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Abstract

Research background: The contagious impact of the COVID-19 pandemic has heightened
financial market's volatility, nonlinearity, asymmetric and nonstationary dynamics. Hence, the
existing relationship among financial assets may have been altered. Moreover, the level of inves-
tor risk aversion and market opportunities could also alter in the pandemic. Predictably, investors
in the heat of the moment are concerned about minimizing losses. In order to determine the level
of hedge risks between implied volatilities in the COVID-19 pandemic through information flow,
it is required to take into account the increased vagueness of economic projections as well as the
increased uncertainty in asset values as a result of the pandemic.

Purpose of the article: The study aims to examine the transmission of information between the
VIX-implied volatility index for S&P 500 and fifteen other implied volatility indices in the
COVID-19 pandemic.

Methods: We relied on daily changes in the VIX and fifteen other implied volatility indices from
commodities, currencies, and stocks. The study employed the improved complete ensemble
empirical mode decomposition with adaptive noise which is in line with the heterogeneous expec-
tations of market participants to denoise the data and extract intrinsic mode functions (IMFs).
Subsequently, we clustered the IMFs based on common features into high, low, and medium
frequencies. The analysis was carried out using Rényi transfer entropy (RTE), which allowed for
the evaluation of both linear and non-linear, as well as varied distributions of the market dynam-
ics.

Findings & value added: Findings from the RTE revealed a bi-directional flow of negative
information amid the VIX and each of the volatility indices, particularly in the long term. We
found this behavior of the markets to be consistent at varying levels of investors' risk aversion.
The findings help investors with their portfolio strategies in the time of the pandemic, which has
resulted in fluctuating levels of risk aversion. Our findings characterize global financial markets
to be “non-linear heterogeneous evolutionary systems”. The results also lend support to the
emerging delayed volatility of market competitiveness and external shocks hypothesis.

Introduction

The adaptive market hypothesis has brought to light the time-varying dy-
namics in both market and investor behaviors. Lo (2004) asserts that in-
vestment strategies undergo cycles of profit and loss as markets evolve due
to their varying degrees of efficiency. As the business environment chang-
es, the size of market participants also alters and profit opportunities vary.
The level of market efficiency is thus consequent on how adaptive, innova-
tive, and competitive the market and market participants are (Lekhal & El
Oubani, 2020; Owusu Junior et al., 2021a). This implies that the risk and
reward preferences of market participants may not be universally constant,
but can be shaped by the experiences of the market participants themselves.
Further, it presupposes that the willingness of investors to innovate is key
to their survival in financial markets (Bulathsinhalage & Pathirawasam,
2017).

Innovations in investment strategies are arguably more important now
because investment opportunities that were probably apparent in the past
three decades may no longer exist. For instance, improvements in cross-
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border trade and investment flows among countries have resulted in high
levels of economic and financial integration. Most emerging and develop-
ing economies have institutionalized market-oriented policies (Khoury et
al., 2015), encouraging investments from developed economies. While
these occurrences have enhanced global financial market development with
positive repercussions on access to funding (see, Bui & Bui, 2020; Lim &
Kim, 2011; Law & Habibullah, 2009; Le et al., 2016), the correlations be-
tween various international financial markets might have likewise signifi-
cantly increased. As a result, the benefits of asset diversification that were
previously visible have decreased significantly (Badshah, 2018).

In fact, an understanding of the interrelationships between the assets
held in a portfolio is essential to modern portfolio theory. Their interde-
pendencies could alter, which would probably change the riskiness of the
portfolio. Since asset correlations may alter in times of crisis, portfolio
diversification strategies may not be effective in such periods (see, Gallega-
ti, 2012; Valaskova et al., 2021; Barson et al., 2022). This could be more
severe in the COVID-19 pandemic, which has possibly exacerbated finan-
cial risks due to increasing investor uncertainty and shocks to the interna-
tional flow of funds (Gunay, 2020). Consequently, a preponderance of in-
vestment literature from 2020 has arguably been devoted to searching safe-
haven assets for equity investors.

Predictably, investors could be more concerned about minimizing loss-
es. A characteristic of investors as advanced by the competitive market
hypothesis (CMH) of Owusu Junior ef al. (2021b) is their updated conflict-
ing risk and reward preferences that force a recalibration of portfolios to fit
their shifting risk appetites. This is because economic forecasts are now
vaguer and asset prices are more uncertain as a result of the pandemic. In-
vestors switch between markets and combine different instruments as
a result of this and anxiety.

Recently, financial markets have witnessed a proliferation of several
volatility indices. Given that the Chicago Board Options Exchange (CBOE)
Volatility Index (VIX), the widely used investor fear gauge, has a superior
informational content (see, Dimpfl & Peter, 2013; Chen & Huang, 2014;
Balcilar & Demirer, 2015), it is unclear whether futures on these indexes
offer genuine opportunities to hedge risks during the COVID-19 pandemic
or if they are essentially a highly correlated, information-overloading of the
VIX. The purpose of the current study is to investigate this phenomenon by
examining the information flows between the VIX and fifteen volatility
indices. We have assembled implied volatility indices comprising: CBOE
Euro Currency Volatility; CBOE Gold Volatility; CBOE NASDAQ 100
Volatility; CBOE Crude Oil Volatility; CBOE Russell 2000 Volatility;
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DAX New Volatility; DJIA Volatility; Dorsey Wright Developed Market
Momentum and Low Volatility; HSI Volatility; CAC 40 VIX; STOXX 50
Volatility VSTOXX; CBOE Vix Volatility_VVIX; CBOE Emerging Mar-
kets Etf Volitlity; CBOE Energy Sector Etf Volitlity; and CBOE OEX Im-
plied Volatility.

We use volatility indices rather than prices or returns series of domestic
or foreign assets because volatility transmissions clearly and quickly cap-
ture the dynamics of market integration (see Peng & Ng, 2012). Moreover,
we employ implied volatility indices rather than realized volatility because
the latter, which are extracted from price series, are historical in nature
(Dutta et al., 2017). Implied volatility measures uncertainty accurately
since they simultaneously incorporate past price data and investor predic-
tions for future price movements (Badshah et al., 2018; Boateng et al.,
2021). Implied volatility indices are also traded securities and hence can be
used for asset allocation and portfolio optimization.

