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Abstract: Road traffic injuries are a leading cause of death worldwide. Proper estimation of car accident risk is 
critical for the appropriate allocation of resources in healthcare, insurance, civil engineering and other industries. 
We show how images of houses are predictive of car accidents. We analyse 20,000 addresses of insurance company 
clients, collect a corresponding house image using Google Street View and annotate house features such as age, 
type and condition. We find that this information substantially improves car accident risk prediction compared to 
the state-of-the-art risk model of the insurance company and could be used for price discrimination. From this per-
spective, the public availability of house images raises legal and social concerns, as they can be a proxy of ethnicity, 
religion and other sensitive data.

Keywords: Generalized Linear Model, risk modelling, insurance pricing, satellite imagery, Google Street View

JEL Codes: G22, C83, C52

1  Introduction

Modern machine learning techniques for computer 
vision, like Deep Learning, provided unprecedented 
opportunities for academic research and industrial 
applications. Examples include using satellite images 
for deforestation monitoring in South America (Finer 
et al., 2018) or poverty estimation in Africa (Jean et al., 
2016), prediction of skin cancer from skin lesion images 
(Esteva et al., 2017), or automatic detection of pulmonary 
tuberculosis from a chest radiograph (Lakhani & 
Sundaram, 2017).

One of the resources recently leveraged for research 
is Google Street View—a platform from Google—where 
images of buildings are taken using cars equipped with 
a set of cameras (Anguelov et al., 2010). This data source 
has recently been explored by researchers to answer 
questions in social science, for example demographic 
makeup of neighbourhoods across the US (Gebru 
et al., 2017), estimating city-level travel patterns in 

Great Britain (Goel et al., 2018) or crime rate in Brazil 
(Andersson, Birck, & Araujo, 2017).

Our work explores whether Google Street View 
images of houses are predictive of their residents’ risk 
of car accident. So far, researchers were looking for 
determinants of car accidents among characteristics 
more directly related to driving, for example, driving 
experience (McCartt, Shabanova, & Leaf, 2003), drunk 
driving (Bingham, Shope, & Zhu, 2008) and using cell 
phones while driving (Strayer, Drews, & Crouch, 2003). 
There are also studies about the road and environmental 
conditions influencing car accidents (Karlaftis & 
Golias, 2002; Shankar, Mannering, & Barfield, 1995). 
We are not aware of any study exploring a direct link 
between housing conditions and car accident risk; 
however, a handful of research studies have proved that 
neighbourhood and house characteristics are correlated 
with health risk behaviours (Spilkova, Dzúrova, & 
Pitonak, 2014), which in turn correlate with driving 
behaviours (Rolison, Hanoch, Wood, & Liu, 2014).
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The correlation we aim to verify in this article might 
be particularly interesting to the insurers. It is essential 
for the insurers to accurately estimate the risk of the client 
and set up a proper pricing in order to avoid adverse 
selection (Gogol, 1993). For this purpose, they search 
for systematic and time-invariant clients’ characteristics 
that are observable at the moment of issuing a policy and 
correlate with the number of claims incurred during the 
insurance cover period. For example, the classical motor 
insurance risk factors identified worldwide are the age 
of the driver, the characteristics of his car, the occurrence 
of car accidents in the past and geography (Werner & 
Modlin, 2016, p.159). For this reason, the insurers tend 
to ask for these and other details before providing the 
motor insurance offer.

Although insurers often collect address information 
from the client, they typically use only zip-code for 
risk modelling and pricing purposes. Claims data 
aggregated to zip-codes are still too volatile and 
require spatial smoothing (Taylor, 2001) and further 
aggregation to larger geographical zones (Yao, 2008). 
Such a commonly used methodology is based on the 
assumption that neighbours are driving in a similar 
manner. In this article, we challenge this assumption and 
show that volatility can be explained at the granularity 
of individual addresses. Moreover, we show that this 
information can be extracted from publicly available 
images from the Google Street View (Figure 1).

