Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Journal

2022 | 51 | 2 | 211-227

Article title

Percepcja rytmu w muzyce i mowie

Authors

Content

Title variants

EN
Perception of Rhythm in Music and Speech

Languages of publication

Abstracts

EN
The article presents issues related to rhythmicity in music and speech. The biological and cognitive mechanisms underlying the processing of rhythm in music and speech were characterized, as well as the hypotheses and empirical research results available in the literature that explain the biological and cognitive mechanisms of rhythmicity in human musical and linguistic behavior. The areas of speech and language therapy impact were also indicated, in which it is possible to use rhythmic activities to raise the level of language skills.
PL
W artykule zaprezentowano zagadnienia dotyczące rytmiczności w muzyce i mowie. Scharakteryzowano biologiczne i poznawcze mechanizmy leżące u podstaw przetwarzania rytmu w muzyce i mowie oraz dostępne w literaturze hipotezy i wyniki badań empirycznych wyjaśniające biologiczne i poznawcze mechanizmy rytmiczności w zachowaniach muzycznych i językowych człowieka. Wskazano też obszary oddziaływań logopedycznych, w których możliwe jest wykorzystanie aktywności rytmicznych w celu podnoszenia poziomu sprawności językowych.

Journal

Year

Volume

51

Issue

2

Pages

211-227

Physical description

Dates

published
2022

Contributors

author
  • Uniwersytet Marii Curie-Skłodowskiej w Lublinie Katedra Logopedii i Językoznawstwa Stosowanego

