Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


2021 | 12 | 4 | 1063-1094

Article title

Demand forecasting: an alternative approach based on technical indicator Pbands

Content

Title variants

Languages of publication

Abstracts

EN
Research background: Demand forecasting helps companies to anticipate purchases and plan the delivery or production. In order to face this complex problem, many statistical methods, artificial intelligence-based methods, and hybrid methods are currently being developed. However, all these methods have similar problematic issues, including the complexity, long computing time, and the need for high computing performance of the IT infrastructure. Purpose of the article: This study aims to verify and evaluate the possibility of using Google Trends data for poetry book demand forecasting and compare the results of the application of the statistical methods, neural networks, and a hybrid model versus the alternative possibility of using technical analysis methods to achieve immediate and accessible forecasting. Specifically, it aims to verify the possibility of immediate demand forecasting based on an alternative approach using Pbands technical indicator for poetry books in the European Quartet countries. Methods: The study performs the demand forecasting based on the technical analysis of the Google Trends data search in case of the keyword poetry in the European Quartet countries by several statistical methods, including the commonly used ETS statistical methods, ARIMA method, ARFIMA method, BATS method based on the combination of the Cox-Box transformation model and ARMA, artificial neural networks, the Theta model, a hybrid model, and an alternative approach of forecasting using Pbands indicator.  The study uses MAPE and RMSE approaches to measure the accuracy. Findings & value added: Although most currently available demand prediction models are either slow or complex, the entrepreneurial practice requires fast, simple, and accurate ones. The study results show that the alternative Pbands approach is easily applicable and can predict short-term demand changes. Due to its simplicity, the Pbands method is suitable and convenient to monitor short-term data describing the demand. Demand prediction methods based on technical indicators represent a new approach for demand forecasting. The application of these technical indicators could be a further forecasting models research direction. The future of theoretical research in forecasting should be devoted mainly to simplifying and speeding up. Creating an automated model based on primary data parameters and easily interpretable results is a challenge for further research.

Year

Volume

12

Issue

4

Pages

1063-1094

Physical description

Dates

published
2021

Contributors

  • VŠB – Technical University of Ostrava
  • University of Entrepreneurship and Law in Ostrava