Study of this insurance problem enabled following 
sociological and methodological discoveries: (1) features 
of the house correlate with the car accident risk of its 
resident, (2) compared to other uses of Google Street 
View for research, our variables are sourced from the 
address rather than aggregated by zip-code or district 
and they allow for new sociological discoveries at a very 
granular level, (3) variables extracted from the address 
(the image of a house) can be used in insurance and 
other industries, notably for price discrimination, (4) 
modern data collection and computational techniques, 
which allow for unprecedented exploitation of personal 
data, can outpace the development of legislation and 
raise privacy threats.

2 Results

We examine a motor insurance dataset of 20,000 
records—a random sample of an insurer’s portfolio 
collected in Poland from January 2012 to December 2015. 
Each record represents the characteristics of an insurance 
policy covering motor third party liability (MTPL) 
including the address of the policyholder, risk exposure 
defined as a fraction of the year in which the policy was 
active from 2013 to 2015 and the corresponding count 
of incurred property damage claims defined as events 
where any third-party property (car, motorbike, bicycle, 

Fig. 1: Examples of extremely different houses located in the same zip code and residents of which have the same expected claim 
frequency by the current insurer’s model.
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as well as fence, house, tree, etc.) has been damaged from 
partial or full fault of the driver of the insured car. The 
insurer provided us also with the expected frequency 
of property damage claims for those policies, estimated 
by their current best-in-class risk model that includes 
zoning based on the client’s zip-code.

We collect Google Satellite View and Google Street 
View images for the addresses provided in the database. 
Six experts annotated the following features of the 
houses visible in the images: their type, age, condition, 
estimated wealth of its residents, as well as type and 
density of other buildings from the neighbourhood 
(Figure 2). Four out of six annotators gave moderately 
consistent answers for the common subsample of 500 
addresses—Fleiss’ kappa statistics indicate mostly 
moderate agreement among them (Table 1). These four 
annotators continued annotating remaining 19,371 
addresses (we removed 129 addresses from the scope of 
this study as they were either foreign or could not be 
found by Google Maps), but this time each annotator was 
given a separate, randomly selected, set of addresses. 
We compared distributions of collected annotations and 
finally applied small corrections to match the mean and 
standard deviation among all four annotators.

Next, we estimated a generalized linear model 
(GLM) to investigate the importance of newly created 
variables for risk prediction (Kolyshkina, Wong, & 
Lim, 2004; Spedicato, Dutang, & Petrini, 2018; Werner 
& Modlin, 2016, p.176-183). We assume the following 
probabilistic model of claim frequency f, defined as the 
number of claims divided by risk exposure:

( )( ) ( )( )log log /f Y exposure Xβ= =E E

where Y  is a number of property damage claims within 
MTPL insurance following Poisson distribution, X  is a 
vector of independent variables and β  is the vector of 
coefficients.

For relative evaluation of the value added by our 
approach, we introduce three models:
-	 Model A (null model), where vector X  is [1]
-	 Model B (best-in-class insurer’s model): where 

vector X  is 1[1, ,, ]jX X
-	 Model C (our model): where vector X  is 

1 11, ,, , , ,j j NX X X X+  

The insurer provided us with the realisation of the 
model B for each record from the dataset. That model 

Fig. 2. Features annotated from Google Satellite View and Google Street View image of a particular address.
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was estimated on a larger undisclosed dataset and 
contains j predictive variables (driver characteristics, 
vehicle characteristics, claim history, geographical zone, 
etc.). Using properties of GLMs we can decompose 
Model C into two parts: one corresponding to Model 
B and one incorporating the new variables. We refer to 
the realisation of the Model B multiplied by exposure as 
an offset (Yan, Guszcza, Flynn, & Wu, 2009) and do not 
estimate it. Therefore, Model C takes form

( )( ) ( )0 1 1log logj j N NY X X o f f setβ β β+ += + + + +E

Intuitively, in this representation, the estimated 
coefficients 1, ,j Nβ β+   explain the signal that is not 
explained by the best-in-class risk model of the insurer 
(model B) and will also adjust for the earned exposure 
of the policy shorter than 1 year. We investigate if the 
values of these coefficients are non-zero, indicating 
that the variables we constructed provide additional 
predictive power to the model. We found that five out 
of seven newly created variables within this research 
were significant for predicting property damage MTPL 
claim frequency model (on top of many other rating 
variables used in the best-in-class insurer’s model). We 
report their p-values in Table 1; unfortunately, the data 
provider did not authorise us to publish the significant 
levels or corresponding estimated model coefficients. 
Definitely more research would be needed for testing 
joint significance of all five selected variables, but the 
aim of the article is more general—to verify if there is 
any information in the satellite and Street View images 
that can be predictive of motor claim frequency and is 
not being captured by the existing risk factors.

