Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Journal

2021 | 50 | 2 | 117-134

Article title

Zaburzenia sprawności językowych i funkcji poznawczych u osób zakażonych wirusem SARS-CoV-2

Content

Title variants

EN
Linguistic and Cognitive Skills Disfunctions in Patients Infected with SARS-CoV-2

Languages of publication

Abstracts

EN
SARS-CoV-2 pandemic has attracted a variety of research concerning direct and indirect repercussions of COVID-19 in terms of human linguistic and cognitive functions. The following article is an overview focusing on neurological complications of coronavirus infection presenting with cognitive and linguistic disfunctions defined as COVID-19 brain fog. The aim of the article is to demonstrate current clinical studies and to set a paradigm with regard to the issues of diagnosing and treating patients who recovered from COVID-19.
PL
W dobie pandemii SARS-CoV-2 prowadzone są badania dotyczące bezpośrednich i odległych skutków zachorowania na COVID-19 dla językowego i poznawczego funkcjonowania człowieka. Niniejszy artykuł ma charakter przeglądowy, koncentruje się wokół neurologicznych powikłań zakażenia koronawirusem SARS-CoV-2 przejawiających się trudnościami poznawczymi i językowymi, określanymi jako „mgła covidowa”. Celem opracowania jest przedstawienie aktualnego stanu badań klinicznych i ustalenie paradygmatu problemów dotyczących diagnozy i terapii logopedycznej osób, które przechorowały COVID-19.