References

  • Altin, F. G., & Celik, E. (2020). Monthly container demand forecast for port of antalya using gray prediction and Box-Jenkins methods. Journal of Mehmet Akif Ersoy University Economics and Administrative Sciences Faculty, 7(3), 540? 562. doi: 10.30798/makuiibf.689532.
  • Assimakopoulos, V. N. (2000). The Theta model: a decomposition approach to forecasting. International Journal of Forecasting, 16(4), 520?530. doi: 10.1016 /S0169-2070(00)00066-2.
  • Babai, M. Z., Tsadiras, A., & Papadopoulos, C. (2020). On the empirical performance of some new neural network methods for forecasting intermittent demand. IMA Journal of Management Mathematics, 31(3), 281?305. doi: 10.10 93/imaman/dpaa003.
  • Bokelmann, B., & Lessmann, S. (2019). Spurious patterns in Google Trends data - an analysis of the effects on. Tourism Management, 75, 1?12. doi: 10.1016/j.to urman.2019.04.015.
  • Brown, R. G. (1959). Statistical forecasting for inventory control. New York: McGraw-Hill.
  • Bruzda, J. (2020). Demand forecasting under fill rate constraints?the case of re-order points. International Journal of Forecasting, 36, 1342?1361. doi: 10.101 6/j.ijforecast.2020.01.007.
  • Cerqueira, V., Torgo, L., & Soares, C. (2019). Machine learning vs statistical methods for time series forecasting: size matters. ArXiv, abs/1909.13316. Machine Learning. Retrieved from arXiv:1909.13316.
  • Civelek, M., Ključnikov, A., Fialova, V., Folvarčná, A., & Stoch, M. (2021). How innovativeness of family-owned SMEs differ depending on their characteris-tics? Equilibrium. Quarterly Journal of Economics and Economic Policy, 16(2), 413?428. doi: 10.24136/eq.2021.015.
  • De Livera,A., Hyndman, R. J., & Snydera, R. D. (2011). Forecasting time series with complex seasonal patterns using exponential smoothing. Journal of the American Statistical Association, 106(496), 1513?1527. doi: 10.1198/jasa.201 1.tm09771.
  • Gabor, M., & Dorgo, L. (2017). Neural networks versus box-jenkins method for turnover forecasting: a case study on the romanian organisation. Transformations in Business & Economics, 16(1), 187?210.
  • Haykin, S. (1994). Neural networks: a comprehensive foundation. New York: Macmillan College Publishing Company.
  • Holt, C. C. (1957). Forecasting seasonals and trends byexponentially weighted moving averages. In ONR memorandum, 52. Pittsburgh: Carnegie Institute of Technology.
  • Hyndman, R., Athanasopoulos, G., Bergmeir, C., Caceres, G., Chhay, L., O'Hara-Wild, M., Petropoulos, F., Razbash, S., Wang, E., Yasmeen, F., R Core Team, Ihaka, R., Reid, D., Shaub, D., Tang, Y., Zhou, Z. (2021). Forecast: forecasting functions for time series and linear models. Retrieved from https://CRAN.R-project.org/package=forecast.
  • Hyndman, R., & Fan, S. (2010). Density forecasting for long-term peak electricity demand. IEEE Transactions on Power Systems, 25(2), 1142?1153. doi: 10.110 9/TPWRS.2009.2036017.
  • Hyndman, R., & Khandakar, Y. (2008). Automatic time series forecasting: the forecast package for R. Journal of Statistical Software, 27(3), 1?22. doi: 10.186 37/jss.v027.i03.
  • Hyndman, R., & Koehler, A. (2006). Another look at measures of forecast accuracy. International Journal of Forecasting, 22(4), 679?688. doi: 10.1016/j. ijforecast.2006.03.001.
  • Choi S. B., & Ahn I. (2020). Forecasting seasonal influenza-like illness in South Korea after 2 and 30 weeks using Google Trends and influenza data from Argentina. PLoS ONE, 15(7), e0233855. doi: 10.1371/journal.pone.0233855.
  • Janurová, K., Litschmannova, M., Skopal, R., Kuranová, P., & Beloch, M. (2016). Supporting freeware for statistical lectures - RKward. In 10th international days of statistics and economics. Prague: Melandrium, 711?722.
  • Karadzic, V. P., & Pejovic, B. (2020). Tourism demand forecasting using ARIMA model. Transformations in Business & Economics, 19(2), 731?745.
  • Khan, M. A., Yasir, M., & Khan, M. A. (2021). Factors affecting customer loyalty in the services sector. Journal of Tourism and Services, 22(12), 184?197. doi: 10.29036/jots.v12i22.257.
  • Ključnikov, A., Civelek, M., Fialova, V., & Folvarčná, A. (2021). Organizational, local, and global innovativeness of family-owned SMEs depending on firm-individual level characteristics: evidence from the Czech Republic. Equilibrium. Quarterly Journal of Economics and Economic Policy, 16(1), 169?184. doi: 10.24136/eq.2021.006.
  • Kolková, A. (2016). Back - test of efficiency by combining technical indicators on the EUR/JPY. In Financial management of firms and financial institutions. 11th international scientific conference. Ostrava: VŠB - TU Ostrava, 391?399.
  • Kolková, A. (2018). Measuring the accuracy of quantitative prognostic methods and methods based on technical indicators in the field of tourism. Journal Acta Oeconomica Universitatis Selye, 7(1), 58?70.
  • Kolková, A. (2019). Aplication of artificial neural networks for forecasting in business. In 7th international conference on innovation management, entrepreneurship and sustainability (IMES). Praha: VŠE Praha, 359?368.
  • Kolková, A. (2020). The application of forecasting sales of services to increase business competitiveness. Journal of Competitiveness, 12(2), 90?105. doi: 10.7 441/joc.2020.02.06.
  • Kremer, M. S. (2016). The sum and its parts: judgmental hierarchical forecasting. Management Science, 62(9), 2457?2764. doi: 10.1287/mnsc.2015.2259.