To do so, we refit each of A, B and C models on an 
80% train sample and check its predictive power on a 20% 
test sample through the corresponding Gini coefficient. 
We observe a significant variability of Gini coefficient on 
test sample—in particular for model A (null model with 
intercept only and no other variables selected) it varies 
from 20 to 38% within 20 resampling trials. We interpret 
it as the evidence that the dataset provided is extremely 
small (20,000 records) for modelling such rare events 
as property damage claims within MTPL insurance 
(average frequency of 5%).

Despite the high volatility of data, adding our five 
simple variables to the insurer’s model improves its 
performance in 18 out of 20 resampling trials and the 
average improvement of the Gini coefficient is nearly 2 
percentage points (from 38.2% to 40.1%). To put this value 
into perspective, the best-in-class insurer’s model fitted 
on much bigger dataset and including a broad selection 
of variables (e.g. driver characteristics, car characteristics, 
claim history and geographical zones based on the client’s 
zip-code) improves the Gini coefficient versus null model 
by 8 percentage points from ~30% to ~38% (Figure 3).

3 Discussion

We found that features visible on a picture of a house can 
be predictive of car accident risk, independently from 
classically used variables such as age, or zip code. This 
finding is not only a step towards more granular risk 
prediction models, but also illustrates a novel approach 
to social science, where the real-world granular data is 
collected and analysed at scale.

Tab. 1: Statistics for seven newly created variables—original granularity, inter-rater reliability of 4 selected annotators on the common 
set of 500 observations and significance in our risk model after applying necessary simplifications.

Variable Original granularity Inter-rater reliability Risk model
Fleiss’ kappa Interpretation Granularity after simplification p-value

Neighbourhood type Seven types, multi-choice 0.52 Moderate agreement 2 00.01

Building density Scale 1–5 0.50 Moderate agreement Not significant

Street View quality Good/bad/missing 0.79 Substantial agreement 2 00.02

House type Five types, single-choice 0.69 Substantial agreement 2 00.01

House age Scale 1–3 0.51 Moderate agreement 2 00.03

House condition Scale 1–3 0.54 Moderate agreement 2 00.04

Wealth of residents Scale 1–10 0.32 Fair agreement Not significant
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From the practical perspective of insurance 
companies, the results we present are remarkably 
powerful, when compared to the best-in-class insurance 
model. Our 5 variables, containing already some bias 
from the imperfect annotation, improve Gini coefficient 
by nearly 2 percentage points, which is massive, 
compared to the improvement of 8 percentage points 
brought by numerous variables that the insurer has 
already been using in his best-in-class risk model. The 
insurance industry could be quickly followed by the 
banks, as there is a proven correlation between insurance 
risk models and credit risk scoring (Golden, Brockett, Ai, 
& Kellison, 2016). The approach itself to extract valuable 
information from Google Street View opens a variety 
of opportunities not only for the financial sector. Any 
company that collects clients’ addresses could adapt our 
methodology, and the deep learning technology enables 
to make it in an automated way on a massive scale 
(Zhou, Lapedriza, Xiao, Torralba, & Oliva, 2014).

Such a practice, however, raises the concerns about 
the privacy of data stored in publicly available Google 
Street View, Microsoft Bing Streetside, Mapillary, or 
equivalent privately held datasets like CycloMedia. The 
consent given by the clients to the company to store 
their addresses does not necessarily mean a consent to 

store information about the appearance of their houses. 
In particular, features of the house may be a proxy of 
ethnicity, religion or other characteristics associated 
with a social status of a person (Braver, 2003; Gillis, 
1974), which are forbidden by the law to be used for 
any discrimination, for example, price discrimination in 
certain jurisdictions (Gaulding, 1994). Fast development 
of modern data collection and computational techniques 
allows for the unprecedented exploitation of various 
data of clients being not even aware of it (Blitz, 2012), 
and the development of corresponding legislation in this 
matter seems to be outpaced.