References

  • Andrews G., Howie P.M., Dozsa M., Guitar B.E., 1982, Stuttering: speech pattern characteristics under fluency-inducing conditions, „Journal of Speech and Hearing Research”, 25, 208–216, doi: 10.1044/jshr.2502.208.
  • Altman G., Carter, 1989, Lexical stress and lexical discriminability: stressed syllables are more informative, but why?, „Computer Speech and Language”, 3, 265–275, doi: 10.1016/08852308(89)90022-3.
  • Beier E. J., Ferreira F., 2018, The temporal prediction of stress in speech and its relation to musical beat perception, „Frontiers in Psychology”, 9, doi: 431. 10.3389/fpsyg.2018.00431.
  • Bion R.A.H., Benavides-Varela S., Nespor M., 2011, Acoustic markers of prominence influence infants’ and adults’ segmentation of speech sequences, „Language and Speech”, 54(1), s. 123–140, doi: 10.1177/0023830910388018.
  • Bourguignon M., De Tiège X., De Beeck M.O., Ligot N., Paquier P., Van Bogaert P. et al., 2013, The pace of prosodic phrasing couples the listener’s cortex to the reader’s voice, „Human Brain Mapping”, 34, s. 314–326, doi: 10.1002/hbm.21442.
  • Breen M., Fedorenko E., Wagner M., Gibson E., 2010, Acoustic correlates of information structure, „Language &. Cognitive Processes”, 25, 1044–1098, doi: 0.1080/01690965.2010.504378
  • Calhoun S., 2010, How does informativeness affect prosodic prominence?, „Language &. Cognitive Processes”, 25, 1099–1140, doi: 10.1080/01690965.2010.491682.
  • Chandrasekaran C., Trubanova A., Stillittano S., Caplier A., Ghazanfar A.A., 2009, The natural statistics of audiovisual speech, „PloS Computational Biology”, 5(7), doi: 10.1371/journal. pcbi.1000436.
  • Cohen N.S., Masse R., 1993, The application of singing and rhythmic instruction as a therapeutic intervention for persons with neurogenic communication disorders, „Journal of Music Therapy”, 30(2), 81–99, doi: 10.1093/jmt/30.2.81.
  • Ding N., Patel A.D., Chen L., Butler H., Luo C., Poeppel D., 2017, Temporal modulations in speech and music, „Neuroscince & Biobehavioral Reviews”, 81, s.181–187, doi: 10.1016/j.neubiorev.2017.02.011.
  • Fitch W.T., 2006, The biology and evolution of music: a comparative perspective, „Cognition”, 100, s. 173–215, doi: 10.1016/j.cognition.2005.11.009.
  • Flaugnacco E., Zoia S., Flaugnacco E., Lopez L., Terribili C., Montico M., Schon D., 2015, Music training increases phonological awareness and reading skills in developmental dyslexia: A randomized control trial, „PLoS ONE”, 10(9), e0138715, doi: 10.1371/journal.pone.0138715.
  • Fujii S., Wan C.Y., 2014, The role of rhythm in speech and language rehabilitation: The SEP hypothesis, „Frontiers in Human Neuroscience”, 8, 777, doi: 10.3389 / fnhum.2014.00777.
  • Fujii S., Watanabe H., Oohashi H., Hirashima M., Nozaki D., Taga G., 2014, Precursors of dancing and singing to music in three- to four-months-old infants. „PLoS ONE”, 9, e97680, doi: 10.1371/journal.pone.0097680.
  • Gervain J., Werker J. F., 2013, Prosody cues word order in 7-month-old bilingual infants, „Nature Communications”, 4(1), 1490, doi: 1490 10.1038/ncomms2430.
  • Ghazanfar A. A., Morrill R. J., Kayser C., 2013, Monkeys are perceptually tuned to facial expressions that exhibit a theta-like speech rhythm, „Proceedings of the National Academy of Sciences of the United States of America”, 110, s. 1959–1963, doi: 10.1073/pnas.1214956110.
  • Ghitza O., 2011, Linking speech perception and neurophysiology: speech decoding guided by cascaded oscillators locked to the input rhythm, „Frontiers in Psychology”, 27, doi: 10.3389/ fpsyg.2011.00130.
  • Ghitza O., 2012, On the role of theta-driven syllabic parsing in decoding speech: Intelligibility of speech with a maipulated modulation spectrum, „Frontiers in Psychology”, 3, s. 1–12, doi: 10.3389/fpsyg.2012.00238.
  • Ghitza O., Greenberg S., 2009, On the possible role of brain rhythms in speech perception: intelligibility of time-compressed speech with periodic and aperiodic insertions of silence, „Phonetica”, 66, s. 113–126, doi: 10.1159/000208934.
  • Giraud A., Poeppel D., 2012, Cortical oscillations and speech processing: emerging computational principles and operations, „Nature Neuroscience”, 15, s. 511–517, doi: 10.1038/nn.3063.
  • Goswami U., 2011, A temporal sampling framework for developmental dyslexia, „Trends in Cognitive Sciences”, 15(1), s. 3–10, doi: 10.1016/j.tics.2010.10.001.
  • Goswami U., 2018, A neural basis for phonological awareness? An oscillatory temporalsampling perspective, „Current Directions in Psychological Science”, 27(1), s. 56–63. 10.1177/0963721417727520.