Nevertheless, the variability in implied volatility series is more intense
than price series. Volatility indices also depict the asymmetric, abnormal,
and time-variant investor behavior (Badshah er al., 2018). This presents
issues of non-linearities and non-stationarities (Owusu Junior et al., 2021b).
Additionally, noise — a characteristic feature of financial market data — is
usually associated with volatility indices. To deal with such inherent com-
plexities in the dataset, we employ two main strategies. First, we apply the
improved complete ensemble empirical mode decomposition with adaptive
noise (ICEEMDAN) to denoise the data. Second, we employ the Rényi
Transfer Entropy (RTE) to assess the information flows between the VIX
and the fifteen implied volatility indices. The latter enables the study to
model financial time-series data with characteristics of non-linearities. RTE
assigns weights to the distribution and therefore distinguishes between tails
of the distribution which addresses tail dependence in the markets (see,
Bossman et al., 2022a; Bossman, 2021; Asafo-Adjei et al., 2021c). Unde-
niably, existing evidence divulges that volatility indices are tail-distributed
(see, Badshah er al., 2018; Badshah, 2018). Fat tails can be more noticeable
in the pandemic since there would have likely been significant increase in
investor risk aversion as a result of the shock and uncertainty.

Several studies have examined the interdependencies among global fi-
nancial markets. However, studies that examine implied volatility linkages
among global financial markets are rare. An attempt by Del Castillo Oliva-
res et al. (2018) that investigates implied volatility linkages with twenty-
nine volatility indices ignores asymmetric relationships between financial
markets. Furthermore, it has been well established in the literature that
noise in time series can sometimes be more evident than the effect of the
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signal, thereby confounding the outcomes (see, Dimpfl & Peter 2014). By
denoising the dataset, the study is the first to use a noise-assisted technique
to assess implied volatility transmissions across international financial
markets. The ICEEMDAN decomposition ensures that the results can also
be presented in accordance with the heterogeneous and adaptive nature of
financial markets and its participants. Second, applying Rényi transfer en-
tropy to the subject of market diversification offers a non-parametric, non-
linear, and asymmetric lens to the discourse. Since RTE is a form of causal-
ity (Owusu Junior et al., 2021b), the findings succor’s investors to hedge
risk by employing negative pairs in their portfolios.

In the next section, we present a brief literature review. Subsequently,
the methodology employed in the study is discussed. Afterwards, the re-
sults are disclosed and discussed. Finally, we conclude the study by high-
lighting practical, theoretical and policy implications.

Literature review

As explained earlier, the justification for examining the relationships
among markets with time-varying methodologies is amplified by the adap-
tive market and heterogeneous market hypotheses. The postulates of Lo
(2004) imply that financial markets and profit opportunities in financial
markets evolve. Due to shifting market conditions, adaptation, innovation,
competition, and mutation cause a decline and a rise in the intensity of
market efficiency. Further, Miiller et al. (1993) explained that financial
market participants also have heterogenous expectations which influence
the construction of their portfolios.

However, empirical discussions on VIX transmissions to other financial
markets have been explored with less attention to information flows and the
time-varying nature of markets. Sarwar (2019) investigated risk transmis-
sions between VIX and other volatility indices in emerging markets with
VARMAX-DCC-QGARCH model and found that VIX shocks contribute
to a large percentage of the prediction error of emerging markets’ volatility
shocks, but the reverse does not hold.

Similarly, Smales (2022) employed daily changes in G7 and BRIC im-
plied volatility indices over twenty years and documented that the VIX
plays a significant role in spreading fear across markets but changes in the
uncertainties in the global financial markets do not explain variations in the
U.S. market, accentuating the dominance of the U.S market in risk trans-
missions. Cheuathonghua et al. (2019) analyzed VIX transmissions on ac-
tivities of forty-two international markets during bearish market conditions.
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Their study found that VIX exhibit a stronger impact on returns in devel-
oped markets and accounts for a larger variation of volatility in emerging
markets. Tissaoui and Zaghdoudi (2021) also examined the dynamic con-
nectedness between the VIX and implied volatility indices from Euro-Asian
financial markets. Findings from the least square regression using the OLS
and spatial model showed that the VIX performs better than domestic risks
in explaining fear in European financial markets. This is not the case,
though, for Asian markets, where fluctuations in implied volatility indices
are caused more by realized volatility than by the VIX.

The empirical discussion of Del Castillo Olivares et al. (2018) is closely
related to our investigation. Using daily data from March 16, 2011, to May
27, 2015, they investigated the relationships among 29 volatility indexes
from markets for commodities, equities, currencies, and fixed income secu-
rities. They employed Pearson correlation, Spearman rank correlation,
Kendall's tau, principal component analysis, and independent component
analysis and documented that the VIX, a market-driven volatility element,
predominates in the connections. We build on this study by employing the
ICEEMDAN-based RTE to assess the information flows between the mar-
kets.

Due to the superiority of the RTE and the importance of decomposing
financial time-series data, a nascent body of literature has explored similar
techniques to examine the linkages among financial markets albeit they
have not considered the nature of information flows between the VIX and
other implied volatility indices. In the COVID-19 pandemic, for instance,
Bossman et al. (2022a) used the ICEEMDAN-based transfer entropy to
study the information flows between conventional and Islamic bonds and
discovered that there are time-varying investing possibilities between these
two types of bonds. By using the ICEEMDAN:-induced transfer entropy to
analyze the information flows from the COVID-19 pandemic to conven-
tional and Islamic stocks, Bossman (2021) determined that these markets
offer diversification opportunities at various time frames.

Similarly, Asafo-Adjei et al. (2022c) employed the CEEMDAN-
induced RTE and found that a bi-directional causality of information flow
between global commodities and uncertainty indices exists in the long term.
Further, the time-varying dynamics of the financial markets were amplified
as they reported that investors who delayed investment in these markets
during the pandemic were likely to minimize risks. Boateng et al. (2022b)
also employed the CEEMDAN-based RTE framework to quantiify infor-
mation flows among developed and emerging equity markets. In their find-
ings, they found a mixture of bi-directional and uni-directional flow of both
high- and low-risk information. More importantly, they also documented
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that profit opportunities among the emerging equities varied based on in-
vestors’ time horizons. However, little is known about information flows
among implied volatilities for global financial markets.

Research methods
Data sources and description

The study employs 16 daily implied volatility indices as shown in Table 1.
They include volatilities from different forms of financial assets, such as
currency, commodities, and conventional equities, in national, regional, or
global indexes. After removing the missing data, the daily data spans from
30" January 2020 to 18™ August 2021 yielding 1043 observations. The
recommended time frame is to reveal the dynamics of information flows
among volatility indices during the COVID-19 pandemic, which has dis-
torted the dynamics of most financial markets.