The methods we present could be substantially 
improved by employing more annotators for the same 
set of the images. Potentially, the average or ensemble 
of their answers would match the reality better than 
an annotation of a single person (Levenson, Krupinski, 
Navarro, & Wasserman, 2015; Tran-Thanh, Stein, Rogers, 
& Jennings, 2014). Another limitation is the small size of 
the dataset provided by the insurance company, but we 
reduced this problem using bootstrapping and by using 
elementary modelling techniques, like the GLMs.

There is a question if we could extrapolate our 
findings on countries other than Poland. Because of 
historical reasons, the close neighbours in Poland may 

Fig. 3: Gini coefficients obtained on 20% test sample in 20 bootstrapping trials from the null model (A), the best-in-class insurer’s model 
(B) and our model with newly created variables (C).
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have a very different socio-economic profile, and there is 
a significant heterogeneity of house types and conditions 
within the same zip-code. In the Western countries, the 
architecture might be more homogeneous; therefore, the 
granular information at the address level might not add 
much value on top of the statistics aggregated at the zip-
code level.

4 Materials and methods

In this article, we describe a sample dataset obtained 
from the insurance company and the methodology for 
creating new variables from Google Street View and 
checking their impact on the MTPL risk prediction.

4.1 Dataset provided by the insurer

We examine a motor insurance dataset of 20,000 
records—a random sample of an insurer’s portfolio 
written in Poland from January 2012 to December 2015.

One record represents one insurance policy covering 
MTPL. Each record has the following characteristics 
attached:
-	 its risk exposure from 2013 to 2015 (fraction of a year 

that policy was active during the period 2013–2015)
-	 expected property damage claim frequency for that 

policy, estimated by the current, best-in-class risk 
model of the insurance company

-	 zip-code of the declared main driver of the car (used 
by the insurer to derive geographical zones)

-	 a set of four various addresses:
A.	 registered address of the policyholder
B.	 mail address of the policyholder
C.	 registered address of the car owner
D.	 mail address of the car owner
-	 the property damage claim count incurred in 

2013–2015 from that policy and reported before 28 
February, 2016.
Note, that there is a natural lag of reporting insurance 

claims to the insurer, but property damage claims from 
MTPL cover are rather quickly reported in Poland—
95% of property damage claim are notified within first 
3 months from accident occurrence, so we may assume 
that the observed claim count in our dataset is very close 
to the ultimate one.

MTPL insurance in Poland is attached to the car, 
not to the driver. The policy could also be purchased 
by a person who is neither a driver nor a car owner. 
Therefore, in theory, all four addresses could be different 
and could have a different zip-code than the one taken 
for the geographical zone. In practice, however, they 
have a lot in common:
-	 84% of policies have all A, B, C and D addresses the 

same
-	 88% of policies have common A and B addresses
-	 96% of policies have common A and C addresses
-	 96% of policies have common B and D addresses
-	 75% of policies have common zip-code A and zip-

code of the main driver
-	 77% of policies have common zip-code B and zip-

code of the main driver

For this study, we needed to select one address as the 
primary one, so we decided to select address B for the 
following reasons:
-	 The policyholder is most likely a person who is 

responsible for maintenance of the car and is actively 
using it (apart from the main driver)

-	 Mail address is most likely the up-to-date address of 
residence, while the registered address is often the 
one declared in the person’s ID (not updated often 
as there is no legal obligation for it to reflect the 
actual residence)

On the basis of the address B, some data cleansing has 
been done—129 records out of 20,000 were removed 
from the sample as the address was either foreign or 
could not be found on Google Maps (Table 2).

In addition, we checked claims data for any 
outliers—there is only one record with three claims 
(where earned exposure is 0.2), and there are no records 
of four or more claims. Such a thin tail of our claim count 
distribution along with a high representation of no claim 
policies, and let us assume that our claims data follow 
Poisson distribution—a classical distribution assumed in 
the actuarial literature for rare events like car accidents 
(Goldburd, Khare, & Tevet, 2016). To confirm it, we 
conducted a formal test (a Chi-squared goodness-of-
fit test). The test statistic 2X  is 0.08, which determines 
a p-value above 50% (from the distribution of the 2X  
statistic with 1 degree of freedom). We cannot, therefore, 
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reject the null hypothesis that the claims follow the 
Poisson distribution (Table 3).