Journal

Year

Volume

50

Issue

2

Pages

117-134

Physical description

Dates

published
2021

Contributors

  • LOGO-MED – Gabinet Neurologopedyczny w Przeworsku

References

  • Adhikari N., Tansey C.M., McAndrews M.P., Matte´ A., Pinto R., Cheung A.M., et al., 2011, Self-reported depressive symptoms and memory complaints in survivors five years after ARDS, “Chest” 140, s. 1484–1493.
  • Almeria M., Cejudo J.C., Sotoca J., Deus J., Krupinski J., 2020, Cognitive profile following COVID-19 infection: clinical predictors leading to neuropsychologiical impairment, „Brain, Behavior, and Immunity – Health” 9, s. 100–163.
  • Arabi Y.M., Harthi A., Hussein J., Bouchama A., Johani S., Hajeer A.H., et al., 2015, Severe neurologic syndrome associated with Middle East respiratory syndrome corona virus (MERS-CoV), „Infection” 43, s. 495–501.
  • Arenivas A., Carter K.R., Harik l.M., Hays K.M., 2020, COVID-19 neuropsychological factors and considerations within the acute physical medicine and rehabilitation setting, „Brain Injury” 34, s. 1136-1137.
  • Arkwright P.D., Abinun M., 2008, Recently identified factors predisposing children to infectious diseases, “Current Opinion in Infectious Diseases” 21, s. 217–222.
  • Asadi-Pooya A.A., Akbari A., Emami A., Lotfi M. Rostamihosseinkhani M., Nemati H., Barzegar Z., Kabiri M., Zeraatpisheh Z., Farjoud-Kouhanjani M., Jafari A., Sasannia S., Ashrafi S., Nazeri M., Nasiri S., Shahisavandi M., 2021, Long COVID syndrome-associated brain fog, „Journal of Medical Virology” 94(3), s. 979-984, DOI: 10.1002/jmv.27404.
  • Baker H.A., Safavynia S.A., Evered l.A., 2021, The ‘third wave’: impending cognitive and functional decline in COVID-19 survivors, “British Journal Anaesthesiology” 126, s. 44–47.
  • Bohmwald K., Galvez N., Rios M., Kalergis A.M., 2018, Neurologic alterations due to respiratory virus infections, “Frontiers in Cellular Neuroscience” 12, s. 1-15.
  • Borkowski l., Fal A., Filipiak K., Homola B., Hruby Z., Kobayashi A., Łoza B., Matyja A., Pruszczyk P., Rzymski P., Szepietowski J., Szułdrzyński K., Szczegielniak J., Wysocki J., Zajkowska J., Zduński S., 2021, Charakterystyka choroby COVID-19, objawy oraz skutki zdrowotne. Rekomendacje i doświadczenia polskich klinicystów, Warszawa.
  • Boulanger l.M., 2009, Immune proteins in brain development and synaptic plasticity, „Neuron” 64, 1, s. 93–109.
  • Chan J.F., Kok K.H., Zhu Z., Chu H., To K.K., Yuan S., Yuen K.Y., 2020, Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan, „Emerging Microbes and Infections” 28, 9 (1), s. 221–236.
  • Chen C., Zhang X.R., Ju Z.Y., He W.F., 2020, Advances in the research of cytokine storm mechanism induced by Corona Virus Disease 2019 and the corresponding immunotherapies, “Chinese Journal of Burns” 36 (6) DOI: 10.3760/cma.j.cn501120-20200224-00088.
  • Dahm T., Rudolph H., Schwerk C., Schroten H., Tenenbaum T., 2016, Neuroinvasion and inflammationin viral central nervous system infections, „Mediators Inflammation” 7, s. 1-16, DOI: 10.1155/2016/8562805.
  • Davies N.G., Abbott S., Barnard R.C., et al. 2021, Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England, „Science” 372(6538), DOI: 10.1126/science. abg3055.
  • Davies N.G., Barnard R.C, Jarvis C.I, et al. Estimated transmissibility and severity of novel SARS-CoV-2 Variant of Concern 202012/01 in England, medRXiv, The Preprint Server form Health Sciences, DOI: https://doi.org/10.1101/2020.12.24.20248822.
  • Deleidi M., Hallett P.J., Koprich J.B., Chung C.Y., Lsacson O., 2009, The Toll-like receptor-3 agonist polyinosinic: polycytidylic acid triggers nigrostriatal dopaminergic degeneration, „ Journal Neuroscience” 30 (48), s. 16091–16101.
  • Desforges M., Le Coupanec A., Brison É., Meessen-Pinard .M, Talbot P.J., 2014, Neuroinvasive and neurotropic human respiratory coronaviruses: potential neurovirulent agents in humans, [w:] Infectious Diseases and Nanomedicine, red. R. Adhikari, S. Thapa S, India, s. 75–96.