This is particularly important in times of crisis as correlations among as-
sets may break down to induce portfolio diversification strategies, but in
cases of increased correlations in longer periods precipitating the low im-
pact of the crises, it opens the floodgates for financial contagion, due to
lessened investor uncertainty and shocks to the transnational flow of funds
(Gunay, 2020). Conversely, the delayed impact of the pandemic on the
dynamics of the volatility indices may distort correlations among the indi-
ces in the long term to prompt either diversification or safe-haven benefits.
Insights from the dynamics of information flow among the volatility indi-
ces in the pandemic would determine the extent to which investors can seek
safe haven from other forms of conventional equities or hedge against sig-
nificant transmitters of shocks in times of crisis. The data used in support of
this study was gleaned from investing.com database. The data was executed
on daily returns as

lnTt = h’lPLL - lnPt_l (11)

where Inr; denotes the natural logarithmic returns, P; and P,_; are current
and previous volatility indices respectively.
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Improved Complete Ensemble Empirical Mode Decomposition with Adap-
tive Noise (I-CEEMDAN)

According to Ramsey and Lampart (1998), economists albeit not having
the tools then have long understood the relationship among finance and
economic to alter in degree and direction over time. The ability to decom-
pose financial time series and economic variables into all orthogonal time-
scale components have only be plausible in recent times. In addition, there
are tools which are now available to deal with the noise that frequently
characterizes short-term financial asset series. A noteworthy example is the
Improved Cemplete Ensemble Empirical Mode Decomposition with Adap-
tive Noise (I-CEEMDAN) which happens to be the most advanced for of
Empirical Mode Decompositions (EMDs) of Huang et al. (1998). The
EMD family have been argued to be superior due to their accuracy in re-
construction, effectiveness, reduced noise-to-signal ratio (SNR) in un-
steady-state signals (Huang et al., 1998; Colominas ef al., 2014). Colomi-
nas et al. (2014) notes that ICEEMDAN possesses the best of these quali-
ties as far as decomposition is concerned. However, it falls short counts of
contained residue noise which remains in the model and issue of spurious
mode (Li et al., 2020).

This study adapts the summary of the ICEEMDAN from Li et al. (2020)
as follows:

1. a white-noise 7, [w®] is appended to a signal x, which generates a new
series

x® =x+po(w®),i =1,2,..,N, (1)

where w®, Po, and N represents the i-th added white noise, SNR, and
several white noise appended. x represents changes in the implied volatility
indices.

2. local mean of x® is computed using EMD and the first residual is re-
trieved as specified below:

= (2) 2 MG0), ®

Based on this, first IMF ¢; = x — 1y can be obtained.
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3. Through a recursive process, obtain the k-th IMF ¢, = r,_1 — 1y, for
k = 2, where

Tk = (%) YoM (Tk—1 + pk—lTk(w(i))) (3)

Interested readers can find further information on the EMD family from
Wu and Huang (2009), Flandrin et al. (2004), Torres et al. (2011), and Li et
al. (2020).

Rényi transfer entropy

Before addressing the highlights of the Rényi transfer entropy (RTE), it
is essential to understand Shannon entropy. This is because RTE explains
the level of uncertainty on which transfer entropy (TE) is based (Behrendt
et al.,, 2019; Adam, 2020).We study a probability distribution p;- From
Hartley (1928), the mean information on of every symbol is provided as

H= Y, Plog, (Pi) bits, (4)

J
where the number of diverse symbols regarding the probabilities PJ is rep-
resented by n.
The Shannon entropy (SE) (Shannon, 1948) provides for a discrete ran-
dom variable (J) with probability distribution (P(j)), the mean number of

bits desirable for encoding independent draws at the maximum (Behrendt e?
al., 2019) can be presented as

Hy = = Y51 P(DlogP() &)

SE employs the notion of Kullback-Leibler distance (Kullback &
Leibler, 1951) to quantify the information flows between two-time series
variables within the Markov framework. For two discrete random variables,
I and J, the marginal probabilities of P(i) and P(j) and joint probability
P(i, ), with dynamic structures that resemble a stationary Markov process
of order k (Process I) and I (process J). According to the Markov proper-
ty, the likelihood of seeing I at time t + 1 in state i consequent on the k
prior observations i p(iz41li¢, ) lt—k+1) = P(¢x1lie -, ig—x)- To encode
t + 1, Given that the ex-ante k observations are known, the average number
of bits required may be expressed as follows:
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By (k) = = 2 Pics1, 10 l0gP (ieea|i) (©6)

where l = (i, ..., lt_g+1) (compatibly for process J). The information
flow from process J to process I under the Kullback-Leibler distance phe-
nomenon in the setting of two random variables is calculated by a quantifi-
cation of the departure from the generalized Markov property.

P (it+1|i£k)) =P (lt+1| (k),]t(l) ) The SE can thus be presented as

(lt+1|l(k)dtm)

T]—)I(k: l) = Z P(it+1J (k)J]tI))log (k) (7)
P(ics1]ic”)

where T)_,; quantifies the information flow from J to I. Alternatively, the
information flow from I to J can be deduced from T;_,;. Quantifying the
net transmission can reveal the dominant direction of the information
transmission between T;_,; and T;_, ;.

We now discuss about the Rényi Transfer Entropy (Rényi, 1970), which
follows from the SE. The RTE is dependent on a weighting factor ¢ that is
predicted to be

H = =log 3;P(j) (8)

with g > 0. For ¢ — 1, RTE equates SE. For 0 < g < 1, Consequently,
occurrences with low likelihood are given more weight, while for g > 1 the
weights benefit outcomes j with a higher original probability. Therefore,
RTE permits highlighting various distribution zones based on factor q
(Behrendt et al., 2019; Adam, 2020).

Applying the escort distribution (Beck & Schogl, 1995) @,(j) = %

J

with g > 0 to normalize the weighted distributions, the resultant RTE is
expressed as

104(9)9(i41i )

RTj—y (k1) = 72 Py, i, j)log
J—I t+1 t (k) (D
Zi,j@q( Ek)]gl)) ( |l J_]t )

)

The possibility that the RTE computation might provide adverse results
must be kept in mind at all times. Given this, removing some sort of igno-
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rance of | shows substantially greater uncertainty than when the record is
known of I only would present.

In small samples, the estimates using transfer entropies could be skewed
(Marschinski & Kantz, 2002). From this bias, which may be adjusted, the
effective transfer entropy might be calculated as

ETE;_,;(k, ) = T)—;(k, D) — Tyspusfriea—i (K, D, (10)

where Tignyrriea—i(k, 1) is a representation of the TE through a shuffled
version of the time series J; i.e, through an adjustment to a random selec-
tion of observations from the actual time series J to generate a new time
series, thereby destroying time series /. However, this does not ignore the
reliance between the statistical reliance between J and I. Tjspyfriea—i (K, D
nears zero with increasing sample size. Therefore, a nonzero value of
Tyshus flea—i (k, 1) is attributable to small samples.