4.2 The process of creating new variables 
from Google Satellite View and Google 
Street View based on the address provided

The dataset examined in this article is a random sample 
of the insurer’s portfolio; therefore, the geographical 
distribution of our addresses reflects the footprint of 
the insurer. It covers the whole territory of Poland with 
certain concentrations of policies in the big cities—
Warszawa, Katowice, Kraków, Gdańsk, Szczecin, 
Poznań, Wrocław and Łódź (Figure 4).

For each of 19,871 addresses from the dataset, we 
have collected an image from Google Satellite View and 
an image from Google Street View (when available). 
We selected a random subsample of 500 addresses and 
asked 6 experts to annotate images from this subsample 
independently. They were supposed to annotate the 
following characteristics:

1)	 From Google Satellite View:
a.	 Types of houses and greenery prevailing in the 

neighbourhood (detached houses, terraced houses, 
blocks of flats, fields and forest)

b.	 Building density (on a scale 1–5)
2)	 From Google Street View:
a	 Street view quality (OK; not provided by Google; 

provided but its quality does not allow for 
annotation)

b	 Type of the house (detached house, terraced house, 
low/medium/high-rise block of flats)

c	 Age of the house (old, medium and new)
d	 The condition of the house (good, medium and bad)
e	 Wealth of the residents (on a scale 1–10)

Four out of six annotators gave quite consistent answers 
for the common subsample of 500 addresses. Fleiss’ 
kappa statistics (Table 1) indicate mostly moderate 
agreement among them. We asked these four annotators 
to continue annotating remaining 19,371 addresses, but 
this time each annotator was given a separate set of 
addresses, not overlapping with the addresses of other 
annotators. After collecting all annotations, we compared 
the distributions of labels among annotators. Assessing 
the wealth of house’ residents must be too subjective as 
its distribution varies significantly among annotators. 
Small differences identified in the two other variables, 
namely house age and house condition, were corrected 
by normalising the distributions among the annotators 
to match the mean and the standard deviation. Basic 
statistics of the variables after all corrections is shown 
in Figure 5.

It is worth noting that for 22% of addresses, there 
was no Google Street View available. These addresses 
were either in very remote locations or the road leading 
to them was not open to the public. Other 16% of 
addresses had Google Street View that did not allow 
for proper annotation of the house, for various reasons: 
the Google camera was directed at the wrong side of the 
road, there was an obstacle (e.g. a tree, a fence and an 
overtaking bus) that covered the house. As a result, only 
63% of all addresses had proper Google Street View, and 
thus,  variables, such as house type, the age of the house, 
condition of the house and wealth of the residents of 
the house, were properly annotated. Variables, such as 
neighbourhood type and building density, are fulfilled 

Tab. 2: Summary statistics of the dataset—before and after cleansing.

Original 
database

After data 
cleansing

Number of polices 20,000 19,871

Risk exposure 11,349 11,209

MTPL PD claim count 571 570

Observed MTPL PD 
frequency

5,03% 5,09%

Tab. 3: Data for calculation of 2X  statistic for hypothesis 
verification whether claims in our dataset follow the Poisson 
distribution. On average 3.9%λ =  and the corresponding 

2 0.08=X  with 1 degree of freedom.

Number 
of claims

Observed 
exposure 
(O)

Expected 
prob. 

( )P X k=

Expected 
exposure 
(E)

2( ) /E O E-

0 10,784 96% 10,785 0,00

1 417 4% 416 0,01

2 7 0% 8 0,08

All 11,209
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Fig. 4: Geolocation of the addresses from the dataset examined in this paper.

Fig. 5: Distribution of labels and corresponding observed claim frequency for the variables generated for this study.
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in 100% as they are based on the Google Satellite View 
that was available for all observations from the dataset.