  • Lin, H., & Lin, C. (2021). Establishing a combined forecasting model: a case study on the logistic demand of nanjing?s green tea industry in china. Technological and Economic Development of Economy, 27(1), 71?95. doi: 10.3846/tede.2020 .14008.
  • Machová, R., Korcsmáros, E., Esseová, M., & Marča R. (2021). Changing trends of shopping habits and tourism during the second wave of COVID-19 ? international comparison. Journal of Tourism and Services, 22(12), 131?149. doi: 10.29036/jots.v12i22.256.
  • Makridakis, S., Chatfield, C., Hibon, M., Lawrence, M., Mills, T., Ord, K., & Simmons, L. (1993). The M2-competition: a real-time judgmentally based forecasting study. International Journal of Forecasting, 9(1), 5?22. doi: 10.101 6/0169-2070(93)90044-N.
  • Makridakis, S., & Hibon, M. (1979). Accuracy of forecasting: an empirical investigation (with discussion). Journal of the Royala Statistical Society, 142, 97?145.
  • Makridakis, S., & Hibon, G. (2000). The M3-competition: results, conclusions and implications. International Journal of Forecasting, 16(4), 451?476. doi: 10.10 16/S0169-2070(00)00057-1.
  • Makridakis, S., Spiliotis, E., & Assimakopoulos, V. (2018). The M4 competition: results, findings, conclusion and way forward. International Journal of Forecasting, 34, 802?808. doi: 10.1016/j.ijforecast.2018.06.001.
  • Montero-Manso, P., Athanasopoulos, G., Hyndman, R. J., & Talagala, T. S. (2020). FFORMA: feature-based forecast model averaging. International Journal of Forecasting, 36(1), 86?92. doi: 10.1016/j.ijforecast.2019.02.011.
  • Navrátil, M., & Kolková, A. (2019). Decomposition and forecasting time series in business economy using prophet forecasting model. Central European Business Review, 8(4), 26?39. doi: 10.18267/j.cebr.221.
  • Nikolopoulos, K. (2003). Simplicity, inference and modelling: keeping it sophisti-catedly simple. International Journal of Forecasting, 19(2), 333?335. doi: 10.1016/S0169-2070(03)00018-9.
  • Nikolopoulos, K. (2021). We need to talk about intermittent demand forecasting. European Journal of Operational Research, 291 (2), 549?559. doi: 10.1016/j.ej or.2019.12.046.
  • Pai, P., Hong, L., & Lin, K. (2018). Using Internet search trends and historical trad-ing data for predicting stock markets by the least squares support vector regres-sion model. Computational Intelligence and Neuroscience, 1(15). doi: 10.1 155/2018/6305246.
  • Pedersen, T. L. (2020). Package 'ggplot2' (version 3.3.2). Retrieved from cloud.r-project.org: ggplot2.tidyverse.org,https://github.com/tidyverse/ggplot2.
  • Rajput, V. P. (2020). A novel protection scheme for solar photovoltaic generator connected networks using hybrid harmony search algorithm-bollinger bands approach. Energies, 13(10). doi: 10.3390/en13102439.
  • Roach, C., Hyndman, R., & Ben, T. S. (2021). Non-linear mixed-effects models for time series forecasting of smart meter demand. Journal of Forecasting. Advance online publicaton. doi: 10.1002/for.2750.
  • Rostami-Tabar, B., Babai, M. Z., Ali, M., & Boylan, J. E. (2019). The impact of temporal aggregation on supply chains with ARMA(1,1) demand processes. European Journal of Operational Research, 273(3), 920?932. doi: 10.1016/j.ej or.2018.09.010.
  • Shao, J., Liang, C., Liu, Y., Xu, J., & Zhao, S. (2021). Relief demand forecasting based on intuitionistic fuzzy case-based reasoning. Socio-Economic Planning Sciences, 74, 100932. doi:10.1016/j.seps.2020.100932.
  • Shaub, D. (2020). Fast and accurate yearly time series forecasting with forecast combinations. International Journal of Forecasting, 36(1), 116?120. doi: 10.10 16/j.ijforecast.2019.03.032.
  • Smyl, S. (2020). A hybrid method of exponential smoothing and recurrent neural networks for time series forecasting. International Journal of Forecasting, 36(1), 75?85. doi: 10.1016/j.ijforecast.2019.03.017.
  • Souza, R. F., Wanke, P., & Correa, H. (2021). Demand forecasting in the beauty industry using fuzzy inference systems. Journal of Modelling in Management, 15(4), 1389?1417. doi: 10.1108/JM2-03-2019-0050.
  • Syntetos, A., Babai, Z., Boylan, J., Kolassa, S., & Nikolopoulos, K. (2016). Supply chain forecasting: theory, practice, their gap and the future. European Journal of Operational Research, 252(1), 1?26. doi: 10.1016/j.ejor.2015.11.010.
  • Šimeček, P. (2019). Statistical vs. deep learning methods for time series forecasting. Retrieved from http://www.mlmu.cz/archiv/
  • Ulrich, J. (2020). Package TTR (version 0.24.2). Retrieved from https://CRAN.R-project.org/package=TTS.
  • Vosen, S., & Schmidt, T.(2011). Forecasting private consumption: survey-based indicators vs. Google trends. Journal of Forecasting, 30(6), 565?578. doi: 10.1002/for.1213.
  • Vergura, S. (2020). Bollinger bands based on exponential moving average for statistical monitoring of multi-array photovoltaic systems. Energies, 13(15). doi: 10.3390/en13153992.
  • Winters, P. R. (1960). Forecasting sales by exponentially weightedmoving averages. Management Science, 6(3), 324?342.
  • Zellner, A. (2001). Keep it sophisticatedly simple. In V. A. K. Zellner (Ed.) Simplicity, inference and modelling: keep it sophisticatedly simple. Cambridge: Cambridge University Press, 242?262.

Document Type

Publication order reference

Identifiers

Biblioteka Nauki
19233720

YADDA identifier

bwmeta1.element.ojs-doi-10_24136_oc_2021_035
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.