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Combining forecasts? Keep it simple

Abstract 
This study contrasts GARCH models with diverse combined forecast techniques for Commodities Value at Risk (VaR) 
modeling, aiming to enhance accuracy and provide novel insights. Employing daily returns data from 2000 to 2020 for 
gold, silver, oil, gas, and copper, various combination methods are evaluated using the Model Confidence Set (MCS) 
procedure.
Results show individual models excel in forecasting VaR at a 0.975 confidence level, while combined methods 
outperform at 0.99 confidence. Especially during high uncertainty, as during COVID-19, combined forecasts prove more 
effective. Surprisingly, simple methods such as mean or lowest VaR yield optimal results, highlighting their efficacy.
This study contributes by offering a broad comparison of forecasting methods, covering a substantial period, and 
dissecting crisis and prosperity phases. This advances understanding in financial forecasting, benefiting both 
academia and practitioners.
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1. Introduction

The accuracy and reliability of models in predicting 
Value at Risk (VaR) are significantly contingent upon 
the quality and nature of the underlying data. While 
models exhibiting parsimony might demonstrate 
robust performance during periods of stable 
economic conditions, their efficacy could diminish 
when confronted with heightened market volatility 
(Angabini & Wasiuzzaman, 2011; Bhowmik & Wand, 
2020). Conversely, extensively parameterised models 
could prove fitting during times of elevated volatility, 
but may not exhibit the same appropriateness during 
phases of market tranquillity (Laurent et al., 2012; 
Bhowmik & Wand, 2020). In terms of investigation of 
the selection of different VaR models for daily energy 
commodities returns there were a lot of articles using 
standalone models and some combinations of forecasts. 
Among others, Laporta et al. (2018) considered GARCH, 

EGARCH, GJR-GARCH, Generalised Autoregressive 
Score (GAS), Conditional Autoregressive Value at Risk 
(CAViaR), and a Dynamic Quantile Regression (DQR) 
model. They then pooled information from each model 
using a weighted average approach. The empirical 
analysis was conducted on seven energy commodities. 
The results showed that the quantile approach (i.e., 
the CAViaR and DQR models) outperforms all others 
for all series considered and that VaR aggregation 
yields better results. Also, Andreani et al. (2021) used 
a method that combines different types of data to 
analyse daily volatility and correlations among energy 
commodities. Then, they compared their approach to 
existing models that ignore the pandemic’s impact. 
They find that their method is better in assessing 
the pandemic’s effects on energy market interactions. 
However, to date, no solitary model or method has 
emerged as the preeminent choice within the realm of 
VaR forecasting, given the inherent complexities and 
multifaceted dynamics at play (Bernardi & Catania, 
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2016; Žiković et al., 2015; Bayer, 2018; Buczyński & 
Chlebus, 2018).

A potential avenue to address this challenge could 
involve the development of more intricate models 
tailored to closely align with prevailing economic 
conditions, or alternatively, the amalgamation of 
multiple forecasts. Substantial empirical evidence 
underscores the superiority of forecast combinations 
compared to individual models (Jeon & Taylor, 2013; 
Bayer, 2018; Taylor, 2020). Various studies highlight 
that across diverse assets, model typologies, and 
evaluation periods, fused forecasts yield heightened 
precision, positioning them within the ‘green zone’ 
criteria stipulated by Basel II regulations (Halbleib 
& Pohlmeier, 2012; Fameliti & Skintzi, 2020). 
Nevertheless, earlier scholarship challenges the notion 
of enhanced predictive accuracy through forecast 
amalgamation (Armstrong, 1989; Terui & Van Dijk, 
2002).

Timmermann (2006) presents a compelling 
rationale for the fusion of forecasts to stabilise and 
enhance the predictive aptitude of standalone models. 
Primarily, the amalgamation of forecasts originating 
from varying model assumptions, specifications, 
or information sets offers distinct advantages. 
Additionally, these blended forecasts exhibit 
robustness in the face of structural disruptions. Lastly, 
the potential repercussions of model mis-specification 
are mitigated through the confluence of predictions 
derived from a multitude of models.

Numerous methodologies for amalgamating 
forecasts in the context of VaR have been explored 
(Giacomini & Komunjer, 2005; McAleer et al., 2010; 
Huang & Lee, 2013; Parot et al., 2019). However, 
the scholarly landscape lacks a comprehensive 
juxtaposition of forecast accuracy achieved through 
diverse combination techniques for VaR. This present 
study endeavours to address this gap by conducting 
a comparative analysis of VaR forecasts concerning 
commodity prices, including gold, silver, copper, 
oil, and gas. The investigation encompasses both 
standalone methods, namely GARCH, GARCH-t, 
GARCH-st, QML-GARCH, and Indirect GARCH 
(CaViaR), as well as fused forecasts achieved through 
several approaches.

Ghoddusi et al. (2019) provides a comprehensive 
review of the literature on the applications of machine 
learning (ML) in energy economics and finance. 
The authors critically review more than 130 articles 
published between 2005 and 2018 and identify 

applications of ML in areas such as predicting energy 
prices (e.g., crude oil, natural gas, and power), demand 
forecasting, risk management, trading strategies, data 
processing, and analysing macro/energy trends. The 
authors also discuss the achievements and limitations 
of existing literature and identify current gaps while 
offering some suggestions for future research.

Applied combined models also include the 
application of machine learning techniques that in 
financial risk management has emerged as a ground-
breaking approach, introducing new dimensions 
of accuracy and adaptability (Aziz & Dowling, 
2019; Mashrur et al., 2020). By leveraging advanced 
algorithms and data-driven methodologies, machine 
learning offers the capability to process vast amounts 
of financial data in real time, to uncover intricate 
patterns, and to generate forecasts with heightened 
precision (Rundo et al., 2019; Wasserbacher & Spindler, 
2022). This fusion not only promises to address the 
limitations of individual models in varying market 
conditions but also aligns with the contemporary 
drive towards more sophisticated and data-driven risk 
assessment strategies.

The comparative evaluation is conducted across 
various temporal segments: an entire period spanning 
from mid-2004 to 2020, phases characterised by 
market tranquillity (July 2004 to 2006, 2009 to 2013, 
and 2016 to 2019), periods of market upheaval (2007 to 
2008, 2014 to 2015, March 2020 to December 2020), 
and a distinct interval marked by the emergence of 
the coronavirus pandemic (March 2020 to December 
2020). The primary objective of this study is to assess 
the accuracy of the aforementioned forecast methods 
within these delineated timeframes and under 
differing market conditions.

The choice to focus on commodity indices, such as 
gold, silver, copper, oil, and gas, warrants clarification. 
While other indices like the S&P 500 could be equally 
relevant, commodities hold distinct characteristics 
that make them valuable to study. Commodity markets 
often respond differently to economic and geopolitical 
factors (Stuermer & Valckx, 2021; Xiao et al., 2022), 
presenting unique challenges and opportunities for 
risk prediction. Thus, our investigation into VaR 
forecasting extends to these commodities to provide 
a comprehensive understanding of their specific 
dynamics.

According to the aim of the study, the following 
hypotheses were formulated:
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Hypothesis 1. Over the entire period, forecast combining 

methods will be more accurate than individual methods. 
This hypothesis is based on the fact that individual 
methods often fail during three periods of crisis 
throughout the whole period.

Hypothesis 2. In the period of calm, forecast combining 

methods will prove to be more accurate than individual 

methods. This is based on the fact that combining 
methods can utilise the best features of each model 
by weighing them, and therefore produce more 
accurate results.

Hypothesis 3. In times of crisis, forecast combining 

methods will turn out to be more accurate than individual 

methods. The justification for this is similar to that of 
Hypothesis 2.

Hypothesis 4. During the period of data available for 

the current coronavirus pandemic, forecast combining 

methods will be more accurate than standalone VaR. As 
above.

It should be noted that in all hypotheses, the 
greater accuracy of the forecast combining methods is 
interpreted as the superiority of at least one of these 
methods, not all of them. As most of the methods 
are being used for the first time for combining VaR 
forecasts, hypotheses regarding the primacy of one of 
the combination methods were not stated.

The remainder of this paper is organised as follows. 
Section 2 introduces the methodology and provides 
details on individual methods, ways of combining 
forecast, and exploratory data analysis. Section 3 
presents the results of the empirical application. 
Section 4 consists of a conclusion and an outlook on 
potential future research areas.

2. Methodology

2.1. Data

The data used in this study were futures prices for 
gold, silver, copper, oil, and gas obtained from Yahoo 
Finance (COMEX Gold futures [GC]. COMEX Silver 
futures [SI]. COMEX Copper futures [HG]. NYMEX 
WTI Crude Oil futures [CL]. NYMEX Gas futures 
[NG]). The data were collected for the period from 
01/09/2000 to 01/12/2020, comprising a total of 
6,215 records. Log returns were calculated for each 
commodity based on the adjusted price.

It is worth noting that the number of missing 
values for each financial instrument varied, ranging 
from 1079 to 1138. Most of the missing values are 
for Sundays, when there is no listing on the stock 
exchange. Therefore, observations for Sundays were 
removed. For the remaining missing values, the 
last available value was used to fill in the gaps. This 
approach has been shown to be as robust for time 
series data as other known data gap-filling methods 
(Caillault et al., 2017).

The study aims to assess VaR over a period of 
4157 days from 5 July 2004 to 1 December  2020. The 
VaR is assessed using a one-day-ahead with 99th and 
97.5th alpha levels. The model parameters are updated 
with each observation using a rolling window 
approach, where data from the last 1000 observations 
are used for estimation. This approach is commonly 
used and has been demonstrated to be robust for time 
series data (Caillault et al., 2017). The VaR assessment 
horizon is divided into two sub-periods – the calm 
period and the crisis period – to evaluate models for 
situations with different volatilities. The division of 
the assessment period is shown in Figure 1, which 
shows the logarithmic returns for each commodity.

The crisis period is marked by three dark grey 
areas, the first from 1 January 2007 to 31 December 
2008, covering the 2007–2009 financial crisis, when 
a significant increase in commodities prices was 
observed due to investors’ shift towards investing in 
commodities (Phillips & Yu, 2011). The second period 
of the crisis, from 1 January 2014 to 31 December 2015, 
was characterised by frequent drops in prices, mainly 
due to a surplus of supply in relation to demand, 
slowdown in the development of the world economy, 
and a boom on the stock market (Dudziński, 2016). 
The third period of the crisis, from 1 January 2020 to 
1 December 2020, was marked by the outbreak of the 
COVID-19 pandemic, which significantly disrupted 
the dynamics of prices of all raw materials (Mensi et 
al., 2020).

The remaining time is represented by light grey 
areas, for example, from 5 July 2004 to 31 December 
2006, from 1 January 2009 to 31 December 2013, 
and from 1 January 2016 to 31 December 2019. 
Unfortunately, for gas throughout the entire VaR 
testing period, the variability is consistently high, 
and for copper, it is stably low, which may result in a 
smaller benefit from the use of the proposed forecast 
combining methods.
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2.2. Standalone models

In this research, we employed a variety of models to 
estimate the Value-at-Risk (VaR) of commodities. The 
selection of these models was driven by the need to 
address the limitations of assuming normality, which 
is often impractical for real-world financial scenarios, 
as highlighted by Holthausen & Hughes (1978), 
Szakmary et al. (2010), and Youssef et al. (2015). 

Firstly, the GARCH process (Bollerslev, 1986) 
was employed. The GARCH process is rooted in the 
autoregressive nature of volatility, modeling volatility 
as a function of past squared returns. This model 
assumes constant conditional variance and is governed 
by two key components: the autoregressive parameter 
(ARCH term) and the moving average parameter 
(GARCH term). It has the advantage of being simple, 
but its limitation lies in its inability to capture more 
complex patterns in volatility, such as asymmetry or 
fat tails.