To derive a bias-adjusted effective transfer entropy estimate, the small
sample bias estimator is subtracted from the estimated. It consists of recur-
rent shuffles as well as complete reproduction of the average of the transfer
entropy shuffled estimations.

Results
Preliminary statistics

The plot of the volatility indices and their fluctuations in the indices are
shown in Figure 1. As the values of the indices reached their maximum
with the start of the COVID-19 pandemic, it can be seen that investor panic
increased dramatically at that time. All indices exhibit this trend during the
pandemic's beginning. According to Gunay (2020), the pandemic's hazy
depiction of economic stability and the erratic movement of asset prices at
its outset led to significant adjustments in investors' portfolios to reflect
their new level of risk aversion. The financial markets suffered the most
losses during these times (Gunay, 2020). Therefore, it is not surprising that
investor anxiety reached new heights in those markets and in those periods.
The plot on the right-hand side shows evidence of volatility clusters,
a regular feature of log differenced prices.

According to Table 2, the mean of the volatility indexes is close to zero.
This is due to the fact that volatility changes have tail distribution and fat
tails. The data collected at the 95th percentile and 5th percentile of the dis-

709



Oeconomia Copernicana, 13(3), 699-743

tribution serve as proof of this. The implication is that the tails of the distri-
bution provide more insights into investors’ behavior in these markets. We
also record-high levels of dispersions daily as evidenced by the standard
deviation relative to the means. The changes in the other volatility indices,
aside from the Dorsey Wright Developed Market Volatility Index (VDM),
exhibits positive skewness and show excess kurtosis.

This shows that, with the exception of VDM, on average a positive
change in volatility indexes have taken place during the pandemic. The
movement of volatility indices are typically countercyclical in nature and
tend to rise during recessions while falling during periods of booms and
recessions (Badshah e al, 2018). On average, the positive change in the
volatility indices during the pandemic can be attributed to a rise in investor
risk aversion as a result of elevated fear and uncertainty in the pandemic.
Using the KPSS test, we are unable to disprove the null hypothesis that
there is no unit root. Finally, Tsay’s test for nonlinearity reveals a series of
linear and non-linear combinations in the variables used in the study. This
makes the RTE suitable due to its ability to account for linearities and non-
linearities simultaneously.

The correlation coefficients and variances in Table 3 show that IMF-1
dominates all frequencies. As a result, we see that as IMF levels increase
relative to the residual, the correlation-variance dominance decreases. Im-
plied volatility index spikes are almost certainly mostly driven by short-
term disturbances. The average period displays the respective IMFs' aver-
age frequencies (Adam et al., 2022).

The CMH assumes portfolio recalibration will be a characteristic feature
in the short term during the pandemic, meaning that there was a high num-
ber of peaks in such periods. Moreover, the heterogeneous market hypothe-
ses imply that investors have differing time horizons, this we reclassify as
intrinsic time (see, Owusu Junior et al., 2021b). We group IMF-1 to IMF-4
as high frequencies, IMF-5 to IMF-7 as medium frequencies, and IMF 7-9
as low frequencies in accordance with these hypotheses and on the basis of
shared characteristics of the IMFs obtained through I-CEEMDAN decom-
position. The residuals reflect the deterministic long-term trend and under-
lying behavior of volatility series. As a result, we define periods in the pan-
demic up to 25 days as high frequencies, and mean periods over 25 days
but less than 50 days as medium frequencies. Finally, low frequencies are
defined as mean periods longer than 50 days. This is consistent with the
empirical approach by Adam et al. (2022, Owusu Junior et al. (2021b),
Asafo-Adjei et al. (2022c), Asafo-Adjei et al. (2022b) and Bossman et al.
(2022a).
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After having clustered the IMFs into multiple frequencies, that is,
HFRQ, MFRQ, and LFRQ. Table 4 reports the respective descriptive statis-
tics. The correlations (both Pearson correlations Kendall tau-b show that
HFRQ clusters exhibit higher and more significant correlations with the
original dataset. Similarly, a higher percentage of variations in investors'
risk aversion occurred in average periods with high frequencies. In tandem,
these highlights that short-term dynamics dominate investor preferences in
these markets. This also motivates us to investigate whether investors can
find safe havens by hedging their positions in the medium-frequencies, low
frequencies, and the long term.

RTE framework

This section presents and discusses the results of RTE. The RTE frame-
work produces negative (high risk) and positive (low risk) values. Critical
levels between 1% and 10% are represented at the ends of the blue bars.
Thus, a black bar which is either in the positive or negative regions means
that there is no information flow. This suggests that any overlap at the
origin is negligible or not significant. The RTE estimates are shown in Ta-
ble 5, Table 6, Table 7, Table 8, Table 9 and Table 10. Their corresponding
figures are presented in Figure 2 and Figure 3.

The negative information flows represent significant high-risk infor-
mation flow. This means that when some ignorance is reduced by observ-
ing the changes in one variable (volatility index), a higher risk reveals itself
in the near future behavior of changes in the other variable (Behrendt ef al.,
2019; Jizba et al., 2012). Since transfer entropy is a form of causality (see,
Owusu Junior et al., 2021b), high-risk information flows present pertinent
opportunities for portfolio diversification with such assets (see, Bossman et
al., 2022b; Bossman, 2021; Asafo-Adjei et al., 2021c). Moreover, with
high risk come opportunities for high returns. Consequently, opportunities
for finding profit or minizing risks diminish with positive information
flows. Taking support from Ciner et al. (2010), who defined safe havens to
include assets that are uncorrelated in stressed markets, insignificant infor-
mation flows during the pandemic between markets mean low levels of
market integration (see, Nyakurukwa, 2021; Lahmiri & Bekiros, 2020) and
therefore can serve as safe-haven assets.

In periods dominated by high frequencies (IMF 1 — IMF 4), it can be
observed that there exists a bidirectional and unidirectional flow of both
significant high risk (negative) and significant low risk (positive) infor-
mation between VIX and the other volatility indices. This signifies that for
mean periods up to 25 days, opportunities for reducing risks with the vola-
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tility indices were apparent. Cumulatively, the HFQ summarizes the dy-
namic correlations between the VIX and each of the volatility indices.
Overall, the plot shows that the negative information dominates the trans-
missions between the markets, albeit, they are largely insignificant. The
results indicate that except for the Euro currency volatility index (EUVX),
investors could hedge risk in the very short term with the other volatility
indices. From the finding, the negative influence between the VIX and vol-
atility indices from the several markets including commodities and stocks
signifies that fluctuations in market volatilities alter the balance between
risk and return or the perception of investors about future returns, thereby
influencing portfolio choices.

