic on the society and the economy has caused a great deal of scientific interest. The development of the pandemic in many countries was analyzed using various models. However, the literature on the dissemination of COVID-19 lacks econometric analyzes of the development of this epidemic in Polish voivodeships. Purpose of the article: The aim of the study is to find similarities in time series for infected with and those who died of COVID-19 in Polish voivodeships using the method of dynamic time warping. Methods: The dynamic time warping method allows to calculate the distance between two time series of different lengths. This feature of the method is very important in our analysis because the coronavirus epidemic did not start in all voivodeships at the same time. The dynamic time warping also enables an adjustment of the timeline to find similar, but shifted, phases. Using this method, we jointly analyze the number of infected and deceased people in each province. In the next step, based on the measured similarity of the time series, the voivodeships are grouped hierarchically. Findings & value added: We use the dynamic time warping to identify groups of voivodeships affected by the epidemic to a different extent. The classification performed may be useful as it indicates patterns of the COVID-19 disease evolution in Polish voivodeships. The results obtained at the regional level will allow better prediction of future infections. Decision makers should formulate further recommendations for lockdowns at the local level, and in the long run, adjust the medical infrastructure in the regions accordingly. Policymakers in other countries can benefit from the findings by shaping their own regional policies accordingly.

Year

Volume

12

Issue

3

Pages

539-556

Physical description

Dates

published
2021

Contributors

  • Warsaw University of Life Sciences – SGGW

References

  • Aldridge, R. W., Lewer, D., Katikireddi, S. V., Mathur, R., Pathak, N., Burns, R., Fragaszy, E. B., Johnson, A. M., Devakumar, D., Abubakar, I., & Hayward, A. (2020). Black, Asian and minority ethnic groups in England are at increased risk of death from Covid-19: indirect standardisation of NHS mortality data. Wellcome Open Research, 5(88). doi: 10.12688/wellcomeopenres.15922.2.
  • Anastassopoulou, C., Russo, L., Tsakris, A., & Siettos, C. (2020). Data-based analysis, modelling and forecasting of the COVID-19 outbreak. PLOS ONE, 15:e0230405. doi: 10.1371/journal.pone.0230405.
  • Anderson, R. M., & May, R. M. (1992). Infectious diseases of humans: dynamics and control. Oxford: Oxford University Press. doi:10.1002/hep.1840150131.
  • Arici, T., Celebi, S., Aydin, A. S., & Temiz, T. T. (2013). Robust gesture recognition using feature pre-processing and weighted dynamic time warping. Multimedia Tools and Applications, 72, 3045?3062. doi: 10.1007/s11042-013-1591-9.
  • Bellman, R., & Kalaba, R. (1959). On adaptive control processes. IRE Transactions on Automatic Control, 4(2), 1?9. doi: 10.1109/TAC.1959.1104 847.
  • Benvenuto, D., Giovanetti, M., Vassallo, L., Angeletti, S., & Ciccozzi, M. (2020). Application of the ARIMA model on the COVID-2019 epidemic dataset. Data in Brief, 29, 105340. doi: 10.1016/j.dib.2020.105340.
  • Casella, F. (2021). Can the COVID-19 epidemic be controlled on the basis of daily test reports? IEEE Control Systems Letters, 5(3), 1079?1084. doi: 10.1109/LCS YS.2020.3009912.