Next, we used the GARCH-t model (Bollerslev, 
1987) which introduces the assumption that the 
errors follow a standardised Student t-distribution. 
This accommodates the presence of outliers and 

heavy tails in financial data, making it suitable 
for situations where extreme events are more 
likely. However, this flexibility comes at the cost of 
increased model complexity. The GARCH-st model 
further extends the GARCH-t model by considering 
a skewed t-Student distribution for the errors. This 
additional parameter captures skewness in the return 
distribution, making it well-suited for cases where 
volatility exhibits asymmetric behaviour. However, 
the model’s complexity increases with the inclusion of 
the skewness parameter.

To further enrich our analysis, we introduced 
the Quasi-Maximum Likelihood GARCH (QML-
GARCH) model based on the works of Bollerslev & 
Woolridge (1992) and Engle & Manganelli (2004). 
The QML-GARCH model estimates conditional 
variance using the GARCH process and derives VaR 
by quantiles of standardised residuals. This approach 
sidesteps the need to explicitly model the distribution 
of returns, offering simplicity. However, it assumes 
that standardised residuals are normally distributed, 
potentially limiting its performance in capturing non-
normal features of financial data.

Figure 1. Returns for commodities (light grey for calm period, dark grey for crisis period)
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Lastly, we used the Conditional Autoregressive 
Value-at-Risk (CAViaR) model (Engle & Manganelli, 
2004), which directly focuses on modeling quantiles 
of the distribution rather than the entire distribution 
itself. This approach is based on the notion that 
volatility clusters in financial data. It proves beneficial 
when capturing the inherent autocorrelation in 
volatility, but it disregards modeling the entire return 
distribution.

Each model exhibits specific strengths and 
limitations. The GARCH process might struggle 
to capture more intricate volatility patterns, while 
the GARCH-t and GARCH-st models could face 
challenges with increased complexity. The QML-
GARCH model’s reliance on normality assumptions 
could hinder its performance in cases of non-
normality. The CAViaR model, while accounting for 
volatility autocorrelation, doesn’t address the entire 
return distribution. It is crucial to acknowledge these 
limitations when selecting a model for a given dataset.

Combining the forecasts of various GARCH 
models holds significant value due to the distinct 
strengths and limitations of each individual model. 
By merging models’ forecasts, we leverage the diverse 
insights they provide, leading to enhanced accuracy in 
VaR estimates. This approach addresses the dynamic 
and uncertain nature of financial markets while 
mitigating the shortcomings inherent in any single 
model. Ultimately, forecast combination empowers 
more robust risk management by delivering 
comprehensive and adaptable VaR assessments that 
align with complex market dynamics.

In order to select the optimal parameters for each 
model, we used the Akaike Information Criterion 
(AIC), which is commonly used in selecting models 
(Tsay, 2005). All models met the following conditions: 
(1) the sum of the parameters was lower than 1, (2) 
all of the parameters were statistically significant, (3) 
the Ljung-Box test on standardised squared residuals 
indicated that standardised residuals were white 
noise (ARCH effect removal), and (4) the p-value of 
the LM ARCH test indicated no ARCH effects among 
the residuals of the model. If autocorrelation was 
observed in the residuals, we added the Autoregressive 
Moving Average (ARMA) process to the GARCH, 
creating the ARMA-GARCH and eliminating the 
autocorrelation.

2.3. Combined forecasts

2.3.1. Mean of forecast

In previous studies, researchers have often utilised 
the simple mean of all forecasts obtained to combine 
forecasts, due to its simplicity. This approach has 
performed well in VaR forecasting (Clemen & 
Winkler, 1986; Timmermann, 2006; Halbleib & 
Pohlmeier, 2012; Huang & Lee, 2013). However, if the 
values are correlated, then combining them with the 
mean captures the same information again, resulting 
in a mere bias-variance trade-off (Hastie, Tibshirani, 
& Friedman, 2011, p. 223). Consequently, an increase 
in the variance increases the expected square error 
of the prediction. It is, therefore, better to consider 
the correlations between the forecasts and select the 
least correlated ones. Thus, the model with the best 
in-sample backtesting results is combined with the 
forecast from the model with the lowest correlation. 
For this method two VaR models are chosen by 
assessing the mean performance of the best model 
determined through the MCS procedure during a 
specified period. Additionally, the model with the 
least correlation to this best-performing model is 
selected (for details see section 3.1).

2.3.2. The lowest VaR

This method offers the advantage of always selecting 
the most conservative forecast, which may be 
particularly useful during crisis periods. However, 
a potential disadvantage of this approach is the 
possibility of consistently overestimating VaR, even 
during calm periods, which is not desirable. Previous 
studies by McAleer et al. (2010) and Buczyński & 
Chlebus (2019) have successfully applied this method. 
This model forecasts from all models that were 
considered as input.

2.3.3. The highest VaR

This method is useful when all measures turn out 
to be overly conservative regardless of time. In such 
cases, using the most liberal measure could be a good 
solution. However, it also poses a risk of constant 
underestimation of VaR. This approach has been 
previously employed by McAleer et al. (2010) and 
Buczyński & Chlebus (2019). For this model forecasts 
from all models were considered as input.
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2.3.4. Conditional quantile optimisation method

This method models a conditional p-order quantile 
using a linear combination of two known quartiles 
determined using individual methods (Giacomini & 
Komunjer, 2005):

     
𝑄𝑄𝑄𝑄𝑝𝑝𝑝𝑝(𝑟𝑟𝑟𝑟𝑇𝑇𝑇𝑇+𝑠𝑠𝑠𝑠) = 𝛽𝛽𝛽𝛽𝑇𝑇𝑇𝑇,0 + 𝛽𝛽𝛽𝛽 ∗ 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑇𝑇𝑇𝑇+𝑠𝑠𝑠𝑠1 + �1 − 𝛽𝛽𝛽𝛽𝑇𝑇𝑇𝑇,1� ∗ 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑇𝑇𝑇𝑇+𝑠𝑠𝑠𝑠2 ≡ 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉12,𝑇𝑇𝑇𝑇+𝑠𝑠𝑠𝑠 ∗ 𝛽𝛽𝛽𝛽𝑇𝑇𝑇𝑇 = 1,2, … , 𝑆𝑆𝑆𝑆   (1) 

(1)𝑄𝑄𝑄𝑄𝑝𝑝𝑝𝑝(𝑟𝑟𝑟𝑟𝑇𝑇𝑇𝑇+𝑠𝑠𝑠𝑠) = 𝛽𝛽𝛽𝛽𝑇𝑇𝑇𝑇,0 + 𝛽𝛽𝛽𝛽 ∗ 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑇𝑇𝑇𝑇+𝑠𝑠𝑠𝑠1 + �1 − 𝛽𝛽𝛽𝛽𝑇𝑇𝑇𝑇,1� ∗ 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑇𝑇𝑇𝑇+𝑠𝑠𝑠𝑠2 ≡ 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉12,𝑇𝑇𝑇𝑇+𝑠𝑠𝑠𝑠 ∗ 𝛽𝛽𝛽𝛽𝑇𝑇𝑇𝑇 = 1,2, … , 𝑆𝑆𝑆𝑆   (1) 

Where: VaR
1

2,T+s=(1,VaR
1
T+s, VaR

2
T+s)  a vector of 

VaR predicted from standalone models, β
T

=(β
T,0, 

β
T,1),(1-β

T,1)) a vector of parameters for VaR predicted 
from standalone models

The vector of weights λ
T

 is determined by solving the 
following minimisation problem:

  

�̂�𝜆𝜆𝜆𝑇𝑇𝑇𝑇 =  argmin
𝜆𝜆𝜆𝜆𝑇𝑇𝑇𝑇

{∑ 𝑝𝑝𝑝𝑝 ∗ �𝑟𝑟𝑟𝑟𝑇𝑇𝑇𝑇 − 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉12,𝑇𝑇𝑇𝑇 ∗ 𝛽𝛽𝛽𝛽𝑇𝑇𝑇𝑇�𝑟𝑟𝑟𝑟𝑇𝑇𝑇𝑇≥𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉12,𝑇𝑇𝑇𝑇∗𝜆𝜆𝜆𝜆𝑇𝑇𝑇𝑇 +
∑ (1 − 𝑝𝑝𝑝𝑝) ∗ �𝑟𝑟𝑟𝑟𝑇𝑇𝑇𝑇 − 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉12,𝑇𝑇𝑇𝑇 ∗ 𝛽𝛽𝛽𝛽𝑇𝑇𝑇𝑇�𝑟𝑟𝑟𝑟𝑇𝑇𝑇𝑇<𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉12,𝑇𝑇𝑇𝑇∗𝜆𝜆𝜆𝜆𝑇𝑇𝑇𝑇 }

                (2)  (2) 

Where r
T

 – returns for a particular commodity in time 
T.

The main advantage of the quantile regression 
approach is that it does not require explicit distribution 
assumptions for return data. The same forecasts as 
for the average were used here. For this method two 
models were chosen, as described in section 2.3.1.

2.3.5. Penalised quantile regression – LASSO

The least shrinkage and selection operator (LASSO) 
penalty is a popular regularisation method proposed 
by Tibshirani (1996) for variable selection. The LASSO 
method retains the advantages of best subset selection 
by providing a sparse solution, ensuring model 
stability, and providing objective estimates for large 
coefficients (Fan & Li, 2001). It encourages sparsity 
by shrinking some regression coefficients to exactly 
zero, leading to a simpler and more interpretable 
model. This characteristic is particularly valuable in 
situations where there are many predictors, and only 
a subset of them are truly relevant. LASSO’s ability to 
perform variable selection aids in identifying the most 
important features for the given task, which can lead 
to improved model generalisation and performance. 
Moreover, LASSO’s stability and objective estimates 
for large coefficients contribute to its efficacy in 
statistical modeling. For this method two models were 
chosen as described in section 2.3.1.

2.3.6. Penalised quantile regression – elastic net 

(EN)

The elastic net penalty, proposed by Bayer (2017), is a 
hybrid approach that combines the LASSO and ridge 
penalties. This combination strikes a balance between 
individual variable selection (as in LASSO) and 
grouping correlated variables together (as in ridge). 
The EN can be especially effective when dealing with 
multicollinearity among predictors. By setting some 
coefficients to zero and shrinking others, the elastic 
net retains the benefits of both LASSO and ridge, 
making it a versatile choice for various scenarios. The 
parameter that controls the trade-off between LASSO 
and ridge penalties can be tuned to achieve the desired 
level of sparsity and regularisation. The parameter 
that balances ridge and LASSO penalties was set to 0.5. 
For this method two models were chosen as described 
in section 2.3.1.

2.3.7. Quantile Random Forest (QRF)

Meinshausen & Ridgeway (2006) introduced the 
QRF, an extension of random forests, to model 
conditional quantiles. Empirical evidence suggests 
that its predictive power is competitive (Andreani et 
al., 2022). In this study, the influence is calculated by 
permuting the out-of-bag data and logging a forecast 
mean squared error for each tree. The same process is 
repeated after permuting each predictor variable, and 
the difference is averaged over all trees and normalised 
by the standard deviation of the differences (Grömping, 
2009). QRF’s ability to model conditional quantiles 
makes it well-suited for situations where capturing 
different parts of the response distribution is crucial, 
as opposed to just estimating the mean. For this model 
forecasts from all models were considered as input. 
The following hyperparameters were applied:

•	 Number of trees (the number of trees to grow) was 
set to 500.