At medium frequencies, it can also be observed that the risk and return
relationships among the volatility indices also alter. However, it can be
observed that the market opportunities reduce. This is evidenced by more
positive information flows among the markets. Particularly, we observe that
in the NASDAQ 100 (NVX), CAC 40 index (index for Paris stock market),
the emerging market volatility index (VXEM), Russel 2000 volatility index
(RVX), and volatility index for German stock market (VDAX). Similarly, it
is observed at low frequencies that the net information flow between CAC
40 index, energy sector volatility index (VXES), and Euro currency volatil-
ity index (EUVX) is positive and significant. This means that no opportuni-
ties for minimizing risk can emerge in any investment between VIX and
each of the aforementioned volatility indices.

The residuals represent the deterministic long-term trend. We observe
that there exists a bidirectional flow of negative information between each
of the indices and the VIX. It can also be observed that the information
flows from VIX to the other indices are stronger.

Further, we vary the tails of the distribution from the 50" quantile to
other quantiles (0.05, 0.3, 0.8, and 0.95). The lower tails (q = 5 and q =30)
represent low levels of investor risk aversion (Barson et al., 2022; Archer et
al., 2022). We find that opportunities for hedging risks during the pandemic
increase marginally in the short term (at high frequencies). Unlike the in-
formation flows that exist at the median quantile, investors can find safe
haven properties exist between the VIX and all the volatility indices in the
short term. In the medium term, however, the profit opportunities at the 30™
quantile are identical to those that exist at the 50" quantile. However, it can
be observed that only NASDAQ 100 (NVX) is not a safe haven for VIX at
the 5" quantile. At lower frequencies, the results also indicate that the net
information flow between each CAC 40 index and energy sector volatility
index (VXES) with VIX is significant and positive, therefore diminishing
any safe haven benefits. At the upper tails of the distribution (q = 0.8 and
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g= 0.95), the study reports that positive information flows among the mar-
kets increase substantially. This signifies that the benefits of hedging with
most of the volatility indices and the VIX reduces substantially at medium
frequencies and low frequencies. Consistently across all quantiles, it can
be observed that a bidirectional flow of negative information exists be-
tween each of the volatility indices and VIX at their residual.

Discussion

Findings from the study indicate that the dynamics of information flows
between VIX and the fifteen volatility indices are time-varying. This under-
scores the heterogeneous and adaptive nature of financial markets and mar-
ket participants as found by prior studies (Asafo-Adjei et al., 2021b; Boat-
eng et al., 2022a; Bossman et al., 2022b; Bossman, 2021; Asafo-Adjei et
al., 2022a; Agyei et al., 2022, etc.). It is increasingly obvious that opportu-
nities for profits and risk management varies across different time horizons
and depends on the levels of investor risk aversion. In the high frequencies,
we notice higher opportunities to hedge risks. However, this reduces mar-
ginally in the low and medium frequencies.

Due to the coronavirus pandemic, which increased uncertainties in the
prices of financial assets (Gunay, 2020) and accelerated the flight to safety
(Bossman et al., 2022b), financial markets may undergo mutation and ad-
aptations. Thus, opportunities for profits may evolve and investors may
also have to adapt to survive according to their varying risk appetites. This
is consistent with the adaptive market hypothesis of Lo (2004). Our finding
also divulges that short-term investors who seek to minimize losses with
volatility indices may completely shun the Euro currency index (EUVX).
However, slight opportunities for diversification, depending on an in-
vestor's risk appetite emerge in the medium frequencies and further dimin-
ishes at low frequencies. Thus, we document that market opportunities also
evolve based on investors’ horizons, consistent with the heterogeneous
market hypothesis of Miiller e al. (1993). Finally, the findings show that
opportunities for hedging with the volatility indices evolve not only accord-
ing to the heterogeneous targets/expectations of market participants but also
to the varying levels of investor risk aversion.

The findings reveal that opportunities for hedging with the volatility in-
dices minimize according to increasing levels of risk aversion. The amount
of information transmission between volatility indices likely changes as
markets continue to adjust and is compounded by investors' rational, if
irrational, search for competing risks and reward preferences. Financial
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asset price declines during a pandemic may have an impact on investors'
portfolio decisions by changing the trade-off between risk and return or
providing a glimpse into how the market may behave in the future. Accord-
ing to the CMH of Owusu Junior et al. (2021), this leads to a recalibration
of investor portfolios to reflect their revised competing risk and return pref-
erences.

In addition, our results divulge that regardless of the levels of investor
risk aversion, the volatility indices act as effective hedges in the long term.
While we expect the markets to be integrated into the long-term, this is not
startling given that the residuals are driven by fundamentals (Owusu Junior
et al., 2021). This presupposes that the volatility dynamics in those markets
will be driven by asset-specific factors.

Moreover, the finding lend support to the conclusion that hedging op-
portunities are non-linear over investors' time horizons. The conclusion is
premised on the evidence that investor opportunities with the given set of
volatility indices are higher in high frequencies and reduces in medium and
low frequencies but amplify in the long term. The intrinsic uncertainty in
economic fundamentals at the start of the pandemic increases noise (evi-
denced by high levels of variations and peak periods in the short term of the
pandemic, see Table 3). Therefore, transitory upward or downward price
movements that deviate from fundamentals may be prevalent, especially
when a significant enough percentage of traders believe in those bubbles.
Since herding behaviors are likely to be common in the pandemic (Espi-
nosa-Méndez & Arias, 2021), it is not surprising that the information flows
between VIX and the other volatility indices deviate from fundamentals in
high frequencies, low frequencies, and medium frequencies.

However, over time, investors continue to update their beliefs
(Hommes, 2001) and as countries minimize lockdown restrictions, and life
returns to normalcy, this drives down investor fear and risk aversion (see,
Figure 1 which shows declining risk aversion over time compared to the
start of the pandemic), and opportunities in the market and information
flow may mimic the deterministic long-term trend (driven by fundamentals
than irrational fear). This makes global financial markets “non-linear heter-
ogeneous evolutionary systems.”

Conclusions
We assessed the multi-frequency information flow between VIX and im-

plied volatility indices of other global financial markets. In line with the
heterogeneous nature of market participants, and to deal with noise that is
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inherent in volatility indices, we employed the ICEEMDAN-based decom-
position on a sample that spanned within the COVID-19 window. The mul-
tiple frequencies from the decomposed series were clustered into high, me-
dium, and low frequencies for IMFs 1-9 and the residual. To address prob-
lems of non-linearity, non-stationarity, and asymmetric relationships that
are apparent in financial time series data, the study adopted the Rényi trans-
fer entropy. We set q to 0.05, 0.3, 0.5, 0.8, and 0.95 to account for all
events, particularly tail events, and explain the dynamics of the markets
according to varying levels of investor risk aversion.