  • Desforges M., Le Coupanec A., Dubeau P., Bourgouin A., Lajoie l., Dube´ M., Talbot P. J., 2019, Human coronaviruses and other respiratory viruses: underestimated opportunistic pathogens of the central nervous system? „Viruses” 12 (1), DOI: 10.3390/v12010014.
  • Dobbs M., 2011, Toxic Encephalopathy, „Seminars of Neurology” 31 (2), s. 184–193.
  • Egbert A.R., Cankurtaran S., Karpiak S., 2020, Brain abnormalities in COVID-19 acute/subacute phase: a rapid systematic review, „Brain Behavior Immunology” 89, s. 543-554.
  • Giovanetti M., Benedetti F., Campisi G., 2021, Evolution patterns of SARS-CoV-2: Snapshot on its genome variants, „Biochemical and Biophysical Research Communications” 538, DOI: 10.1016/j.bbrc.2020.10.102.
  • Guo J., Huang Z., Lin l., lv J., 2020, Coronavirus Disease 2019 (COVID-19) and Cardiovascular Disease: A Viewpoint on the Potential Influence of Angiotensin-Converting Enzyme Inhibitors/ Angiotensin Receptor Blockers on Onset and Severity of Severe Acute Respiratory Syndrome Coronavirus 2 Infection, „Journal of the American Heard Association” 9 (7), DOI: 10.1161/ jAHA.120.016219.
  • Hampshire A., Trender W., Chamberlain S.R., Jolly A., Grant J.E., Patrick F., Mazibuko N., Williams S., Barnby J.M., Hellyer P., Mehta M.A., 2020, Cognitive deficits in people who have recovered from COVID-19 relative to controls, medRxiv, The Preprint Server form Health Sciences, DOI: 10.1101/2020.10.20.20215863.
  • Hayashi M., Sahashi Y., Baba Y., Okura H., Shimohata T., 2021, COVID-19-associated mild encephalitis/encephalopathy with a reversible splenial lesion, „Neurology Asia” 26 (4), s. 825–828.
  • Helms J., Kremer S., Merdji H., Clere-Jehl R., Schenck M., Kummerlen C., et al. 2020, Neurologic features in severe SARSCoV-2 infection, „The New England Journal of Medicine” 382, s. 2268-2270.
  • Hopkins R.O., Jackson J.C., 2006, Long-term neurocognitive function after critical illness, “Chest” 130, s. 869-878.
  • Hopkins R.O., Weaver l.K., Collingridge D., Parkinson R.B., Chan K.J., Orme J.F., 2005, Twoyear cognitive, emotional and quality of life outcomes in acute respiratory distress syndrome, “American Journal of Respiratory and Critical Care Medicine”, 171, s. 340–347.
  • Huang C., Huang l., Wang Y., Li X., Ren l., Gu X. i in. 2021, 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study, „Lancet” 397, s. 220-232.
  • Hugon J., 2021, Long-covid: cognitive deficits (brain fog) and brain lesions in non-hospitalized patients, „La Presse Médicale” 51(8), DOI: 10.1016/j.lpm.2021.104090.
  • Kandemirli S.G., Dogan l., Sarikaya Z.T., Kara S., Akinci C., Kaya D., et al. 2020, Brain MRI f indings in patients in the intensive care unit with COVID-19 infection, „Radiology” 297, DOI: 10.1148/radiol.2020201697.
  • Khailany R.A., Safdar M.., Ozaslan M., 2020, Genomic characterization of a novel SARS-CoV-2, „Gene Reports” 16 (19), DOI: 10.1016/j.genrep.2020.100682.
  • Koralnik I.J., Tyler K.l., 2020, COVID-19: a global threat to the nervous system, „Annals of Neurology” 88, s. 1-11.
  • Koyuncu O.O., Hogue I.B., Enquist l.W., 2013, Virus infections inthe nervous system, “Cell Host and Microbe” 13, DOI: 10.1016/j.chom.2013.03.010.
  • Li Z., He W., Lan Y., Zhao K., Lv X., Lu H., Ding N., Zhang J., Shi J., Shan C., Gao F., 2016, The evidence of porcine hemagglutinating encephalomyelitis virus induced nonsuppurative encephalitis as the cause of death in piglets, “Peer Journal” 4, DOI: 10.7717/peerj.2443.
  • Lu R., Zhao X., Li J., et al., 2020, Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding, „Lancet”, 395, DOI: 10.1016/ S0140-6736(20)30251-8.