•	 Number of randomly sampled predictors was set to 
the square root of the total number of predictors. 
This hyperparameter influenced the diversity of 
trees in the forest. 

•	 Minimum observations for split attempt was 5 
observations. Adjusting this parameter allowed for 
exploration of trade-offs between tree complexity 
and predictive accuracy.
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•	 Minimum observations in terminal node: The 
granularity of the resulting tree structure was 
controlled by setting a minimum of 1 observation 
in terminal nodes.

•	 Permutations for permutation importance: 
Three permutations were used for permutation 
importance calculations. This technique helps 
identify predictor variables that contribute 
significantly to the model’s performance. 

2.3.8. Generalised Boosted Regression (GBM) Model

GBM proposed by Friedman (2001) is a powerful tool 
for forecasting quantile distributions. The algorithm 
adds a new decision tree, referred to as a ‘weak learner’, 
at each iteration to best minimise the loss function. 
Iteration continues until the maximum number of 
iterations specified by the user is reached. One of 
the greatest practical advantages of using the GBM 
model is its flexibility and accuracy in forecasting. 
However, determining the influence of individual 
dependent variables on the final result in this method 
is challenging. To estimate the influence of inputs, we 
utilised the relative influence method by Friedman 
(2001). The GBM model can be effectively used in 
combining forecasts due to its inherent ability to handle 
ensemble learning and sequential model building. 
Combining forecasts from different models or sources 
can often lead to improved predictive accuracy and 
robustness, and the GBM model is well-suited for 
this purpose. The following hyperparameters were 
applied:

•	 The number of boosting iterations equal to 100. 
This hyperparameter refers to the number of 
boosting iterations or the number of decision 
trees that will be created in the ensemble.

•	 The maximum tree depth in the ensemble equal to 
1. This parameter controls the maximum depth of 
an individual decision tree within the ensemble.

•	 The minimum observations in a terminal node 
equal to 10. It sets the minimum number of 
observations required in a terminal (leaf) node of 
a decision tree. 

•	 The learning rate or shrinkage equal to 0.1. Also 
known as the learning rate, this parameter scales 
the contribution of each tree in the ensemble.

•	 The fraction of data for bagging equal to 0.5. 
This determines the proportion of the training 

data used for building each individual tree in the 
ensemble.

•	 The fraction of data used for training equal to 1. 
This hyperparameter specifies the fraction of the 
dataset used for training.

•	 The number of cross-validation folds (0 for no 
cross-validation) equal to 0. The number of cross-
validation folds used during model training.

•	 Verbose is a Boolean operator indicating whether 
to print progress equal to false. This determines 
whether the model’s training progress is printed 
during training.

•	 The number of CPU cores to be utilised equal to 
NULL. The number of CPU cores utilised during 
model training.

2.3.9. Quantile Regression Neural Network 

(QRNN)

The QRNN model (Cannon, 2010) has been proposed 
as a promising alternative to parametric ANN models 
for modeling extreme events (e.g., Pradeepkumar 
& Ravi, 2017). Method of calculation is presented in 
Figure 2. 

First, output from the j-th hidden-layer node g
j

(t) is 
given by applying the hyperbolic tangent, a sigmoidal 
transfer function, to the inner product between x

i

(t) 
and the hidden-layer weights w

ij

(h) plus the hidden-
layer bias b

j

(h). An estimate of the conditional quantile 
is then given by applying sigmoid transfer function to 
are the output-layer weights, w

j

(o), and is the output-
layer bias, b(o). One of the main advantages of the model 
is its ability to estimate the conditional quantiles of the 
response variable. This makes it valuable in scenarios 
where understanding extreme outcomes is crucial, 
such as in risk management. The model employs a 
combination of hidden layers and transfer functions 
to capture complex relationships in the data. However, 
the nonlinearity of the model can make interpreting 
the results more challenging than with linear models. 
One example is that James (2000) used daily exchange 
rates, comparing to GARCH-based quantile estimates. 
The results suggested that the QRRN offers a useful 
alternative for GARCH quantile forecasts. For QRNN 
the following hyperparameters were used:

•	 The parameter ‘tau’ represents the predicted 
quantile level. It determines the quantile of the 
predicted distribution that the model aims to 
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estimate. A chosen value of 0.5 corresponds to the 
median prediction.

•	 The ‘iter.max’ parameter equal to 5000 defines the 
maximum number of iterations that the training 
process of the QRNN model will undergo. It limits 
the number of optimisation steps taken during 
training to enhance convergence and prevent 
overfitting.

•	 The number of ‘trial equal to’ runs conducted 
for model fitting. Multiple trial runs can offer a 
more comprehensive evaluation of the model’s 
performance and provide a more stable estimate 
of its capabilities.

•	 The false ‘bag’ parameter determines whether 
bagging (Bootstrap Aggregating) is utilised during 
training.

•	 The ‘lower’ equal-to-infinity parameter sets 
the lower bound for predictions made by the 
model. This parameter ensures that the model’s 
predictions do not fall below a certain threshold, 
which can be crucial when dealing with certain 
types of data.

•	 The ‘init.range’ parameter equal to (-0.5, 0.5, 
-0.5, 0.5) represents the range within which the 
model’s weights are initialised. Proper weight 
initialisation is essential to ensure that the model 
starts with reasonable parameters, aiding faster 
convergence and better performance.

•	 The ‘monotone’ parameter equal to NULL 
introduces monotonicity constraints on predictors. 

•	 The ‘additive’ parameter equal to false enforces 
additive constraints on the model’s predictions.

•	 The ‘eps.seq’ (equal to a decreasing sequence of 
numbers. It starts with 2 raised to the power of -8 
and then continues with each subsequent number 
being smaller. The difference between each 
number is 2 raised to the power of -4.) defines a 
sequence of epsilon values used for ramp functions. 
Ramp functions are important in QRNN models 
to introduce non-linearity. The specified sequence 
controls the smoothness of the ramp functions.

•	 The parameters ‘Th’ (equal to sigmoid function) 
and ‘Th.prime’ are the default activation and 
derivative functions used within the QRNN model. 
These functions play a pivotal role in shaping the 

Figure 2. The diagram of QRNN model with four predictors and two hidden nodes
Source: Cannon, 2011
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behaviour of the model’s hidden units, determining 
how information flows through the network.

Described above hyperparameters were not 
optimised due to the calculation constraint and the 
willingness to present only the results for further 
development of this field.

The same as for standalone models for combining 
models, parameters were updated for each observation 
using a rolling window approach, where data from 
the last 1000 observations are used for estimation 
(Caillault et al., 2017).

The output for all models is the forecast prediction 
and for some of them (e.g., regressions) also weights, 
while for other the impact of particular prediction is 
assessed in another way (see section 3).

In summary, each of these regression models 
brings unique strengths to the table. LASSO and elastic 
net aid in variable selection and regularisation, QRF 
excels in capturing conditional quantiles, GBM offers 
flexibility and high accuracy, and QRNN is tailored for 
modeling extreme events and quantiles. The choice of 
model depends on the specific characteristics of the 
data and the goals of the analysis.

2.4. Backtesting

Backtesting is a crucial step in assessing the accuracy 
and reliability of financial models, particularly those 
used for risk measurement like VaR. It involves 
comparing the predicted outcomes of a model with 
the actual outcomes that occurred in the real world 
during a specific time period. In this context, the goal 
of backtesting is to evaluate how well the different 
forecasting models perform in estimating VaR.

2.4.1. Excess Ratio (ER) test

The Excess Ratio test is a backtesting technique that 
compares the proportion of times the actual loss 
exceeds the VaR estimate to the expected proportion. 
If the model is accurate, the actual losses exceeding VaR 
should be roughly in line with the expected proportion.

2.4.2. Kupiec test (UC)

The Kupiec test, proposed by Kupiec in 1995, is 
another backtesting method used to evaluate the 
accuracy of VaR forecasts. It focuses on the number of 

exceptions – instances where actual losses exceed the 
VaR estimate. The test assesses whether the number 
of exceptions matches the expected number based on 
the chosen confidence level.

2.4.3. Christoffersen test (CC)

The Christoffersen test, introduced by Christoffersen 
in 1998, is a more comprehensive backtesting approach 
that considers both the frequency of exceptions and 
the magnitude of excess losses. It takes into account 
the entire distribution of forecast errors to assess the 
model’s performance.

2.4.4. Dynamic Quantile test (DQ)

The Dynamic Quantile test, proposed by Engle 
& Manganelli in 2004, is designed to evaluate the 
conditional coverage property of VaR models. It 
assesses whether the VaR estimates are able to capture 
the changing volatility and risk in different market 
conditions.

2.4.5. Traffic Light Test (TL)

The Traffic Light test, introduced by the Basel 
Committee on Banking Supervision (BCBS) in 1996, 
is a simplified backtesting method that categorises 
model performance based on whether the actual loss is 
above or below the VaR estimate. It uses a traffic light 
system to indicate whether the model’s performance is 
‘green’, ‘yellow’, or ‘red’.

2.4.6. Model Confidence Set Procedure (MCS)

The Model Confidence Set Procedure, proposed by 
Hansen et al. in 2011, is a statistical technique used 
to compare and rank multiple models’ forecasting 
accuracy. It’s particularly useful when you have several 
competing models, as is the case in your context 
of combining forecasts for VaR. The procedure 
constructs a set of models that are likely to have high 
out-of-sample forecast accuracy. It helps determine 
which models are more likely to provide the best 
forecasts in the future, based on their historical 
performance. This method is often used to select the 
best models for forecasting (Laporta et al., 2018).
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In summary, the backtesting methods and 
the Model Confidence Set Procedure provide a 
comprehensive framework to assess the performance 
of different VaR forecasting models. They allow one to 
evaluate how well these models capture the actual risk 
and losses in financial markets and aid in the selection 
of the most reliable forecasting approach.

3. Results

3.1. Data analysis

To investigate the characteristics of returns for 
commodities, we computed basic statistics. Table 
1 presents the minimum and maximum values, 
skewness, kurtosis, and quantiles of daily logarithmic 
rate of return along with Jarque-Bera’s test value and 
its p-value (in parentheses).

As shown in Table 1, none of the commodities 
follow a normal distribution, and all have leptokurtic 
distributions (excess kurtosis far above 0). Additionally, 
the distributions are left-skewed for oil, gold, silver, 
and copper, and right-skewed for gas. This result is in 
line with the findings of previous studies (Tse, 2016) 
on gas. Oil has the highest kurtosis and skewness 
values, which can be attributed to the consistent rises 
in oil prices over the last 20 years, with sharp declines 
during bad economic times, a trend that was also 
observed for gold and silver.

Using the MCS procedure, the following models 
were obtained:

•	 Gold – GARCH(1,1), AR(1)-GARCH-t(1,1), AR(1)-
GARCH-st(1,1), QML-GARCH(1,1), Indirect 
GARCH(1,1),

•	 Silver – GARCH(1,2), AR(1)-GARCH-t(1,1), 
AR(1)-GARCH-st(1,1), AR(1)-QML-GARCH(1,1), 
Indirect GARCH(1,1),

•	 Oil – GARCH(1,1), GARCH-t(1,1), GARCH-st(1,1), 
QML-GARCH(1,1), Indirect GARCH(1,1),

•	 Gas – GARCH(1,1), GARCH-t(1,1), GARCH-st(1,1), 
QML-GARCH(1,1), Indirect GARCH(1,1),

•	 Copper – GARCH(1,1), GARCH-t(1,2), 
GARCH-st(1,1), QM-GARCH(1,1), Indirect 
GARCH(1,1).