  • Goswami U., 2019, Speech rhythm and language acquisition: An amplitude modulation phase hierarchy perspective, „Annals of the New York Academy of Sciences”, 1453, s. 67–78, doi: 10.1111/nyas.14137.
  • Gow D., Gordon P., 1993, Coming to terms with stress: effects of stress location in sentence processing, „Journal of Psycholinguistic Research”, 22, s. 545–578.
  • Hidalgo C., Falk S., Schön D., 2017, Speak on time! Effects of a musical rhythmic training on children with hearing loss, „Hearing Research”, 351, s. 11–18, doi: 10.1016/j.heares.2017.05.006.
  • Huss M., Verney J.P., Fosker T., Mead N., Goswami U., 2011, Music, rhythm, rise time perception and developmental dyslexia: perception of musical meter predicts reading and phonology, „Cortex”, 47, s. 674–689., doi: 10.1016/j.cortex.2010.07.010.
  • Janata P., Tomic S., Haberman J., 2012, Sensorimotor coupling in music and the psychology of the groove, „Journal of Experimental Psychology: General”, 141, s. 54–75, doi: 10.1037/ a0024208.
  • Jusczyk P.W., Cutler A., Redanz N.J., 1993, Infants’ preference for the predominant stress patterns of English words, „Child Development”, 64(3), s. 675–687, doi: 10.2307/1131210.
  • Kirschner S., Tomasello M., 2009, Joint drumming: social context facilitates synchronization in preschool children, „Journal of Experimental Child Psychology”, 102, s. 299–314, doi: 10.1016/j.jecp.2008.07.005. Kotz S.A., Ravignani A., Fitch W.T., 2018, The evolution of rhythm processing, „Trends in Cognitive Sciences”, 22(10), s. 896–910, doi: 10.1016/j. tics.2018.08.002.
  • Kotz S.A., Schwartze M., 2010, Cortical speech processing unplugged: a timely subcortico-cortical framework, „Trends in Cognitive Science”, 14, s. 392–399, doi: 10.1016/j.tics.2010.06.005.
  • Kotz S.A., Schwartze M., 2011, Differential input of the supplementary motor area to a dedicated temporal processing network: functional and clinical implications, „Frontiers in Integrative Neuroscience”, 5, 86, doi: 10.3389/fnint.2011.00086.
  • Kotz S.A., Schwartze M., 2016, Motor-timing and sequencing in speech production: a generalpurpose framework, [w:] G. Hickok, S.L.Small, Neurobiology of Language, Amsterdam, s. 717–724.
  • Krause V., Pollok B., Schnitzler A., 2010, Perception in action: the impact of sensory information on sensorimotor synchronization in musicians and non-musicians, „Acta Psychologica”, 133, s. 28–37, doi: 10.1016/j.actpsy.2009.08.003.
  • Lakatos P., Karmos G., Mehta A.D., Ulbert I., Schroeder C.E., 2008, Entrainment of neuronal oscillations as a mechanism of attentional selection, „Science”, 320, s. 110–113, doi: 10.1126/ science.1154735.
  • Large E.W., Fink P., Kelso J.A. S., 2002, Tracking simple and complex sequences, „Psychological Research”, 66, s. 3–17, doi: 10.1007/s004260100069.
  • Large E.W., Kolen J.F., 1994, Resonance and the perception of musical meter, „Connection Science”, 6, s. 177–208, doi: 10.1080/09540099408915723.
  • Lerdahl F., Jackendoff R., 1983, A generative theory of tonal music, Cambridge.
  • London J., 2004, Hearing in time: psychological aspects of musical meter, Oxford–New York.
  • Madison G., Merker B., 2004, Human sensorimotor tracking of continuous subliminal deviations from isochrony, „Neuroscience Letters”, 370, s. 69–73, doi: 10.1016/j.neulet.2004.07.094.
  • Mai G., Minett J.W., Wang W.S.Y., 2016, Delta, theta, beta and gamma brain oscillations index levels of auditory sentence processing, „NeuroImage”, 133, s. 516–528, doi: 10.1016/j.neuroimage.2016.02.064.
  • Mithen S., 2005, The singing Neanderthals: the origins of music, language, mind, and body, London.
  • Nazzi T., Ramus, F., 2003, Perception and acquisition of linguistic rhythm by infants, „Speech Communication”, 41, s. 233–243, doi: 10.1016/S0167-6393(02)00106-1.
  • Nozaradan S., Peretz I., Missal M., 2011, Tagging the neuronal entrainment to beat and meter, „Journal of Neuroscience”, 31, s. 10234–10240, doi: 10.1523/JNEUROSCI.0411-11.2011.
  • Otterbein S., Abel C., Heinemann L.V., Kaiser, J., Schmidt-Kassow M., 2012, P3b reflects periodicity in linguistic sequence, „PLoS ONE”, 7, e51419, doi: 10.1371/journal.pone.0051419.
  • Patel A.D., 2011a, Musical rhythm, linguistic rhythm, and human evolution, „Music Perception”, 24, s. 99–104, doi: 10.1525/rep.2008.104.1.92.
  • Patel A.D., 2011b, Why would musical training benefit the neural encoding of speech? The OPERA hypothesis, „Frontiers in Psychology”, 2:142, doi: 10.3389/fpsyg.2011.00142.
  • Patel A.D., 2012, The OPERA hypothesis: assumptions and clarifications, „Annals of the New York Acadademy of Sciences”, 1252, s. 124–128, doi: 10.1111/j.1749-6632.2011.06426.x.
  • Patel A.D., 2014, Can nonlinguistic musical training change the way the brain processes speech? The expanded OPERA hypothesis, „Hearing Research”, 308, s. 98–108, doi: 10.1016/j. heares.2013.08.011.