  • Łojek E., Egbert A.R., Gambin M., Gawron N., Gorgol J., Hansen K., Holas P. Hyniewska S., Malinowska E., Pluta A., Sękowski M., Vitvitska O., Wyszomirska J., Żarnecka D., 2021, Neuropsychological disorders after COVID-19. Urgent need for research and clinical practice, „Postępy Psychiatrii i Neurologii”, 30 (2), DOI:10.5114/ppn.2021.108474.
  • Moriguchi T., 2020, A first case of meningitis/encephalitis associated with SARS-Coronavirus-2, “International Journal of Infectious Diseases” 94, s. 55–58.
  • Muhammad S., Haasbach E., Kotchourko M., Strigli A., Krenz A., Ridder D.A., et al., 2011, Influenza virus infection aggravates stroke outcome, „Stroke” 42 (3), s. 783–791.
  • Nakajima K., Tohyama Y., Kohsaka S., Kurihara T., 2001, Ability of rat microglia to uptake extracellular glutamate, „Neuroscience Letters” 307, s. 171–174.
  • Ocon A., 2013, Caught in the thickness of brain fog: exploring the cognitive symptoms of Chronic Fatigue Syndrome, „Frontiers in Physiology” 4, DOI: 10.3389/fphys.2013.00063.
  • Olender T., Keydar I., Pinto J.M., Tatarskyy P., Alkelai A., Chien M.S., Fishilevich S., Restrepo D., Matsunami H., Gilad Y., Lancet D., 2016, The human olfactory transcriptome, “BMC Genomics” 17, 619.
  • Pereira A., 2020, Long-term neurological threats of COVID-19: a call to update the thinking about the outcomes of the coronavirus pandemic, „Frontiers in Neurology” 11, DOI: 10.3389/ fneur.2020.00308.
  • Petrescu A.M., Taussig D., Bouilleret V., 2020, Electroencephalogram (EEG) in COVID-19: a systematic retrospective study, „Clinical Neurophysiology” 50 (3), DOI: 10.1016/j.neucli.2020.06.001.
  • Polz-Dacewicz M., 2019, Nowy koronawirus – SARS CoV-2, „Polish Journal of Public Health”, 129 (4), s. 113-117.
  • Poyiadji N., Shahin G., Noujaim D., Stone M., Patel S., Griffith B., 2020, COVID-19-associated Acute Hemorrhagic Necrotizing Encephalopathy: Imaging Features, „Radiology” 296 (2), DOI: 10.1148/radiol.2020201187.
  • Rejdak K., 2020, https://www.termedia.pl/mz/COVID-19-moze-prowadzic-do-powaznych-uszkodzen-ukladu-nerwowego,40576.html (data dostępu: 01.10.2021).
  • Ritchie K., Chan D., Watermeyer T., 2021, The cognitive consequences of the COVID-19 epidemic: collateral damage?, „Brain Communications” 2 (2), DOI: 10.1093/braincomms/fcaa069.
  • Sharma K., Tengsupakul S., Sanchez O., Phaltas R., Maertens P., Guillain-Barre syndrome with unilateral peripheral facial and bulbar palsy in a child: a case report, 2019, “Case Reports” 7, DOI: 10.1177/2050313X19838750.
  • Sheahan T.P., Sims A.C., Leist S.R., Schäfer A., Won J., Brown A.J., Montgomery S.A., Hogg A., Babusis D., Clarke M.O., Spahn J.E., Bauer l, Sellers S., Porter D., Feng JY., Cihlar T., Jordan R., Denison M.R., Baric R.S., 2020, Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV, „Nature Communications” 11, DOI: 10.1038/s41467-019-13940-6.
  • Stefano G. B., Ptacek R., Ptackova H., Martin A., Kream R. M., 2021, Selective Neuronal Mitochondrial Targeting in SARS-CoV-2 Infection Affects Cognitive Processes to Induce 'Brain Fog' and Results in Behavioral Changes that Favor Viral Survival, „Medical Science Monitor” , DOI: 10.12659/MSM.930886.
  • Stelmach M., 2021, COVID-19 powoduje problemy poznawcze i behawioralne, https://www.termedia.pl/neurologia/COVID-19-powoduje-problemy-poznawcze-i-behawioralne,42864.html (dostęp: 30.11.2021).
  • Talarowska M., 2015, Funkcjonowanie poznawcze po przebytej infekcji wirusem SARS -COV- 2, „Neuropsychiatria i Neuropsychologia” 6, 3–4, s. 109–115.
  • Theoharides T.C., Cholevas C., Polyzoidis K., Politis A., 2021, Long-COVID syndrome-associated brain fog and chemofog: Luteolin to the rescue, „Biofactors'' t. 47, nr 2, s. 232–241, DOI: 10.1002/biof.1726.
  • Theoharides T., Stewart J.M., Hatziagelaki E., Kolaitis G., 2015, Brain "fog," inflammation and obesity: key aspects of neuropsychiatric disorders improved by luteolin, „Frontiers in Neuroscience” 5, DOI: 10.3389/fnins.2015.00225.