In Figures 3 and 4, the relationship between 
forecast outcomes from distinct models is illustrated. 
Nevertheless, relying solely on correlation as the basis 
for selecting the most optimal forecast can result in 
suboptimal outcomes. To address this concern, we 
undertook a comprehensive approach. Specifically, 
we computed the average performance of the most 
proficient model utilising the MCS procedure during 
the in-sample period spanning from September 1, 
2000, to July 2, 2004. Subsequently, we determined 
the VaR forecast that exhibited the least correlation 
with this model. The preeminent average results for 
each commodity are as follows:

•	 For the gold market, the GARCH and CaViaR 
models yielded the best outcomes for both 
p-values, attaining a correlation of 0.93 for a 
p-value of 0.025 and 0.81 for a p-value of 0.01.

•	 In the silver market, employing the GARCH-st 
+ CaViaR models produced the optimal results, 
achieving a correlation of 0.87 for a p-value of 
0.025 and a correlation of 0.8 for a p-value of 0.01.

•	 Within the gas market, the GARCH-t + CaViaR 
models exhibited superior performance for both 

Table 1. Statistics of prices’ log-returns

Commodity Min. 1st Qu. Median Mean 3rd Qu. Max J-B test Skewness Ex. Kurtosis

Gold -0.0982 -0.0049 0.0005 0.0004 0.006 0.0864 6398 
(<0.001)

–0.2658 8.7160

Silver -0.1955 -0.0080 0.0011 0.0003 0.0090 0.1220 13942 
(<0.001)

–0.9263 10.8079

Oil -0.2799 -0.0128 0.0008 0.0001 0.0130 0.3196 52559 
(<0.001)

–1.9164 52.6291

Gas -0.1990 -0.1911 -0.0007 -0.0001 0.0173 0.3238 6833 
(<0.001)

0.5643 8.7537

Copper -0.1169 -0.0082 0.0002 0.0003 0.0089 0.1177 4279 
(<0.001)

–0.1731 7.6239
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p-values, yielding a correlation of 0.94 for a 
p-value of 0.025 and 0.89 for a p-value of 0.01.

•	 Similarly, for the oil market, the GARCH-t + 
CaViaR models were most effective, resulting in a 
correlation of 0.22 for a p-value of 0.025 and 0.27 
for a p-value of 0.01.

•	 Finally, in the copper market, the GARCH-st 
+ CaViaR models demonstrated the highest 
proficiency for both p-values, yielding a correlation 
of 0.93 for a p-value of 0.025 and 0.9 for a p-value 
of 0.01.

3.2. Empirical results for individual 

and combined methods

The analysis of the models began with an evaluation 
of the visual comparison between the predicted VaR 
values from different models and the actual observed 
returns.  Figure 5 presents a visual representation of 
log-returns and out-of-sample Value at Risk (VaR) 
sequences from specific models. Among these models, 
the CaViaR model stands out as the most cautious 
estimator for all considered assets. In situations where 
other models produce relatively higher VaR values, 
the CaViaR model consistently generates substantially 
lower estimates. This discrepancy is particularly 

Figure 3. Correlations between VaR forecasts for p-value = 0.025
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noticeable in cases such as gold or silver at a 0.99 
confidence level.

This tendency can likely be attributed to the fact 
that, across all models, the mean values fall within 
the range of CaViaR’s estimates. Consequently, the 
VaR estimates from the CaViaR model consistently 
position themselves between the CaViaR estimates 
and those of the alternative models.

Moreover, when applying quantile regression 
with elastic net regularisation, the resulting VaR 
forecasts appear flattened across the entire time span. 
This introduces the possibility of multiple instances 
where the VaR is exceeded.

Distinctly, the approach of gradient boosting 
quantile regression exhibits the most lenient VaR 
predictions (excluding the highest VaR instances). 
Conversely, the conditional quantile optimisation 
method assumes an intermediate position. However, 
an interesting observation emerges for oil and copper 
assets at a 0.99 confidence level, where this method 
tends to sustain lower VaR levels for extended 
durations.

Tables 2 through 11 herein present the outcomes 
derived from the backtesting process encompassing 
distinct assets, alongside various methodologies, at two 
discrete confidence levels, specifically 0.975 and 0.99. 
The tabulated information encompasses the findings 

Figure 4. Correlations between VaR forecasts for p-value = 0.01
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Figure 5. Returns and VaR forecast for confidence levels: 0.975 (on left) and 0.99 (on right)
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yielded by the ER, UC, CC, DQ, and TL tests. Notably, 
the results are organised with a delineation across 
four distinct temporal segments: the comprehensive 
evaluation span, the phase subsequent to crises, the 
crisis-interval proper, and the epoch of the ongoing 
coronavirus crisis.

Across the entire evaluation timeframe, it is 
discerned that for all commodities, there exists at 
minimum one individual methodology that exhibits 
satisfactory performance. This is indicated by the 
observation that at least one of the applied tests 
demonstrates a p-value surpassing 0.05, concomitant 
with a favourable outcome in the TL test. Particularly 
noteworthy is the consistent adherence to these 
conditions by the GARCH-st model, which consistently 
manifests compliance across all assets throughout the 
entirety of the assessment period.

Nevertheless, a singular instance of non-
conformity is observed with the CaViaR model. This 
model, while predominantly meeting the stipulated 
criteria, exhibits deviation in a solitary scenario – 
specifically, in the case of oil under the 0.99 confidence 
level. Furthermore, the GARCH-t model garners 
commendable results for the gold, gas, and copper 
assets. The standard GARCH model, conversely, aligns 
well solely with the oil asset at a confidence level of 
0.975, and with the gas asset under both confidence 
levels. It is also noteworthy that the QML-GARCH 
model exclusively demonstrates proficiency in the 
context of the gas asset at the prescribed confidence 
levels.

The outcomes derived from the amalgamated 
models exhibit a certain degree of complexity. In 
relation to gold, at a confidence level of 0.975, the 
majority of forecast aggregation techniques exhibit 
encouraging outcomes. It is worth noting that the 
highest Value at Risk (VaR), random forests, and 
neural networks present shortcomings in this context. 
Conversely, at a confidence level of 0.99, solely the 
lowest VaR conforms to the criteria outlined in the 
preceding paragraph. When considering silver, both 
at the aforementioned confidence levels, the simple 
mean fulfils all stipulated conditions. Furthermore, at 
a confidence level of 0.975, the lowest VaR, CQOM, 
and two regression techniques (elastic net and lasso) 
yield favourable results.

For the commodity oil, accurate forecasts are 
provided by the mean at a confidence level of 0.975, 
while no forecast aggregation approach proves 
promising at the 0.99 confidence level. In the case of 

gas, at a confidence level of 0.975, precise outcomes are 
offered by the mean, highest VaR, lowest VaR, elastic 
net, and lasso. Conversely, at a confidence level of 0.99, 
solely the mean and lowest VaR demonstrate accurate 
forecasting. Across both confidence levels, robust 
results are furnished by the average, lowest VaR, and 
elastic net. Moreover, at a confidence level of 0.975, 
lasso also performs effectively.

Summarising the evaluation conducted over 
the entire assessment period, the GARCH-st or 
CaViaR model emerges as the most suitable among 
the individual models. Meanwhile, the mean and 
regression-based combined models consistently 
exhibit superior performance in the role of forecast 
aggregators, albeit with variations contingent upon 
the specific commodity under consideration. During 
periods characterised by stability, numerous models 
– both individual and combined – display accuracy 
in their forecasts. Notably, GARCH falters for silver 
at both confidence levels and for gold at a confidence 
level of 0.99, while GARCH-t falls short for silver at a 
confidence level of 0.975.

Among the forecast combining models, random 
forests and neural networks universally fall short 
in delivering accurate results for all commodities, 
regardless of the confidence level. Similarly, the 
highest VaR and CQOM also fail to meet expectations. 
Optimal results are consistently obtained from the 
mean, lowest VaR, and two regression methodologies, 
which consistently deliver accurate forecasts across 
confidence levels and commodities. Once more, the 
mean and regression-based aggregation models stand 
out for their promising performance.

In periods of crisis, it becomes evident that 
standalone methods are ill-equipped to accurately 
forecast VaR. This deficiency is observed across 
various assets including gold, silver, oil, gas, and 
copper. For example, for gold, GARCH-st and CaViaR 
demonstrate accurate VaR forecasts at a confidence 
level of 0.975, while GARCH-t excels at a confidence 
level of 0.99. In contrast, no individual models yield 
satisfactory outcomes for silver, as indicated by 
excess ratios exceeding 3.3% at a confidence level of 
0.975 and 1.53% at 0.99. GARCH-st remains the sole 
effective method for VaR forecasting in the case of oil, 
specifically at a confidence level of 0.99.

For gas, models such as GARCH, GARCH-t, and 
QML-GARCH exhibit accuracy at a confidence level 
of 0.975, while GARCH-t alone proves effective at the 
0.99 confidence level. Similarly, with regard to copper, 
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no models yield satisfactory results at a confidence 
level of 0.975, and CaViaR stands out as the most 
effective technique at a confidence level of 0.99.

During the COVID-19 pandemic crisis, no 
individual model demonstrates effectiveness in 
accurately forecasting VaR for gold, silver, and oil, 
irrespective of the confidence level. Excess ratios 
approximate 5% at a confidence level of 0.975 and 
2.5% at 0.99 for these assets. However, for gas, all 
individual methods effectively forecast VaR at the 
0.975 confidence level, while GARCH-t, GARCH-st, 
and CaViaR prove effective at the 0.99 confidence 
level. For copper, GARCH-t effectively forecasts VaR 
at a confidence level of 0.975, whereas no individual 
model performs adequately at a confidence level of 
0.99, with excess ratios exceeding 2.16%.

Among the forecast aggregation methods, 
employing the lowest VaR consistently proves effective, 
except for gold at a confidence level of 0.99, silver at 
both confidence levels, and copper at a confidence 
level of 0.99. Furthermore, the Combined Quantile 
Opinion Mining (CQOM) approach demonstrates 
effectiveness for gold and gas at a confidence level 
of 0.975. Other methodologies such as the mean, 
elastic net, and lasso prove effective solely for gas VaR 
forecasts at a confidence level of 0.975, while the mean 
remains effective at the 0.99 confidence level.