  • Peelle J.E., Davis M.H., 2012, Neural oscillations carry speech rhythm through to comprehension, „Frontiers in Psychology”, 3, 320, doi: 10.3389/fpsyg.2012.00320.
  • Pickering M. J., Garrod S., 2007, Do people use language production to make predictions during comprehension?, „Trends in Cognitive Sciences”, 11, (3), s. 105-110, doi: 10.1016/j. tics.2006.12.002.
  • Pitt M.A., Samuel A.G., 1990, The use of rhythm in attending to speech, „Journal of Experimental Psychology”, 16, s. 564–573, doi: 10.1037/0096-1523.16.3.564.
  • Poeppel D., 2014, The neuroanatomic and neurophysiological infrastructure for speech and language, „Current Opinion in Neurobiology”, 28, s. 142–149, doi: 10.1016/j.conb.2014.07.005.
  • Przybylski L., Bedoin N., Krifi-Papoz S., Herbillon V., Roch D., Léculier L., Kotz S.A., Tillmann B., 2013, Rhythmic auditory stimulation influences syntactic processing in children with developmental language disorders, „Neuropsychology”, 27(1), s. 121–131, doi: 10.1037/a0031277.
  • Reddish P., Fischer R., Bulbulia J., 2013, Let’s dance together: synchrony, shared intentionality and cooperation, „PLoS ONE”, 8, e71182, doi: 10.1371/journal.pone.0071182.
  • Remedios R., Logothetis N.K., Kayser C., 2009, Monkey drumming reveals common networks for perceiving vocal and nonvocal communication sounds, „Proceedings of the National Academy of Sciences of the United States of America”, 106, s. 18010–18015, doi: 10.1073/ pnas.0909756106
  • Rothermich K., Kotz, S. A., 2013, Predictions in speech comprehension: FMRI evidence on the meter-semantic interface, „Neuroimage”, 70, s. 89–100, doi: 10.1016/j.neuroimage.2012.12.013.
  • Sanders L.D., Neville H.J., 2000, Lexical, syntactic, and stress-pattern cues for speech segmentation, „Journal of Speech, Language, and Hearing Research”, 43, 1301–1321. doi: 10.1044/ jslhr.4306.1301.
  • Semjen A., Vorberg D., Schulze H.H., 1998, Getting synchronized with the metronome: comparisons between phase and period correction, „Psychological Research”, 61, s. 44–55, doi: 10.1007/ s004260050012.
  • Shattuck-Hufnagel S., Turk A.E., 1996, A prosody tutorial for investigators of auditory sentence processing, „Journal of Psycholinguistic Research”, 25, s. 193–247, doi: 10.1007/BF01708572.
  • Schwartze M., Kotz S.A., 2013, A dual-pathway neural architecture for specific temporal prediction, „Neuroscience & Biobehavioral Reviews”, 37, s. 2587–2596, doi: 10.1016/j.neubiorev.2013.08.005.
  • Schwartze M., Kotz S., 2016, Contributions of cerebellar event-based temporal processing and preparatory function to speech perception, „Brain and Language”, 161, s. 28–32, doi: 10.1016/j. bandl.2015.08.005.
  • Stahl, B., Kotz, S.A., Henseler I., Turner R., Geyer F., 2011, Rhythm in disguise: Why singing may not hold the key to recovery from aphasia, „Brain”, 134(10), s. 3083–3093, doi: 10.1093/brain/ awr240.
  • Tierney A., Kraus N., 2013, The ability to move to a beat is linked to the consistency of neural responses to sound, „Journal of Neuroscience”, 33, s. 14981–14988, doi: 10.1523/jneurosci.0612-13.2013.
  • Tierney A., Kraus N., 2014, Auditory-motor entrainment and phonological skills: Precise auditory timing hypothesis (PATH), „Frontiers in Human Neuroscience”, 8, s. 949, doi: 10.3389/ fnhum.2014.00949.
  • Toplak M.E., Tannock R., 2005, Tapping and anticipation performance in attention deficit hyperactivity disorder, „Perceptual and Motor Skills”, 100, s. 659–675, doi: 10.2466/pms.100.3. 659-675.
  • Wagner A., 2017, Rytm w mowie i języku w ujęciu wielowymiarowym, Warszawa.
  • Wan C.Y., Bazen L., Baars R., Libenson A., Zipse L., Zuk J., Norton A., Schlaug G., 2011, Auditory-motor mapping training as an intervention to facilitate speech output in non-verbal children with autism: a proof of concept study, „PloS ONE”, 6(9), e25505, doi: 10.1371/journal. pone.0025505.
  • Wysocka M., 2019, Możliwości zastosowania muzyki w terapii logopedycznej. Przegląd badań, „Logopedia”, 48–1, s. 215–229, doi: 10.24335/fqr2-tg45.
  • Zentner M., Eerola T., 2010, Rhythmic engagement with music in infancy, „Proceedings of the National Academy of Sciences of the United States of America”, 107, s. 5768–5773, doi: 10.1073/pnas.1000121107.
  • Zoefel B, 2018, Speech entrainment: rhythmic oredictions carried by neural oscillations, Current Biology, 28(18), s. 1102–1104, doi: 10.1016/j.cub.2018.07.048.

Document Type

Publication order reference

Identifiers

Biblioteka Nauki
2190972

YADDA identifier

bwmeta1.element.ojs-doi-10_24335_f7v0-6w84
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.