The properties of the IMFs reveal that changes in prices of the implied
volatility indices are dominated by short-lived fluctuations, evidenced by
the correlation coefficients and variations. This may be due to the initial
stages of the pandemic which increased the levels of investors' risk aver-
sion. At such levels of investor risk aversion (upper quantiles), we docu-
ment that the opportunities for diversification minimize, relative to the low-
er quantiles. The correlation coefficients and variations decline with in-
creasing IMFs and reduce substantially for the residuals. This supports the
assertion that markets and market participants undergo mutation and evolu-
tion, partly due to the experiences of the participants and conditions in the
business environment, and therefore, the degree of efficiency of the market
varies over time, consistent with the adaptive market hypothesis.

The study documents that in the long-term, there exists a bidirectional
flow of only low-risk information. In the residuals, we report that the dom-
inance of the VIX in transmitting negative information in the long term.
While this implies that elimination of some ignorance of historical changes
in the VIX presents high-risk in forecasting future changes in the other
volatility indices. With high risks and uncertainties emerge the possibility
of high return. As a consequence, investors may consider diversification
with the VIX and other volatility indices profitable. The negative infor-
mation flows are also indicative that these markets can act as a safe haven
to the VIX in times of the pandemic (see, Asafo-Adjei et al., 2022c; Boss-
man, 2021; Owusu Junior et al., 2021a). Therefore, the study recommends
that that the VIX can hedge effectively other market implied volatilities in
the long-term dynamics of the COVID-19 pandemic. This feature of the
deterministic long-term trend is not evident for the other frequencies (high,
medium, and low). We report a bidirectional flow of both high-risk and
low-risk information between the VIX and the volatility indices. This sug-
gests that investors must undertake active portfolio rebalancing to maxim-
ize their returns, consistent with their levels of risk aversion as profit oppor-
tunities are also minimized with increasing investor risk aversion.
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At varying levels of investor risk aversion, we document that the oppor-
tunities for diversification are higher in low frequencies, but reduce in me-
dium and high frequencies, and rise again in the long-term. This makes
global financial markets “non-linear heterogeneous evolutionary systems.”
In another vein, our findings signify that those investors who delayed their
investments in the volatility indices effectively managed risks in their port-
folios. This partly amplifies the delayed volatility of market competitive-
ness and external shocks (DVMCES) hypothesis espoused in the study of
Asafo-Adjei et al. (2022c¢).

Since correlations among markets can change, which may also alter the
nature of information flows among markets, future studies can conduct
a comparative assessment of the dynamics of the markets before the pan-
demic. Further, the dynamics of financial markets may also not be constant
over time, not only frequencies. Alternative studies can employ time-
frequency methodologies such as wavelet coherence to assess the phenom-
enon. This is because the current study only assesses the phenonomenon in
frequency domains. A further weakness of this study is that it only consid-
ers the bidirectional relationship between VIX and each of the other im-
plied volatility indices but does not probe beyond to examine how all of
these variables are integrated. Thus, it is possible that the relationships be-
tween two set of volatility indices could be driven by another third force,
which is not considered in this study. Consequently, these findings should
be assimilated with caution when applied in practice.
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Table 6. Entropy estimates of information flows between US Implied Volatility
(VIX) and other volatilities — q5

Flow Towards VIX - ¢5

Flow from VIX — ¢5

Volatility Indices —p e 5™ MFRQ LFRQ RESID HFRQ _MFRQ _LFRQ _RESID
EUVX 0.9 007 00l 033 007 000 00l -033
0.14) (015  (0.13)  (0.12)  (0.13) (0.10) (0.12) (0.11)
GVX 000 003 016 032 000 -027 -0.17 -0.33
©.15)  (0.09) (0.12) (0.12) (0.16) (0.01) (0.13) (0.11)
NVX 011 030 005 -033 -022 -010 -0.05 -0.32
0.14)  (0.09 (0.12) (0.1  (0.14) (0.10) (0.12) (0.12)
OVX 001 003 000  -0.1I8 -003 -0.12 000  -0.26
©.14) 008 (0.11) (0.17) (0.15 (.11 (©.I1) (.11
RVX 007 005 007 032 008 000  -0.03 -032
©.14)  (©.12) (©11) (0.11) (0.14) (0.09)  (0.10) (0.11)
VDAX 017 -008  -006 020 022 016  -0.06 -0.26
0.14)  (0.14) (0.1  (0.16)  (0.15 (0.10) (0.11) (0.11)
VDIIA 003 005 000  -0.19 -004 002 001  -0.25
©.15)  (0.10) (0.12) (0.17) (0.14) (0.10) (0.12) (0.12)
VDM 000 007 014 033 012 -008 -0.13 -0.33
©.13)  (0.10) (015 (0.11)  (0.13) (0.10) (0.12) (0.11)
VHSI 016 039 001 032  -017 019 -001 -032
©.14)  ©.13) (017 (0.11) (0.14) (0.10) (0.13) (0.12)
VIXCAC 029 016 024 032  -020 -0.00 -0.08 -0.33
0.15 (0.13)  (0.12) (0.1  (0.15 (0.09) (0.13) (0.11)
VSTOXX 012 028 000 032 -0.12 -028 006 -0.32
©.15) 001  (0.11) (0.11)  (0.14) (0.09  (0.12) (0.11)
VVIX 001 017 001 033 -009 -016 000 -0.33
©.15)  (0.08) (0.17) (0.12) (0.15 (0.10) (O.11) (0.11)
VXEM 007 019 008 -0.19  -0.03 000  -0.08 -0.24
0.13)  (0.12)  (0.12) (0.17)  (0.15 (0.09) (0.12) (0.12)
VXES 001 019 025 033 013 003  -0.06 -0.33
©.14)  ©11) (0.12) (0.11) (015 (.11 (©.13) (0.11)
VXOEX 009 019 007 019 0.1  -005 006 -0.27
015 (0100 (0.12)  (0.17)  (0.14)  (0.09)  (0.12) (0.12)

Note: RETE estimates with standard errors in parenthesis.

Source: own calculations based on data obtained from investing.com, R programming version 4.2.0.