Due to the absence of a clearly predominant model, 
both in the context of individual models and combined 
methodologies, a decision was made to implement 
the Model Selection Criterion (MSC) procedure. 
The outcomes of this procedure are detailed in Table 

Table 2. Test results: Excess Ratio (ER), Kupiec (UC), Christoffersen (CC), Dynamic Quantile (DQ) and Traffic Light (TL) 
divided into the analysed models and periods for gold for confidence level equal to 0.975

Model Period I (Whole period) Period II (All calm periods) Period I (All crisis periods) Period I (COVID period)

ER UC CC DQ TL ER UC CC DQ TL ER UC CC DQ TL ER UC CC DQ TL

GARCH 3.10% 5.77 6.02 21.07 Y 2.85% 1.38 1.55 9.22 G 3.70% 6.45 6.50 16.92 Y 5.63% 6.88 6.98 26.48 Y

GARCH-t 2.81% 1.62 1.77 18.08 G 2.57% 0.06 0.07 2.48 G 3.38% 3.57 3.80 28.92 Y 4.76% 3.85 4.23 21.16 Y

GARCH-st 2.38% 0.24 0.41 16.80 G 2.20% 1.16 1.29 5.88 G 2.82% 0.50 1.36 21.53 G 4.33% 2.61 3.22 22.78 Y

QML-
GARCH

3.17% 5.91 6.02 22.59 Y 2.88% 1.66 1.80 9.14 G 3.62% 5.66 5.74 19.26 Y 5.59% 6.80 6.98 26.36 Y

CaViaR 2.65% 0.36 0.74 20.85 G 2.47% 0.01 0.04 15.69 G 3.06% 1.49 2.02 14.36 G 5.19% 5.28 7.53 31.81 Y

Mean 2.81% 1.62 1.77 14.83 G 2.64% 0.24 0.24 9.74 G 3.22% 2.43 2.79 11.04 Y 4.76% 3.85 4.23 15.45 Y

Highest VaR 3.46% 14.18 14.38 41.56 R 3.19% 5.25 5.25 15.70 Y 4.11% 11.05 11.42 33.81 Y 6.49% 10.57 11.54 41.72 Y

Lowest VaR 2.07% 3.37 3.39 10.49 G 1.92% 4.35 4.36 8.59 G 2.42% 0.04 0.14 7.87 G 3.46% 0.79 2.04 7.83 G

CQOM 2.69% 0.63 9.01 56.89 G 2.47% 0.01 4.21 39.29 G 3.25% 2.48 6.46 44.63 Y 3.90% 1.58 2.48 11.99 G

Elastic Net 2.50% 0.00 1.85 24.77 G 2.20% 1.16 1.39 7.99 G 3.27% 2.49 4.23 30.53 Y 6.49% 10.57 11.54 81.74 Y

LASSO 2.62% 0.25 6.95 30.04 G 2.26% 0.69 6.14 14.90 G 3.46% 4.22 5.51 44.51 Y 7.36% 14.83 15.27 91.46 R

QRF 5.15% 92.01 92.12 246.98 R 4.87% 52.90 52.90 158.42 R 5.80% 40.61 41.02 93.76 R 8.66% 22.16 22.59 57.90 R

GBRM 2.89% 2.43 2.51 16.97 G 2.57% 0.06 0.07 5.19 G 3.62% 5.66 5.74 19.85 Y 4.76% 3.85 4.23 17.65 Y

QRNN 4.71% 66.66 70.04 223.39 R 4.49% 38.60 39.35 105.05 R 5.23% 29.10 32.44 212.53 R 9.09% 24.82 29.35 176.38 R

Note: Gray fields indicate p-values greater than 5%. GARCH stands for GARCH(1,1), GARCH-t  - AR-GARCH-t(1,1), 
GARCH-st - AR-GARCH(1,1), QML-GARCH - QML-GARCH(1,1), CaViaR - Indirect GARCH(1,1), Mean stands for 
simple average from GARCH and CaViaR, Highest VaR means the maximum from GARCH, GARCH-t, GARCH-st, 
QML-GARCH, and CaViaR, Lowest VaR stands for the minimum from individual models, CQOM stands for Conditional 
Quantile Optimisation Method applied for GARCH and CaViaR (described in section 2.3.4), Elastic Net stands for 
forecast combined using quantile regression with elastic net regularisation (described in section 2.3.6), LASSO stands 
for forecast combined using quantile regression with LASSO regularisation (described in section 2.3.5), QRF stands for 
forecast combined using Quantile Regression Forests (described in section 2.3.7), GBRM stands for forecast combined 
using Gradient Boosting Regression Model (described in section 2.3.8), QRNN stands for forecast combined using 
Quantile Regression Neural Network (described in section 2.3.9). In TL: 1) G stands for green, 2) Y stands for yellow, 3) R 
stands for red.
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12. At a confidence level of 0.95, individual models 
exhibit dominance. For instance, in the case of silver, 
it has been ascertained that utilising the mean is the 
optimal approach for forecasting VaR across all crises, 
including the ongoing coronavirus crisis.

Nonetheless, it is pertinent to note that, specifically 
for this asset, none of the models successfully passed 
the regulatory traffic light assessment, and the 
aggregate forecasts, based on the mean, did not satisfy 
any of the evaluation tests. Conversely, for copper, the 
findings underscore the effectiveness of combining 
forecast methodologies. Over the entire assessment 
period, the mean emerges as the most effective model. 
This holds true for all crisis situations, including the 
present coronavirus crisis, where the optimal strategy 
involves fusing quantile regression forecasts with 
elastic net regularisation.

When the confidence level is set at 0.99, forecast 
aggregation methods take precedence. Remarkably, 
the most effective model across all assets and the 
entire assessment period is the lowest Value at Risk 
(VaR). During periods of stability, this holds true 

for gold, silver, and copper, while for oil, the mean 
demonstrates superiority, and for gas, the GARCH-t 
model is favored.

In the context of crisis periods, including the 
current pandemic crisis, the lowest VaR consistently 
proves to be the superior model, with the exception 
of gold. Here, during crises, including the ongoing 
coronavirus crisis, the forecasting superiority lies 
with the GARCH-st model. Additionally, for gas, 
the CQOM method outperforms other forecasting 
strategies during pandemic crises. Similarly, for 
copper, the GARCH-st model excels in VaR prediction 
during pandemics.

This comprehensive analysis underscores a 
notable preference for forecast aggregation techniques, 
particularly at the 0.99 confidence level. Intriguingly, 
simplistic methodologies emerge as the most effective 
approach.

To elucidate the origins of the prevailing forecast 
amalgamation techniques, it becomes imperative to 
delve into the allocation of weights to each discrete 

Table 3. Test results: Excess Ratio (ER), Kupiec (UC), Christoffersen (CC), Dynamic Quantile (DQ) and Traffic Light (TL) 
divided into the analysed models and periods for gold for confidence level equal to 0.99

Model Period I (Whole period) Period II (All calm periods) Period I (All crisis periods) Period I (COVID period)

ER UC CC DQ TL ER UC CC DQ TL ER UC CC DQ TL ER UC CC DQ TL

GARCH 1.85% 24.38 24.59 47.78 R 1.65% 10.30 10.36 20.23 Y 2.33% 16.25 16.39 40.37 R 3.46% 8.64 9.89 31.80 Y

GARCH-t 1.13% 0.69 6.40 18.19 G 1.06% 0.12 1.02 3.17 G 1.29% 0.96 6.88 34.25 G 2.19% 2.39 5.38 30.03 Y

GARCH-st 0.91% 0.32 4.16 9.17 G 0.89% 0.36 1.79 3.81 G 0.97% 0.01 2.69 9.69 G 2.16% 2.37 5.38 30.07 Y

QML-
GARCH

1.90% 24.66 24.59 47.38 R 1.67% 10.35 10.36 20.02 Y 2.37% 16.43 16.39 40.04 R 3.55% 8.87 9.89 31.55 Y

CaViaR 1.03% 0.05 3.07 15.54 G 1.10% 0.27 1.09 6.80 G 0.89% 0.17 3.18 13.09 G 2.60% 4.13 6.42 26.36 Y

Mean 1.30% 3.43 5.09 18.31 Y 1.30% 2.48 2.89 8.34 G 1.29% 0.96 2.61 18.09 G 3.46% 8.64 9.89 31.23 Y

Highest 
VaR

1.88% 25.64 26.93 52.17 R 1.65% 10.30 10.36 19.95 Y 2.42% 18.01 19.63 49.68 R 3.46% 8.64 9.89 31.27 Y

Lowest 
VaR

0.84% 1.11 5.53 12.07 G 0.86% 0.63 2.19 3.78 G 0.81% 0.51 3.89 13.52 G 2.16% 2.37 5.38 30.17 Y

CQOM 1.54% 10.50 13.28 51.94 Y 1.44% 5.04 7.12 34.06 Y 1.77% 6.07 6.77 35.15 Y 2.60% 4.13 6.42 52.00 Y

Elastic Net 1.32% 3.98 11.47 62.74 Y 1.10% 0.27 8.30 39.08 G 1.85% 7.28 7.86 40.96 Y 3.46% 8.64 9.89 43.82 Y

LASSO 1.27% 2.92 4.68 34.99 Y 1.06% 0.12 1.02 7.58 G 1.77% 6.07 6.77 42.25 Y 3.90% 11.30 12.19 48.62 Y

QRF 3.61% 171.00 171.03 448.16 R 3.64% 122.05 122.39 323.10 R 3.54% 48.97 52.20 148.36 R 4.76% 17.29 18.39 73.79 R

GBRM 1.35% 4.56 11.81 80.37 Y 0.96% 0.05 4.83 17.66 G 2.25% 14.56 16.57 99.99 R 2.60% 4.13 6.42 47.14 Y

QRNN 3.42% 150.49 160.82 541.10 R 3.29% 96.70 102.40 349.83 R 3.70% 54.22 58.90 206.00 R 6.06% 27.68 27.71 80.57 R

Note:  The same as for the pervious table.
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Table 4. Test results: Excess Ratio (ER), Kupiec (UC), Christoffersen (CC), Dynamic Quantile (DQ) and Traffic Light 
(TL) divided into the analysed models and periods for silver for confidence level equal to 0.975.

Model Period I (Whole period) Period II (All calm periods) Period I (All crisis periods) Period I (COVID period)
ER UC CC DQ TL ER UC CC DQ TL ER UC CC DQ TL ER UC CC DQ TL

GARCH 3.58% 17.72 21.25 41.94 R 3.46% 9.96 11.56 22.90 Y 3.86% 8.16 10.22 22.05 Y 5.63% 3.85 6.69 28.62 Y

GARCH-t 3.42% 12.86 21.07 38.19 Y 3.16% 4.76 9.27 19.21 Y 4.03% 10.04 13.55 24.26 Y 4.76% 2.85 6.14 22.35 Y

GARCH-st 2.91% 2.74 13.82 34.46 Y 2.68% 0.36 8.13 24.97 G 3.46% 4.22 7.42 16.69 Y 4.33% 2.74 6.14 23.15 Y

QML-
GARCH

3.44% 13.51 21.50 43.07 R 3.40% 8.65 11.93 24.52 Y 3.54% 4.91 10.27 22.85 Y 5.69% 2.90 6.14 23.09 Y

CaViaR 2.84% 1.87 3.74 25.47 G 2.64% 0.24 0.24 9.71 G 3.30% 2.98 6.86 29.91 Y 5.19% 10.57 11.72 38.85 Y

Mean 2.77% 1.17 4.91 16.11 G 2.47% 0.01 0.75 5.15 G 3.46% 4.22 7.55 18.32 Y 4.76% 6.88 8.88 31.12 Y

Highest 
VaR

4.14% 38.32 44.18 74.44 R 3.81% 17.68 20.61 38.17 R 4.91% 23.23 25.99 42.50 R 6.49% 12.63 13.45 34.59 R

Lowest 
VaR

2.21% 1.46 6.86 19.48 G 2.09% 2.10 2.47 10.64 G 2.50% 0.00 7.41 22.49 G 3.46% 2.61 6.14 30.82 Y

CQOM 2.38% 0.24 18.45 51.46 G 2.16% 1.44 14.15 34.88 G 2.90% 0.77 6.12 20.39 G 3.90% 2.69 6.14 27.15 Y

Elastic Net 2.48% 0.01 8.00 30.60 G 2.30% 0.50 3.40 15.17 G 2.91% 0.78 6.12 22.45 G 6.49% 3.85 6.69 34.39 Y

LASSO 2.72% 0.79 17.15 72.79 G 2.26% 0.69 12.27 39.12 G 3.78% 7.28 11.65 55.77 Y 7.36% 17.15 17.42 73.08 R

QRF 4.81% 72.00 73.95 217.41 R 4.39% 35.03 35.37 107.96 R 5.80% 40.61 42.44 126.89 R 8.66% 10.57 10.57 55.56 Y

GBRM 3.32% 10.41 19.53 59.65 Y 3.05% 3.42 6.62 22.87 Y 3.95% 9.08 15.27 47.33 Y 4.76% 6.88 8.63 29.33 Y

QRNN 5.00% 83.19 102.20 395.17 R 4.70% 46.17 55.58 253.17 R 5.72% 38.88 48.45 157.84 R 9.09% 39.66 40.11 147.69 R

Note:  The same as for the table 2, but here GARCH stands for GARCH(1,2), QML-GARCH stands for AR-QML-
GARCH(1,1), Mean stands for simple average from GARCH-st and CaViaR.