  • Ceylan, Z. (2020). Estimation of COVID-19 prevalence in Italy, Spain, and France. Science of The Total Environment, 729, 138817. doi: 10.1016/j.scitotenv.2020. 138817.
  • Chu, J. (2021). A statistical analysis of the novel coronavirus (COVID-19) in Italy and Spain. PLoS ONE, 16(3): e0249037. doi: 10.1371/journal.pone.0249037.
  • Czech, K., Wielechowski, M., Kotyza, P., Benešová, I., & Laputková, A. (2020). Shaking stability: COVID-19 impact on the Visegrad Group countries? financial markets. Sustainability,12, 6282. doi: 10.3390/su12156282.
  • Giorgino, T. (2009). Computing and visualizing dynamic time warping alignments in R: the dtw package. Journal of Statistical Software, 31(7), 1?24. doi: 10.186 37/jss.v031.i07.
  • Jarynowski, A., Wójta-Kempa, M., & Krzowski, Ł. (2020a). An attempt to optimize human resources allocation based on spatial diversity of COVID-19 cases in Poland. medRxiv preprint. doi: 10.1101/2020.10.14.20090985.
  • Jarynowski, A., Wójta-Kempa, M., Płatek, D., & Czopek, K. (2020b). Attempt to understand public-health relevant social dimensions of COVID-19 outbreak in Poland. Society Register, 4(3), 7?44. doi: 10.14746/sr.2020.4.3.01.
  • Keogh, E., & Ratanamahatana, C. A. (2005). Exact indexing of dynamic time warping. Knowledge and Information Systems, 7, 358?386. doi: 10.1007/s1011 5-004-0154-9.
  • Kochanczyk, M., Grabowski, F., & Lipniacki, T. (2020). Dynamics of COVID-19 pandemic at constant and time-dependent contact rates. Mathematical Modelling of Natural Phenomena, 15(28). doi: 10.1051/mmnp/2020011.
  • Korzeb, Z., & Niedziółka, P. (2020). Resistance of commercial banks to the crisis caused by the COVID-19 pandemic: the case of Poland. Equilibrium. Quarterly Journal of Economics and Economic Policy, 15(2), 205?234. doi: 10.24136/eq. 2020.010.
  • Krywyk, J., Oettgen, W., Messier, M., Mulot, M., Ugon, A., & Toubiana, L. (2020). Dynamics of the COVID-19 pandemics: global pattern and between countries variations. medRxiv preprint. doi: 10.1101/2020.07.20.20155390.
  • Kufel, T. (2020). ARIMA-based forecasting of the dynamics of confirmed COVID-19 cases for selected European countries. Equilibrium. Quarterly Journal of Economics and Economic Policy, 15(2), 181?204. doi: 10.24136/eq. 2020.009.
  • Kumar, P., Kalita, H., Patairiya, S., Sharma, Y. D., Nanda, C., Rani, M., Rahmani, J., & Bhagavathula, A. S. (2020). Forecasting the dynamics of COVID-19 pandemic in top 15 countries in April 2020: ARIMA model with machine learning approach. medRxiv preprint. doi: 10.1101/2020. 03.30.20046227.
  • Landmesser, J. (2021). Analysis of COVID-19 dynamics in EU countries using the dynamic time warping method and ARIMA Models. In K. Jajuga, K. Najman, & M. Walesiak (Eds.). Data analysis and classification. Methods and applications. Springer International Publishing. 337?352. doi:10.1007/978-3-030-75190-6_19.
  • Lin, Q., Zhao, S., Gao, D., Lou, Y., Yang, S., Musa, S. S., Wang, M. H., Cai, Y., Wang, W., Yang, L., & He, D. (2020). A conceptual model for the coronavirus disease 2019 (COVID-19) outbreak in Wuhan, China with individual reaction and governmental action. International Journal of Infectious Diseases, 93, 211?216. doi: 10.1016/j.ijid.2020.02.058.
  • Müller, M. (2007). Information retrieval for music and motion. Springer-Verlag Berlin Heidelberg. doi: 10.1007/978-3-540-74048-3.
  • Orzechowska, M., & Bednarek, A. K. (2020). Forecasting COVID-19 pandemic in Poland according to government regulations and people behavior. medRxiv preprint. doi: 10.1101/2020.05.26.20112458.