  • Tsai l.K., Hsieh S.T., Chang Y.C., 2005, Neurological manifestations in severe acute respiratory syndrome, „Acta Neurology Taiwanica” 14 (3), s. 113–119.
  • Van den Pol A.N., 2006, Viral infections in the developing and mature brain, „Trends of Neurosciences” 29 (7), s. 398–406.
  • Van Dijk E.J., de Leeuw F.E., 2012, Recovery after stroke: more than just walking and talking again. If you don’t look for it, you won’t find it, „European Journal of Neurology” 19, s. 189-190.
  • Virhammar J., Kumlien E., Fällmar D., Frithiof R., Jackmann S., Sköld M., Kadir N., Frick J., Lindeberg J., Olivero-Reinius H., Ryttlefors M., Cunningham J. l., Wikström J., Grabowska A., Bondeson K., Bergquist J., Zetterberg H., Rostami E., 2020, Acute necrotizing encephalopathy with SARS-CoV-2 RNA confirmed in cerebrospinal fluid „Neurology” 95 (10), s. 445-449.
  • Volz E., Erik Volz 1, Hill V., McCrone J. T., et al., 2020, Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity, „Cell” 184 (1) DOI: 10.1016/j. cell.2020.11.020.
  • Volz E., Mishra S., Chand M., et al. 2020, Transmission of SARS-CoV-2 Lineage B. 1.1. 7 in England: Insights from linking epidemiological and genetic data, medRxiv, DOI: 10.1101/2020.12.30.20249034
  • Wang T., Town T., Alexopoulou L., Anderson J.F., Fikrig E., Flavell R.A., 2004, Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. “Nature Medicine” 10, s. 1366–1373.
  • Wang W., Xu Y., Gao R., Lu R., Han K., Wu G., Tan W., 2020, Detection of SARS-CoV-2 in different types of clinical specimens, JAMA 323 (18), DOI : 10.1001/jama.2020.3786.
  • Warren-Gash C., Blackburn R., Whitaker H., McMenamin J., Hayward A.C., 2018, Laboratory-conf irmed respiratory infectionsas triggers for acute myocardial infarction and stroke: a self-controlledcase series analysis of national linked datasets from Scotland, „European Respiratory Journal” 51 (3), DOI: 10.1183/13993003.01794-2017.
  • Wawrzyniak A., Karolina Kuczborska, Agnieszka Lipińska-Opałka, Agata Będzichowska, Bolesław Kalicki, 2019, Koronawirus 2019-nCoV – transmisja zakażenia, objawy i leczenie., „Pediatria i Medycyna Rodzinna” 15 (4), s. 1-5.
  • Wesołowski K., 2021, Diagnoza i leczenie zaburzeń poznawczych oraz ich wpływ na funkcjonowanie pacjentów po przebytym SARS-CoV-2, [w:] Pacjent post-COVID-owy. Co zostaje, a co się zmienia?, red. M. Maślińska, Warszawa, s. 83-90.
  • Wilson B.A., Winegardner J., van Heugten C.M., Ownsworth T., 2017, (red.). Neuropsychological Rehabilitation, London.
  • Wilson BA, van Heugten C.M., 2017, Anoxia, [w:] Neuropsychological Rehabilitation. The International Handbook, red. B. A. Wilson, J., Winegardner, C. M. van Heugten C.M., T. Ownsworth, London, s. 74-77.
  • Woo M.S., Malsy J., Pöttgen J., Seddiq Zai S., Ufer F., Hadjilaou A., et al., 2020, Frequent neurocognitive deficits after recovery from mild COVID-19, „Brain Communications” 2, DOI: 10.1093/braincomms/fcaa205.
  • Yachou Y., El Idrissi A., Belapasov V., Ait Benali S., 2020, Neuroinvasion, neurotropic, and neuroinflammatory events of SARS-CoV-2: understanding the neurological manifestations in COVID-19 patients, „Neurorogical Sciences” 41(10), s. 2657-2669.
  • Zhao H., Shen D., Zhou H., Liu J., Chen S., 2020, Guillain-Barré syndrome associated with SARS-CoV-2 infection: causality or coincidence?, „Lancet” 19 (5), s. 383–384.
  • Zhong N., et al. Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong. People’s Republic of China, in February, 2003, „Lancet” 362, s. 1353-1358.
  • Zhou H., Lu S., Chen J., Wei N., Wang D., Lyu H., Shi C., Hu S., 2020, The landscape of cognitive function in recovered COVID-19 patients, „Journal of Psychiatric Research” 129, s. 98-101.

Document Type

Publication order reference

Identifiers

Biblioteka Nauki
2168315

YADDA identifier

bwmeta1.element.ojs-doi-10_24335_f8xx-gm69
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.