Table 5. Test results: Excess Ratio (ER), Kupiec (UC), Christoffersen (CC), Dynamic Quantile (DQ) and Traffic Light (TL) 
divided into the analysed models and periods for silver for confidence level equal to 0.99

Model Period I (Whole period) Period II (All calm periods) Period I (All crisis periods) Period I (COVID period)
ER UC CC DQ TL ER UC CC DQ TL ER UC CC DQ TL ER UC CC DQ TL

GARCH 2.36% 56.00 62.62 114.64 R 2.30% 36.32 39.22 67.05 R 2.50% 19.83 23.85 56.09 R 3.46% 12.30 15.63 76.45 Y

GARCH-t 1.30% 3.43 19.68 58.92 Y 1.06% 0.12 8.50 25.70 G 1.85% 7.28 14.45 46.95 Y 2.23% 11.52 15.63 73.12 Y

GARCH-st 1.03% 0.05 21.68 77.52 G 0.75% 1.94 14.40 42.41 G 1.69% 4.96 13.18 47.30 Y 2.16% 11.30 15.63 75.03 Y

QML-
GARCH

2.31% 52.56 62.26 120.78 R 2.20% 31.39 34.78 61.32 R 2.58% 21.72 28.68 71.24 R 3.51% 12.73 15.63 74.50 Y

CaViaR 1.11% 0.46 3.05 19.34 G 0.93% 0.16 1.48 4.38 G 1.53% 3.03 4.14 39.88 Y 2.60% 20.58 20.79 88.35 R

Mean 1.01% 0.00 11.44 36.79 G 0.82% 0.98 12.38 38.30 G 1.45% 2.22 3.49 11.08 Y 3.46% 11.90 12.19 48.59 Y

Highest 
VaR

2.65% 78.37 84.86 157.60 R 2.44% 43.32 45.64 76.26 R 3.14% 36.67 41.01 101.95 R 3.46% 31.46 32.44 130.63 R

Lowest 
VaR

0.70% 4.29 10.09 20.68 G 0.62% 4.99 7.69 9.93 G 0.89% 0.17 3.18 21.35 G 2.16% 4.13 6.42 55.81 Y

CQOM 1.64% 14.24 29.29 108.75 R 1.51% 6.61 19.03 76.54 Y 1.93% 8.57 11.55 52.32 Y 2.60% 11.60 12.19 54.94 Y

Elastic Net 1.30% 3.43 19.68 87.01 Y 1.10% 0.27 8.30 44.48 G 1.77% 6.07 13.76 55.34 Y 3.46% 14.19 17.72 82.18 R

LASSO 1.20% 1.62 24.93 104.71 G 1.06% 0.12 13.66 64.24 G 1.53% 3.03 12.44 50.30 Y 3.90% 11.93 15.63 65.06 Y

QRF 2.89% 99.07 99.71 290.41 R 2.64% 54.69 56.27 136.88 R 3.46% 46.41 46.60 187.82 R 4.76% 13.24 12.03 98.63 Y

GBRM 1.56% 11.38 23.52 68.29 Y 1.41% 4.32 13.57 42.35 Y 1.93% 8.57 11.55 40.85 Y 2.60% 2.37 11.96 92.74 Y

QRNN 3.61% 171.00 177.55 776.88 R 3.46% 109.12 115.76 459.11 R 3.95% 62.45 63.00 339.63 R 6.06% 47.94 48.22 305.35 R

Note:  The same as for the previous table.
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Table 6. Test results: Excess Ratio (ER), Kupiec (UC), Christoffersen (CC), Dynamic Quantile (DQ) and Traffic Light (TL) 
divided into the analysed models and periods for oil for confidence level equal to 0.975.

Model Period I (Whole period) Period II (All calm periods) Period I (All crisis periods) Period I (COVID period)
ER UC CC DQ TL ER UC CC DQ TL ER UC CC DQ TL ER UC CC DQ TL

GARCH 2.96% 3.39 3.43 10.66 Y 2.37% 0.22 3.56 7.97 G 4.35% 14.30 15.37 19.82 R 5.63% 6.88 8.63 20.99 Y

GARCH-t 3.54% 16.26 37.79 313.36 R 1.75% 7.51 8.57 55.08 G 7.73% 90.37 99.57 311.51 R 4.76% 22.16 24.91 157.82 R

GARCH-st 2.43% 0.09 0.95 5.04 G 1.96% 3.83 6.10 8.43 G 3.54% 4.91 7.86 9.45 Y 4.33% 2.61 6.14 21.69 Y

QML-
GARCH

3.04% 3.53 3.43 10.71 Y 2.39% 0.24 3.56 8.09 G 4.35% 14.30 15.37 19.84 R 5.77% 6.97 8.63 20.99 Y

CaViaR 2.57% 0.09 1.66 14.89 G 1.96% 3.83 3.84 7.94 G 4.03% 10.04 11.73 24.06 Y 5.19% 3.85 6.69 21.18 Y

Mean 2.50% 0.00 0.68 18.03 G 1.37% 18.14 19.25 26.72 G 5.15% 27.59 27.74 37.72 R 4.76% 5.28 5.49 11.16 Y

Highest VaR 4.86% 74.74 83.96 264.82 R 3.16% 4.76 4.76 29.49 Y 8.86% 125.64 131.16 328.47 R 6.49% 39.66 41.25 172.61 R

Lowest VaR 1.59% 16.27 18.80 24.20 G 0.99% 34.98 35.56 29.30 G 2.98% 1.10 3.52 7.61 G 3.46% 0.25 1.96 6.54 G

CQOM 3.01% 4.12 22.26 157.69 Y 1.78% 6.80 6.81 45.91 G 5.88% 42.38 56.14 181.95 R 3.90% 27.60 34.10 133.16 R

Elastic Net 2.98% 3.75 5.04 22.36 Y 1.96% 3.83 3.84 9.29 G 5.39% 32.24 32.77 59.60 R 6.49% 14.83 15.27 63.54 R

LASSO 3.03% 4.51 10.03 69.61 Y 1.78% 6.80 7.78 12.84 G 5.96% 44.17 45.66 108.55 R 7.36% 17.15 18.83 85.82 R

QRF 5.82% 137.72 139.48 253.06 R 5.28% 70.54 70.63 217.80 R 7.09% 72.17 74.44 124.92 R 8.66% 19.60 25.83 74.65 R

GBRM 3.39% 12.23 12.24 24.87 Y 2.81% 1.13 2.11 15.93 G 4.75% 20.50 21.00 32.50 R 4.76% 3.85 4.23 13.35 Y

QRNN 5.65% 125.62 126.08 208.16 R 4.73% 47.48 50.07 297.87 R 7.81% 92.75 92.77 156.26 R 9.09% 53.11 53.12 134.19 R

Note:  The same as for the table 2, but here GARCH-t stands for GARCH-t(1,1), GARCH-st stands for GARCH-st(1,1), 
Mean stands for simple average from GARCH-t and CaViaR.

Table 7. Test results: Excess Ratio (ER), Kupiec (UC), Christoffersen (CC), Dynamic Quantile (DQ) and Traffic Light 
(TL) divided into the analysed models and periods for oil for confidence level equal to 0.99.

Model Period I (Whole period) Period II (All calm periods) Period I (All crisis periods) Period I (COVID period)
ER UC CC DQ TL ER UC CC DQ TL ER UC CC DQ TL ER UC CC DQ

GARCH 1.54% 10.50 13.28 25.45 Y 1.27% 1.97 2.92 11.38 G 2.17% 12.95 18.36 24.49 R 3.43% 8.41 13.93 72.02 Y

GARCH-t 2.41% 59.53 80.88 490.49 R 0.96% 0.05 1.25 106.88 G 5.80% 136.83 145.95 536.93 R 2.16% 39.45 44.28 346.76 R

GARCH-st 1.01% 0.00 0.58 3.13 G 0.89% 0.36 0.82 10.06 G 1.29% 0.96 2.61 6.28 G 2.16% 4.13 6.42 24.85 Y

QML-
GARCH

1.52% 9.64 12.55 24.38 Y 1.29% 2.01 2.92 11.47 G 2.09% 11.41 17.23 23.12 Y 3.45% 8.55 13.93 72.03 Y

CaViaR 1.49% 8.81 8.82 14.83 Y 1.10% 0.27 0.98 5.46 G 2.42% 18.01 18.10 27.26 R 2.60% 6.24 7.95 36.61 Y

Mean 1.44% 7.26 7.28 20.93 Y 0.96% 0.05 0.59 21.48 G 2.58% 21.72 21.76 30.45 R 3.41% 8.24 7.95 37.61 Y

Highest 
VaR

3.49% 158.07 169.88 460.74 R 1.99% 22.40 22.42 79.80 R 7.00% 194.17 201.30 574.54 R 3.46% 56.90 61.42 306.55 R

Lowest 
VaR

0.46% 15.51 18.66 17.14 G 0.27% 21.77 21.81 15.72 G 0.89% 0.17 3.18 8.15 G 2.16% 1.02 4.98 40.55 G

CQOM 2.36% 56.00 94.71 707.99 R 1.51% 6.61 11.24 151.64 Y 4.35% 76.99 104.99 671.01 R 2.60% 39.45 44.28 297.04 R

Elastic 
Net

1.64% 14.24 14.83 27.95 R 0.99% 0.00 0.58 15.67 G 3.14% 36.67 37.11 69.57 R 3.46% 14.19 14.79 46.58 R

LASSO 1.59% 12.31 14.83 120.13 Y 0.79% 1.41 1.78 41.45 G 3.46% 46.41 47.70 137.00 R 3.90% 17.29 17.67 112.70 R

QRF 3.68% 178.14 179.09 390.91 R 3.26% 94.28 94.76 279.50 R 4.67% 89.32 92.69 240.24 R 4.76% 20.58 26.33 125.31 R

GBRM 1.80% 21.93 22.21 34.37 R 1.48% 5.80 7.09 38.64 Y 2.58% 21.72 23.01 40.31 R 2.60% 6.24 7.95 25.84 Y

QRNN 4.43% 267.55 269.31 1197.81 R 3.40% 104.09 104.84 533.39 R 6.84% 186.18 186.44 816.55 R 6.06% 66.27 69.41 542.78 R

Note:  The same as for the previous table.
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Table 8. Test results: Excess Ratio (ER), Kupiec (UC), Christoffersen (CC), Dynamic Quantile (DQ) and Traffic Light (TL) 
divided into the analysed models and periods for gas for confidence level equal to 0.975.