  • Pardal, P., Dias, R., Šuleř, P., Teixeira, N., & Krulický, T. (2020). Integration in Central European capital markets in the context of the global COVID-19 pandemic. Equilibrium. Quarterly Journal of Economics and Economic Policy, 15(4), 627?650. doi: 10.24136/eq.2020.027.
  • Rabiner, L., Rosenberg, A., & Levinson, S. (1978). Considerations in dynamic time warping algorithms for discrete word recognition. IEEE Transactions Acoustic Speech Signal Process, 26(6), 575?582. doi: 10.1109/tassp.1978.116 3164.
  • Raciborski, F., Pinkas, J., Jankowski, M., Sierpiński, R. A., Zgliczyński, W. S., Szumowski, Ł., Rakocy, K., Wierzba, W., & Gujski, M. (2020). Dynamics of the coronavirus disease 2019 outbreak in Poland: an epidemiological analysis of the first 2 months of the epidemic. Polish Archives of Internal Medicine, 130(7-8), 615?621. doi: 10.20452/pamw.15430.
  • Rogalski, M. (2021). COVID-19 w Polsce. Retrieved from http://bit.ly/covid19-poland (15.01.2021).
  • Rojas, F., Valenzuela, O., & Rojas, I. (2020). Estimation of COVID-19 dynamics in the different states of the United States using time-series clustering. medRxiv preprint. doi: 10.1101/2020.06.29.20142364.
  • Roques, L., Klein, E. K., Papaix, J., Sar, A., & Soubeyrand, S. (2020). Using early data to estimate the actual infection fatality ratio from COVID-19 in France. Biology, 9(5), 97. doi: 10.3390/biology9050097.
  • Sakoe, H., & Chiba, S. (1978). Dynamic programming algorithm optimization for spoken word recognition. IEEE Transactions on Acoustics, Speech, and Signal Processing, 26(1), 43?49. doi: 10.1109/tassp.1978.1163055.
  • Sardá-Espinosa, A. (2019). Time-series clustering in R using the dtwclust package. R Journal, 11(1), 22?43. doi: 10.32614/RJ-2019-023.
  • Statista (2021). Coronavirus (COVID-19) in Poland. Retrieved from https://www.statista.com/study/71486/coronavirus-covid-19-in-poland/ (15.01.2021).
  • Stübinger, J. (2019). Statistical arbitrage with optimal causal paths on high-frequency data of the S&P 500. Quantitative Finance, 19, 921?935. doi: 10.10 80/14697688.2018.1537503.
  • Stübinger, J., & Schneider, L. (2020). Epidemiology of coronavirus COVID-19: forecasting the future incidence in different countries. Healthcare, 8(2), 99. doi: 10.3390/healthcare8020099.
  • Svabova, L., Tesarova, E. N., Durica, M., & Strakova, L. (2021). Evaluation of the impacts of the COVID-19 pandemic on the development of the unemployment rate in Slovakia: counterfactual before-after comparison. Equilibrium. Quarterly Journal of Economics and Economic Policy, 16(2), 261?284. doi: 10.24136/eq.2021.010.
  • Wielechowski, M., Czech, K., & Grzęda, Ł. (2020). Decline in mobility: public transport in Poland in the time of the COVID-19 pandemic. Economies, 8(4), 78. doi: 10.3390/economies8040078.
  • Worldometer (2021). COVID-19 coronavirus pandemic. Retrieved from https://www.worldometers.info/coronavirus/ (30.01.2021).
  • Zinecker, M., Doubravský, K., Balcerzak, A. P., Pietrzak, M. B., & Dohnal, M. (2021). The Covid-19 disease and policy response to mitigate the economic impact in the EU: an exploratory study based on qualitative trend analysis. Technological and Economic Development of Economy, 27(3), 742?762. doi: 10.3846/tede.2021.14585.

Document Type

Publication order reference

Identifiers

Biblioteka Nauki
19233703

YADDA identifier

bwmeta1.element.ojs-doi-10_24136_oc_2021_018
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.