4.3 Methodology for checking the 
significance of the newly created variables 
in the risk model

In the previous section, we have presented the univariate 
claim frequency variable by variable (Figure 5).  
Some of the segments appear to have claim frequency 
outstanding from the population average, for example, 
relatively new houses, houses in bad condition, mid-rise 
blocks of flats, or houses surrounded by blocks of flats 
with no signs of greenery.

The outstanding claim frequency can be, however, 
driven by another variable that is already controlled by 
the risk model of the insurance company. For example, 
people living in the new houses can be relatively young, 
and driver’s age is a classical ratemaking variable for 
motor insurance. There could be also some correlations 
among the newly created variables themselves, for 
example, a mid-rise block of flats is more likely to be 
surrounded by other blocks of flats rather than detached 
houses and fields. To fairly assess the impact of the 
newly created variables for risk prediction, we need to 
use a multivariate method that considers all selected 
variables simultaneously and automatically adjusts for 
exposure correlations between them.

Such a method is the GLM that has been widely 
adopted by the insurance pricing practitioners around 
the world (Cizek, Härdle, & Weron, 2005; Werner & 
Modlin, 2016, 176-183). GLMs extend linear models 
by allowing distributions of error terms other than 
Gaussian. In particular, residuals of models in insurance 
are typically assumed to follow Poisson or Gamma 
distributions. Despite this relaxation of assumptions 
on error terms, classical maximum likelihood estimates 
can be computed, after transforming the model with a 
so-called link function. Moreover, the application of log 
link function makes GLM coefficients interpretable and 
could be directly used for risk premium calculation. For 
these reasons, GLMs remain the most prevalent statistical 
tool in insurance, despite the growing popularity of 
complex machine learning models in other disciplines 
of science.

4.4 Generalized linear models

We assume following the probabilistic model of claim 
frequency (defined as the number of claims divided by 
risk exposure):

( )( ) ( )( )log log / expf Y osure Xβ= =E E

where Y is a number of property damage claims 
within the MTPL insurance that follows the Poisson 
distribution, X is a vector of independent variables and 
Beta’s are corresponding coefficients to be estimated. 
Assuming N independent variables, the model formula 
can be written as follows:

( )( ) ( )0 1 1log logN NE Y X X exposureβ β β= + ∗ + + +

An analogical formula is assumed for the best-in-class 
insurer’s model, and its realisation was provided for 
each of the records from our dataset. We can then replace 
a part of the model formula by provided expected 
frequency that does not require estimation. Assuming 
the insurer uses j independent variables in the model 
(where j<N), our model formula transforms as follows:

( )( ) ( )0 1 1log logj j N NY X X o f f setβ β β+ += + + + +E

We estimate such a model formula in R package. The 
variables are being added to the model step by step, 
and the necessary grouping of levels is being made 
meanwhile to achieve the most robust results. The 
modelling process is iterated until all factors used in the 
model appear significant (p-value < 0.05).

4.5 Model evaluation

Once the modelling process is finished, we validate the 
model by refitting it on 80% train sample and checking 
its performance on 20% test sample through the Gini 
coefficient. Gini coefficient is most commonly known as 
a measure of the inequality of income, but it has been 
adopted by insurance practitioners as a metric for model 
validation and model comparison (Frees, Meyers, & 
Cummings, 2011). It is computed as follows:
1.	 The policies in 20% of test sample are sorted from 

the lowest to the highest claim frequency expected 
by the model fitted on the 80% of train sample
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2.	 The cumulative observed claim count from sorted 
policies in 20% of test sample is plotted on the graph 
(representing inequality of risk distribution in the 
population, analogically to inequality of wealth 
distribution in Lorenz curve (Lorenz, 1905))

3.	 Gini coefficient is computed as the area between 
the Lorenz curve and the no-discrimination line 
multiplied by 2 (where the Lorenz curve is described 
in point 2 and illustrated in Figure 6) (Gini, 1921)

Our preliminary analysis has shown the variability of 
the Gini coefficient due to the small size of the dataset 
provided. To reduce this variability in the analysis of 
model performance, we compute the estimates of the 
Gini coefficient from 20 resampling trials, each time 
randomly assigning observations to train and test set 
from the beginning. 
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