Model Period I (Whole period) Period II (All calm periods) Period I (All crisis periods) Period I (COVID period)
ER UC CC DQ TL ER UC CC DQ TL ER UC CC DQ TL ER UC CC DQ TL

GARCH 2.19% 1.72 1.72 5.62 G 1.78% 6.80 6.81 8.64 G 3.14% 1.93 1.98 7.75 G 5.63% 0.79 1.36 10.87 G

GARCH-t 2.09% 2.99 3.01 6.79 G 1.75% 7.51 7.52 8.66 G 2.90% 0.77 0.77 5.75 G 4.76% 1.58 2.32 10.97 G

GARCH-st 2.45% 0.04 0.13 2.93 G 2.09% 2.10 2.47 2.96 G 3.30% 2.98 3.08 10.15 Y 4.33% 1.49 2.32 11.11 G

QML-
GARCH

2.24% 1.22 1.22 4.27 G 1.85% 5.50 5.50 6.19 G 3.14% 1.93 1.98 7.59 G 5.63% 0.79 1.36 11.01 G

CaViaR 2.53% 0.01 0.06 12.09 G 1.99% 3.34 3.88 9.26 G 3.78% 7.28 7.71 20.93 Y 5.19% 1.57 2.32 13.96 G

Mean 2.24% 1.22 1.60 9.07 G 1.82% 6.13 7.02 11.42 G 3.22% 2.43 2.50 10.27 Y 4.76% 0.79 1.36 10.88 G

Highest 
VaR

2.86% 2.14 2.20 8.51 G 2.37% 0.22 0.30 1.96 G 4.03% 10.04 10.71 24.08 Y 6.49% 2.61 3.52 14.67 Y

Lowest VaR 1.83% 8.48 8.72 12.70 G 1.41% 16.94 17.20 17.60 G 2.82% 0.50 0.50 5.85 G 3.46% 0.79 1.36 10.63 G

CQOM 4.52% 56.49 67.33 232.88 R 4.22% 29.41 43.33 169.76 R 5.23% 29.10 29.21 76.81 R 3.90% 0.63 0.77 10.55 G

Elastic Net 2.45% 0.04 0.84 8.38 G 2.02% 2.90 7.23 11.76 G 3.46% 4.22 7.31 17.85 Y 6.49% 1.79 2.32 10.66 G

LASSO 2.45% 0.04 2.09 13.69 G 2.09% 2.10 6.04 14.24 G 3.30% 2.98 3.08 17.62 Y 7.36% 1.86 2.32 9.07 G

QRF 5.53% 117.24 117.29 357.06 R 5.25% 68.99 69.14 221.09 R 6.20% 49.73 49.74 141.98 R 8.66% 6.88 8.44 18.56 Y

GBRM 3.30% 9.83 12.20 37.10 Y 2.85% 1.38 2.39 12.48 G 4.35% 14.30 15.37 39.06 R 4.76% 2.61 3.22 12.55 Y

QRNN 5.27% 99.63 105.52 453.83 R 5.21% 67.45 70.62 349.00 R 5.39% 32.24 35.09 119.62 R 9.09% 6.88 6.98 64.95 Y

Note:  The same as for the table 2, but here GARCH-t stands for GARCH-t(1,1), GARCH-st stands for GARCH-st(1,1), 
Mean stands for simple average from GARCH-t and CaViaR.

Table 9. Test results: Excess Ratio (ER), Kupiec (UC), Christoffersen (CC), Dynamic Quantile (DQ) and Traffic Light (TL) 
divided into the analysed models and periods for gas for confidence level equal to 0.99.

Model Period I (Whole period) Period II (All calm periods) Period I (All crisis periods) Period I (COVID period)
ER UC CC DQ TL ER UC CC DQ TL ER UC CC DQ TL ER UC CC DQ TL

GARCH 1.03% 0.05 0.95 3.12 G 0.79% 1.41 1.78 5.43 G 1.61%  3.94 4.60 9.29 Y 3.46%  2.37  2.60 26.03 Y

GARCH-t 0.67% 5.05 5.43 8.05 G 0.48% 9.84 9.98 10.05 G 1.13%  0.20 0.51 2.29 G 2.16%  0.19  0.27 2.44 G

GARCH-st 0.99% 0.01 0.82 9.81 G 0.75% 1.94 2.27 6.23 G 1.53%  3.03 3.62 13.25 Y 2.09%  1.02  1.17 27.33 G

QML-
GARCH

1.08% 0.28 1.26 3.39 G 0.81% 1.48 1.78 5.38 G 1.77%  6.07 6.87 12.93 Y 3.54%  2.45  2.60 26.19 Y

CaViaR 1.05% 0.07 0.95 5.60 G 0.82% 0.98 1.38 5.06 G 1.53%  3.03 3.62 10.03 Y 2.60%  1.02 1.17 9.73 G

Mean 0.84% 1.11 1.70 4.82 G 0.65% 4.07 4.32 8.78 G 1.29%  0.96 1.37 4.27 G 3.46%  0.29 0.27 2.80 G

Highest 
VaR

1.25% 2.45 3.77 10.26 Y 0.99% 0.00 0.58 2.86 G 1.85%  7.28 8.14 19.35 Y 3.46%  2.37 2.60 26.07 Y

Lowest VaR 0.63% 6.80 7.12  9.37 G 0.41% 13.10 13.20 12.22 G 1.13%  0.20 0.51 2.41 G 2.16%  0.19 0.27 2.70 G

CQOM 4.40% 264.51 268.51 748.76 R 4.67% 209.24 212.38 615.08 R 3.78% 56.92 57.68 156.26 R 2.60% 11.30 12.03 29.88 Y

Elastic Net 3.49% 158.07 167.67 609.97 R 3.43% 106.60 113.48 430.37 R 3.62% 51.57 54.28 217.59 R 3.46% 61.53 61.96 212.30 R

LASSO 1.35% 4.56 11.81 67.51 Y 1.10%  0.27 8.30  4.77 G 1.93% 8.57 9.06 39.17 Y 3.90% 6.24  6.68 26.86 Y

QRF 3.32% 140.58 140.62 422.57 R 2.78% 62.80 62.83  203.90 R 4.59% 86.18 86.24 262.53 R 4.76% 17.29 18.39 63.33 R

GBRM 1.54% 10.50 10.50 39.50 Y 1.23% 1.51  2.04 16.13 G 2.25% 14.56 15.85 44.46 R 2.60% 2.37 2.60 25.28 Y

QRNN 3.78% Inf Inf 1181.52 R 4.12% 160.80 160.80 1024.17 R 2.98% 32.11 34.39 194.18 R 6.06% 4.13 4.46 71.51 Y

Note:  The same as for the previous table.
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Table 10. Test results: Excess Ratio (ER), Kupiec (UC), Christoffersen (CC), Dynamic Quantile (DQ) and Traffic Light 
(TL) divided into the analysed models and periods for copper for confidence level equal to 0.975

Model Period I (Whole period) Period II (All calm periods) Period I (All crisis periods) Period I (COVID period)
ER UC CC DQ TL ER UC CC DQ TL ER UC CC DQ TL ER UC CC DQ TL

GARCH 2.96% 3.39 4.77 19.79 Y 2.61% 0.14 0.14  4.71 G 3.78% 7.28 9.54 30.64 Y 5.63% 3.85 6.69  29.71 Y

GARCH-t 2.67% 0.48 3.05 18.85 G 2.33% 0.34 0.45  2.93 G 3.46% 4.22 7.42 36.25 Y 4.76% 1.58 5.92  35.76 G

GARCH-st 2.65% 0.36 3.04 20.04 G 2.37% 0.22 0.30  3.05 G 3.30% 2.98 6.71 39.01 Y 4.33% 2.61 6.14 31.14 Y

QML-
GARCH

2.99% 3.44 4.77 19.46 Y 2.65% 0.16 0.14  4.21 G 3.78% 7.28 9.54 30.72 Y 5.63% 3.85 6.69  42.44 Y

CaViaR 2.57%  0.09 0.62 10.85 G 2.26% 0.69 3.75  9.95 G 3.30% 2.98 6.71 16.07 Y 5.19% 2.71 6.14 51.69 Y

Mean 2.43%  0.09 0.95 10.86 G 2.23% 0.91 3.87  4.65 G 2.90% 0.77 6.12  22.07 G 4.65% 2.55 6.14  40.23 Y

Highest 
VaR

3.27% 9.27  10.61 29.07 Y 2.88% 1.66 1.74  12.79 G 4.19%  12.09  15.09  45.05 Y 6.49%  3.85 6.69  30.17 Y

Lowest 
VaR

2.12% 2.64 4.58 13.18 G 1.92% 4.35 6.54  7.42 G 2.58% 0.03 6.99  23.06 G 3.46%  1.58 5.92  40.33 G

CQOM 4.43% 51.67 Inf 960.75 R 2.98% 2.65 13.39 230.53 G 7.81%  92.75 121.91 806.55 R 3.90% 218.89 219.00 703.95 R

Elastic Net 2.62% 0.25 1.65 17.45 G 2.37% 0.22 0.51  9.27 G 3.22%  2.43  6.46  38.25 Y 6.49%  3.85 6.69  25.60 Y

LASSO 2.62% 0.25 1.65 43.06 G 2.37% 0.22 0.51 36.09 G 3.22%  2.43  6.46  30.80 Y 7.36% 5.28 7.53 31.78 Y

QRF 4.91% 77.52 78.43 231.96 R 4.39% 35.03 35.06 121.60 R 6.12% 47.85 49.03 128.29 R 8.66%  10.57 13.88 49.29 Y

GBRM 3.08% 5.33 7.41 33.89 Y 2.95% 2.29 3.56 21.25 G 3.38%  3.57 12.79  40.09 Y 4.76% 3.85 6.69 23.83 Y

QRNN 4.52% 56.49 61.01 421.32 R 4.49% 38.60 39.35 325.86 R 4.59% 17.91 23.66 136.29 R 9.09% 10.57 11.54 78.96 Y

Note:  The same as for the table 2, but here GARCH-t stands for GARCH-t(1,2), GARCH-st stands for GARCH-st(1,1), 
Mean stands for simple average from GARCH-st and CaViaR.

Table 11. Test results: Excess Ratio (ER), Kupiec (UC), Christoffersen (CC), Dynamic Quantile (DQ) and Traffic Light (TL) 
divided into the analysed models and periods for copper for confidence level equal to 0.99.

Model Period I (Whole period) Period II (All calm periods) Period I (All crisis periods) Period I (COVID period)
ER UC CC DQ TL ER UC CC DQ TL ER UC CC DQ TL ER UC CC DQ TL

GARCH 1.71% 17.36 21.56 53.94 R 1.44% 5.04 6.26 9.79 G 2.33% 16.25 24.63 98.67 R 3.46% 11.30 15.63 110.23 Y

GARCH-t 1.18% 1.27 10.40 38.94 G 0.93% 0.16 0.67 8.74 G 1.77% 6.07 18.76 79.58 Y 2.16% 4.13 11.96 99.07 Y

GARCH-st 1.08% 0.28 10.67 40.15 G 0.89% 0.36 0.82 8.16 G 1.53% 3.03 18.17 92.27 Y 2.12% 4.11 11.96 99.36 Y

QML-
GARCH

1.78% 20.75 24.47 55.48 R 1.54% 7.47 8.88 12.95 G 2.33% 16.25 24.63 98.80 R 3.49% 11.41 15.63 131.62 Y

CaViaR 1.20% 1.62 3.71 27.18 G 1.13% 0.49 1.25 16.74 G 1.37% 1.53 6.99 30.44 G 2.60% 2.37 5.38 82.34 Y

Mean 1.01% 0.00 11.44 45.52 G 0.89% 0.36 0.82 6.08 G 1.29% 0.96 19.09 118.12 G 3.46% 4.13 11.96 107.81 Y

Highest 
VaR

1.95% 29.58 32.33 73.24 R 1.72% 12.41 14.15 27.03 G 2.50% 19.83 27.24 95.92 R 3.46% 11.30 15.63 110.69 Y

Lowest 
VaR

0.87% 0.79 5.01 21.97 G 0.75% 1.94 2.27 8.58 G 1.13% 0.20 7.18 38.09 G 2.16% 2.37 5.38 59.22 Y

CQOM 1.85% 24.38 33.04 376.94 R 1.34% 3.04 3.40 84.60 G 3.06% 34.37 42.11 389.48 R 2.60% 31.46 32.44 159.44 R

Elastic Net 1.27% 2.92 7.43 78.15 Y 1.13% 0.49 1.25 53.05 G 1.61% 3.94 12.74 66.78 Y 3.46% 2.37 5.38 26.06 Y

LASSO 1.23% 2.02 2.21 136.46 G 1.06% 0.12 0.78 55.47 G 1.61% 3.94 4.90 112.99 Y 3.90% 2.42 5.38 27.19 Y

QRF 3.63% 173.63 178.33 542.73 R 3.36% 101.61 101.76 317.23 Y 4.27% 74.00 81.26 275.12 R 4.76% 13.24 12.19 81.67 Y

GBRM 1.73% 18.46 20.31 64.03 R 1.48% 5.80 7.09 29.37 G 2.33% 16.25 20.93 56.39 R 2.60% 9.54 12.19 49.56 Y

QRNN 3.56% 165.79 168.16 374.11 R 4.01% 152.20 153.27 351.61 R 2.50% 19.83 21.28 76.59 R 6.06% 17.29 17.67 104.84 R

Note:  The same as for the previous table.
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model, culminating in the formulation of a specific 
amalgamated projection. In this context, Figure 6 
serves as a visual representation, delineating the 
weights attributed to individual models for various 
forecast amalgamation methods. A cursory inspection 
of the charts reveals that during certain intervals, 
notably from 2007 to 2009, both the regression 
methodologies and the CQOM accorded near-zero 
or null weights to specific models, resulting in an 
intercept-based forecast.