Table 7. Entropy estimates of information flows between US Implied Volatility
(VIX) and other volatilities — q 30

Flow Towards VIX — ¢q30

Flow from VIX - q30

Volatility Indices

HFRQ MFRQ HFRQ MFRQ | HFRQ MFRQ HFRQ MFRQ
EUVX 0.11 2004 011 2004 | 011 2004 011 20.04
0.06) (0.03) (0.06) (0.03) | (0.06) (0.03) (0.06)  (0.03)
GVX 000  -0.00  -0.00 -0.00 |-000 -000 -000  -0.00
0.06) (0.03)  (0.06) (0.03) | (0.06) (0.03) (0.06)  (0.03)
NVX 006  0.16 006 016 |-006 016  -006 016
0.06)  (0.03)  (0.06) (0.03) | (0.06) (0.03)  (0.06)  (0.03)
ovVX 0.01 0.00 001 20.00 | 001 20.00 001 -0.00
0.06)  (0.03)  (0.06)  (0.03) | (0.06) _ (0.03) _ (0.06) _ (0.03)




Table 7. Continued

Volatility Indices Flow Towards VIX - q30 Flow from VIX - q30
HFRQ MFRQ HFRQ MFRQ | HFRQ MFRQ HFRQ MFRQ
RVX 0.00 0.07 0.00 0.07 0.00 0.07 0.00 0.07
(0.06) (0.04) (0.06) (0.04) (0.06) (0.04) (0.06) (0.04)
VDAX 0.00 -0.06 0.00 -0.06 0.00 -0.06 0.00 -0.06
(0.06) (0.04) (0.06) (0.04) (0.06) (0.04) (0.06) (0.04)
VDIJIA -0.05 0.04 -0.05 0.04 -0.05 0.04 -0.05 0.04
(0.06) (0.03) (0.06) (0.03) (0.06) (0.03) (0.06) (0.03)
VDM -0.025  -0.03 -0.025  -0.03 -0.025  -0.03 -0.025  -0.03
(0.05) (0.04) (0.05) (0.04) (0.05) (0.04) (0.05) (0.04)
VHSI -0.09 -0.15 -0.09 -0.15 -0.09 -0.15 -0.09 -0.15
(0.06) (0.04) (0.06) (0.04) (0.06) (0.04) (0.06) (0.04)
VIXCAC -0.14 0.13 -0.14 0.13 -0.14 0.13 -0.14 0.13
(0.06) (0.04) (0.06) (0.04) (0.06) (0.04) (0.06) (0.04)
VSTOXX -0.04 -0.08 -0.04 -0.08 -0.04 -0.08 -0.04 -0.08
(0.06) (0.04) (0.06) (0.04) (0.06) (0.04) (0.06) (0.04)
VVIX 0.00 -0.06 0.00 -0.06 0.00 -0.06 0.00 -0.06
(0.06) (0.04) (0.06) (0.04) (0.06) (0.04) (0.06) (0.04)
VXEM 0.03 0.12 0.03 0.12 0.03 0.12 0.03 0.12
(0.06) (0.04) (0.06) (0.04) (0.06) (0.04) (0.06) (0.04)
VXES 0.01 -0.11 0.01 -0.11 0.01 -0.11 0.01 -0.11
(0.06) (0.03) (0.06) (0.03) (0.06) (0.03) (0.06) (0.03)
VXOEX 0.03 -0.05 0.03 -0.05 0.03 -0.05 0.03 -0.05
(0.06) (0.04) (0.06) (0.04) (0.06) (0.04) (0.06) (0.04)

Note: RETE estimates with standard errors in parenthesis.

Source: own calculations based on data obtained from investing.com, R programming
version 4.2.0.

Table 8. Multi-frequency entropy estimates of information flows between US
Implied Volatility (VIX) and other volatilities — at q 50

Flows towards US Flows towards other
Implied Volatility q -50 volatilities — 50
HFQ MFQ LFQ HFQ MFQ LFQ
EUVX 0.14 -0.06 -0.04 0.08 0.01 0.04
(0.09) (0.08) (0.07) (0.09) (0.06) (0.07)
GVX 0.01 -0.01 -0.06 -0.01 -0.17 -0.08
(0.10) (0.06) (0.07) (0.10) (0.05) (0.07)
NVX -0.09 0.22 -0.01 -0.17 -0.09 -0.05
(0.09) (0.06) (0.07) (0.09) (0.06) (0.07)
OovVX 0.02 0.01 0.02 -0.01 -0.06 0.01
(0.10) (0.06) (0.07) (0.09) (0.06) (0.07)
RVX 0.03 0.05 -0.03 0.02 -0.04 -0.01
(0.09) (0.07) (0.04) (0.09) (0.06) (0.07)
VDAX 0.01 -0.08 -0.02 -0.14 0.13 -0.03
(0.10) (0.07) (0.08) (0.09) (0.06) (0.07)
VDIJIA -0.04 0.02 0.01 -0.05 -0.01 0.01
(0.09) (0.06) (0.06) (0.10) (0.06) (0.07)
VDM -0.01 -0.04 -0.07 -0.09 -0.04 -0.05

(0:09) (0.06) (0.07) (0.08) (0.05) (0.07)




Table 8. Continued

Flows towards US Flows towards other
Implied Volatility q -50 volatilities — 50
HFQ MFQ LFQ HFQ MFQ LFQ
VHSI -0.11 -0.27 0.01 -0.10 -0.12 0.01
(0.09) (0.07) (0.08) (0.09) (0.06) (0.07)
VIXCAC -0.21 0.15 0.19 -0.14 -0.05 -0.08
(0.10) (0.08) (0.06) (0.10) (0.05) (0.07)
VSTOXX -0.06 -0.17 0.02 -0.07 -0.18 -0.01
(0.11) (0.06) (0.08) (0.10) (0.06) (0.07)
VVIX 0.01 -0.12 0.03 -0.06 -0.11 -0.01
(0.09) (0.06) (0.08) (0.10) (0.06) (0.07)
VXEM 0.04 0.15 -0.05 -0.04 -0.03 -0.01
(0.09) (0.07) (0.07) (0.10) (0.07) (0.06)
VXES 0.02 -0.17 0.19 -0.05 0.02 -0.06
(0.10) (0.06) (0.07) (0.10) (0.06) (0.07)
VXOEX 0.04 -0.07 -0.03 -0.02 -0.01 -0.02
(0.09) (0.06) (0.07) (0.10) (0.06) (0.07)

Note: RETE estimates with standard errors in parenthesis.

Source: own calculations based on data obtained from investing.com, R programming

version 4.2.0.

Table 9. Multi-frequency entropy estimates of information flows between US
Implied Volatility (VIX) and other volatilities — at q 80

Flow Towards VIX - 80

Flow from VIX - 80

Volatility Indices —Hrp0™ MFRQ LFRQ RESID HFRQ MFRQ LFRQ _ RESID
EUVX 004 000 002 002 002 004 008  -0.02
(0.02) (0.01) (0.01) (0.00) (0.03) (0.01) (0.01) (0.01)
GVX 002  -000 -00l 00l -000 -002 -00l -0.01
(0.02) (0.01) (0.01) (0.00) (0.19) (0.01) (0.01) (0.01)
NVX 0.02 009 002 002 -003 002 -001 -0.01
0.02) (0.01) (0.01) (0.00) (0.02) (0.01) (0.01) (0.01)
ovX 000  -000 003 00l -0.00 -000 002  -0.01
0.02) (0.01) (0.01) (0.01) (0.02) (0.01) (0.01) (0.00)
RVX 001 005 002  -002  -000 -001 000 -0.02
(002)  (0.12)  (0.00) (0.00) (0.02) (0.01) (0.01) (0.00)
VDAX 000 001 002 001 -003 007 0.00  -0.01
0.02) (0.01) (0.01) (0.01) (0.02) (0.01) (0.01) (0.01)
VDIIA 003 005 003  -00l  -0.00 0.0 004  -0.02
0.02) (0.01) (0.01) (0.01) (0.02) (0.01) (0.01) (0.01)
VDM 001 -001 -002 00l -000 -002 -00l  -0.02
0.02) (0.01) (0.01) (0.00) (0.02) (0.01) (0.01) (0.01)
VHSI 002 002 002 00l -002 000 -0.02 -0.01
(0.02) (0.01) (0.01) (0.01) (0.02) (0.01) (0.01) (0.00)
VIXCAC 005 010 008  -001  -002 -002 002 -001
0.02) (0.01) (0.01) (0.01) (0.02) (0.02) (0.01) (0.01)
VSTOXX 000  -000 004 001 -00l -003 001 -0.01
0.02) (0.01) (0.01) (0.01) (0.02) (0.01) (0.01) (0.01)
VVIX 000 -000 004 002 -002 00l 000  -0.02
(0.02)  (0.01)  (0.0D) (0.000 (0.02) (0.0  (0.01)  (0.00)




Table 9. Continued

Volatility Indices Flow Towards VIX - 80 Flow from VIX - 80
HFRQ MFRQ LFRQ RESID HFRQ MFRQ LFRQ RESID
VXEM 0.01 0.08 -0.01 -0.01 -0.01 0.00 0.02 -0.02
(0.02) (0.01) (0.01) (0.01) (0.02) (0.01) (0.01) (0.01)
VXES -0.01 -0.02 0.08 -0.01 -0.00 0.05 -0.02 -0.01
(0.02) (0.01) (0.01) (0.00) (0.02) (0.01) (0.02) (0.00)
VXOEX -0.00 -0.02 -0.00 -0.01 -0.00 -0.05 -0.02 -0.01

(0.02) (0.01) (0.01) (0.01) (0.02) (0.01) (0.01) (0.00)
Note: RETE estimates with standard errors in parenthesis.

Source: own calculations based on data obtained from investing.com, R programming
version 4.2.0.

Table 10. Multi-frequency entropy estimates of information flows between US
Implied Volatility (VIX) and other volatilities — at q 95

Volatility Indices Flow Towards VIX - 95 Flow from VIX - q95
HFRQ MFRQ HFRQ MFRQ HFRQ MFRQ HFRQ MFRQ
EUVX 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01
(0.01) (0.01) (0.01)  (0.01) (0.01) (0.01) (0.01)  (0.01)
GVX 0.02 -0.01 0.02 -0.01 0.02 -0.01 0.02 -0.01
(0.01) (0.01) (0.01)  (0.01) (0.01) (0.01) (0.01)  (0.01)
NVX -0.00 0.07 -0.00 0.07 -0.00 0.07 -0.00 0.07
(0.01) (0.01) (0.01)  (0.0D) (0.01) (0.01) (0.01)  (0.0D)
OovVX 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00
(0.01) (0.01) (0.01)  (0.0D) (0.01) (0.01) (0.01)  (0.0D)
RVX -0.01 0.07 -0.01 0.07 -0.01 0.07 -0.01 0.07
(0.00) (0.01) (0.00)  (0.01) (0.00)  (0.01) (0.00)  (0.01)
VDAX 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
(0.01) (0.01) (0.01)  (0.0D) (0.01) (0.01) (0.01)  (0.0D)
VDIIA -0.01 0.04 -0.01 0.04 -0.01 0.04 -0.01 0.04
(0.01) (0.03) (0.01)  (0.03) (0.01)  (0.03) (0.01)  (0.03)
VDM -0.01 -0.03 -0.01 -0.03 -0.01 -0.03 -0.01 -0.03
(0.01) (0.04) (0.01)  (0.04) (0.01) (0.04) (0.01)  (0.04)
VHSI 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01
(0.01) (0.00) (0.01)  (0.00) (0.01)  (0.00) (0.01)  (0.00)
VIXCAC -0.01 0.09 -0.01 0.09 -0.01 0.09 -0.01 0.09
(0.01) (0.01) (0.01)  (0.01) (0.01) (0.01) (0.01)  (0.01)
VSTOXX 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
(0.01) (0.01) (0.01) (0.0D) (0.01) (0.01) (0.01)  (0.0D)
VVIX -0.00 0.02 -0.00 0.02 -0.00 0.02 -0.00 0.02
(0.01) (0.01) (0.01)  (0.01) (0.01) (0.01) (0.01)  (0.01)
VXEM 0.01 0.06 0.01 0.06 0.01 0.06 0.01 0.06
(0.01) (0.01) (0.01)  (0.01) (0.01) (0.01) (0.01)  (0.01)
VXES 0.01 0.04 0.01 0.04 0.01 0.04 0.01 0.04
(0.01) (0.01) (0.01) (0.0D) (0.01) (0.01) (0.01)  (0.0D)
VXOEX -0.00 -0.01 -0.00 -0.01 -0.00 -0.01 -0.00 -0.01

(0.01)  (0.01) (0.01) (0.0 (0.01)  (0.01) (0.01) (0.0

Source: own calculations based on data obtained from investing.com, R programming
version 4.2.0.



Figure 1. Plots of price and returns series
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Figure 1. Continued
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Figure 2. Multi-frequency information flows between VIX and other volatilities
returns — q50
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Figure 2. Continued

Renyi's Effective Transfer Entropy between VIX and Other Volatility Indices- (IMF4)
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Figure 2. Continued

's Effective Transfer Entropy between VIX and other Wolatility Indices- MFQ
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Figure 2. Continued

Renyi's Effective Transfer Entropy between VIX and other Volatility Indices- (IMF8)
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Figure 2. Continued

Renyi's Effective Transfer Entropy between VIX and other Volatility Indices- (Residual)
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Figure 3. Continued
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