Turning attention to the regularisation techniques 
of elastic net and LASSO as applied to the gold 
commodity, definitive conclusions remain elusive. 
Nonetheless, discernible trends emerge, particularly in 
crisis periods, where the GARCH-st model garnered 
heightened prominence, evident across confidence 
levels of 0.975 and 0.99. Similarly, in the case of 
silver, the CQOM approach, at a confidence level of 
0.975, allocated greater weight to the GARCH model 
during crisis periods spanning 2014 to 2016 and 2020. 
Notably, during the subprime crisis from 2007 to 2009, 
the GARCH-t model took precedence. In contrast, for 
both elastic net and LASSO methods, crisis epochs 
prompted a shift in focus towards the GARCH model, 
whereas tranquil periods saw a preference for the 
QML-GARCH model. This trend was consistent 
regardless of the chosen confidence level.

For oil, a similar pattern emerges whereby both 
elastic net and LASSO methods exhibit a predilection 
for the CaViaR model during serene intervals. 

Intriguingly, the crisis that unfolded post-2007 posed 
significant modeling challenges, as evidenced by the 
conspicuous absence of weight allocation to forecasts. 
Instead, emphasis centred on intercept regulation, 
indicative of the exceptional difficulty posed by 
this crisis from the perspective of individual model 
formulation.

In the context of natural gas, for the confidence 
level of 0.975, both elastic net and LASSO techniques 
manifested a proclivity for the GARCH-st model 
during periods of calm, barring the period spanning 
2017 to 2020. Notably, this relationship did not hold 
for the elastic net approach at the 0.99 confidence 
level.

Evaluating the outcomes for copper, a distinct lack 
of a singular optimal model emerges, as suitability 
varies even during periods of tranquillity. Specifically, 
the GARCH model found favour from 2004 to 2007, 
succeeded by the CaViaR model from 2009 to 2014, 
and the GARCH-t model post-2016. However, this 
trend does not persist at the 0.99 confidence level.

Analysing the Quantile Boosting Regression 
Model, a consistent pattern emerges wherein 
the CaViaR model dominates forecasts for all 
commodities during tranquil intervals, with the 
exception of oil. For the latter, the preferred model 
shifts across time spans: CaViaR from 2004 to 2008, 
GARCH from 2009 to 2014, and GARCH-t from 2016 
to 2020. Despite the clarity during tranquil periods, 
crisis-related dynamics are less apparent. Notably, 

Table 12. The best model for each commodity (rows) and for all periods (columns) for confidence level of 0.975 (upper 
part), and 0.99 (lower part) achieved using MCS procedure

Model Period I 
(Whole period)

Period II 
(All calm periods)

Period III 
(All crisis periods)

Period IV 
(COVID period)

Confidence level = 0.025

Gold GARCH-t GARCH-t GARCH-t CQOM

Silver Mean GARCH-st Mean Mean

Oil GARCH GARCH GARCH-st GARCH-st

Gas GARCH-st Highest VaR GARCH-st LASSO

Copper Mean GARCH Elastic Net Elastic Net

Confidence level = 0.01

Gold Lowest VaR Lowest VaR GARCH-st GARCH-st

Silver Lowest VaR Lowest VaR Lowest VaR Lowest VaR

Oil Lowest VaR Mean Lowest VaR Lowest VaR

Gas Lowest VaR GARCH-t Lowest VaR CQOM

Copper Lowest VaR Lowest VaR Lowest VaR GARCH-st
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Figure 6. Combing weight for the most promising methods of combining VaR forecasts for all assets for both confi-
dence levels (CL)—0.975 and 0.99
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the CaViaR model maintained supremacy during 
oil and gas crises from 2007 onwards. In the case of 
gold, the CaViaR model only asserted dominance 
during the coronavirus-induced crisis in 2020, at a 
0.975 confidence level. In other scenarios, discerning 
a leading model proves challenging. For oil, the crisis 
from 2014 to 2016 witnessed GARCH-t’s ascendancy 
at the 0.975 confidence level, whereas the 2020 crisis 
saw CaViaR’s resurgence. In the realm of gas, the 0.99 
confidence level favored CaViaR for the 2014-2020 
crisis, while GARCH prevailed for the 2020 crisis.

Regrettably, a parallel analysis for silver and 
copper was precluded due to unpromising results 
yielded by this methodology. The collective outcomes 
underscore the feasibility of distinguishing dominant 
models within specific forecast amalgamation 
methodologies, accentuating the prominence of select 
individual models over their counterparts.

The first hypothesis positing a heightened degree 
of forecast accuracy through the amalgamation of 
methodologies across the entirety of the assessment 
period has been unequivocally validated at a confidence 
level of 0.99. This validation extends to a partial extent 
at a confidence level of 0.975, specifically observed in 
the context of silver and copper markets.

Subsequently, the second hypothesis, which 
underscores an enhanced precision in forecast 
outcomes derived from the confluence of models 
during periods characterised by tranquillity, finds 
affirmation solely in the case of the gas market. This 
affirmation is notable at the confidence level of 0.975, 

and nearly complete at the 0.99 confidence level, 
delineating gas as the sole asset wherein the individual 
model surpassed the composite approach.

In relation to the third hypothesis, which advances 
the notion of improved forecast accuracy achieved 
through the integration of methodologies during 
periods of crisis, partial confirmation is evident. This 
is evident at the 0.975 confidence level for silver and 
copper markets, and at the 0.99 confidence level for all 
assets with the exception of gold.

The fourth hypothesis, postulating the supremacy 
of forecast combining methodologies over individual 
models, stands largely substantiated at the 0.975 
confidence level. Notably, this is exceptive in the case 
of oil. At the 0.99 confidence level, the hypothesis 
obtains partial validation, with gold and copper 
markets serving as exceptions.

The foremost forecast combining models, which 
have demonstrated superior performance, are notably 
the lowest Value at Risk (VaR) and the arithmetic 
mean.

4. Conclusions

The provided study aimed to assess the effectiveness 
of different Value at Risk (VaR) forecasting models 
and forecast combining methods in predicting risk 
levels for commodities at two distinct confidence 
levels (0.975 and 0.99). The study not only compared 

 

 

 

 

ContinuedFigure 6. Combing weight for the most promising methods of combining VaR forecasts for all assets for both 
confidence levels (CL)—0.975 and 0.99
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the accuracy of individual VaR models with combined 
forecasts but also delved into the impact of individual 
forecasts on the combined forecast. The research 
found that, at the 0.975 confidence level, the results 
were somewhat aligned with expectations, while at 
the 0.99 confidence level, the results were largely as 
anticipated.

The present study’s findings serve to reinforce 
previous research, specifically highlighting the 
efficacy of employing simple combining techniques. 
Notably, Huang & Lee’s (2013) investigation revealed 
that the mean and median computed across all 
individual forecasts exhibited superior performance. 
Their study involved the amalgamation of Value at 
Risk (VaR) predictions derived from models utilising 
high-frequency information. Similarly, Bayer’s (2018) 
work demonstrated that the straightforward mean 
calculation across all forecasts yielded commendable 
results, often comparable to more intricate 
methodologies.

Consequently, our comparative analysis deviates 
from two established conclusions within the mean 
forecasting literature, as outlined by Timmermann 
(2006), which advocate for the utilisation of trimming 
and averaging based on ranks to enhance simpler 
variants. Additionally, the strategy of selecting a 
solitary model on a day-to-day basis exhibited inferior 
performance compared to averaging techniques and 
even trailed behind several standalone models. This 
observation aligns with the findings presented in 
Aiolfi & Timmermann’s (2006) research.

Furthermore, Taylor (2020) underscored the 
benefits of combining methodologies, often resulting 
in enhanced forecasting accuracy for the mean. This 
viewpoint is corroborated by the work of Lyocsa et al. 
(2021). Notably, our analysis reveals that the predictive 
capacity of the Expected Shortfall (ES) model in the 
given context produced well-specified predictions 
devoid of systematic biases.

Despite the utilisation of more complex combining 
methods, the basic techniques—specifically the lowest 
VaR and the average—proved to be the most effective 
in many instances. Still, regression methods exhibited 
promising outcomes, implying potential for further 
refining these methods through various parameter 
adjustments.

The study yielded an intriguing observation: during 
times of crises, particularly the COVID-19 pandemic, 
individual models outperformed combining methods 
for forecasting gold prices. This phenomenon could be 

attributed to gold’s unique role as a safe-haven asset 
during crises, prompting individuals, institutions, 
and even countries to seek shelter in gold to safeguard 
their wealth. Nonetheless, the study acknowledged 
the necessity for more comprehensive investigation to 
comprehensively understand this trend.

In essence, the study’s primary takeaway is that 
forecast combining methods, particularly those 
emphasising simplicity, offer value. This central 
finding holds notable implications for both the realm of 
scientific research and practical application within the 
financial and risk management sectors. The study builds 
on prior research by confirming the dominance of the 
average method in forecast combination. This finding 
corroborates and strengthens the existing knowledge 
base, offering researchers a more comprehensive 
picture of which methods are consistently effective 
across different scenarios. The study’s exploration of 
regression methods and their promising results opens 
up avenues for further investigation and development 
in this area. Researchers can delve deeper into refining 
regression-based techniques, exploring adjustments to 
parameter estimation windows, tuning parameters, 
and regularisation strategies. This has the potential 
to contribute to the advancement of quantitative 
modeling methodologies. For practitioners in the 
financial and risk management sectors, the study’s 
findings hold practical implications that can inform 
decision-making processes and risk management 
strategies.

However, the study’s scope was confined to 
commodities, necessitating caution when extending its 
findings to other markets. The study also recognised 
limitations, such as the use of incomplete data for 
backtesting during the COVID-19 crisis and default 
options in employing machine learning models. 
To expand upon this research, future studies could 
validate hypotheses in different markets, experiment 
with diverse loss functions, include forecasts from 
a broader array of individual models, evaluate 
hypotheses with complete data during pandemic 
crises, and explore enhancements for both combining 
methods.

In summary, this study contributes to the 
understanding of VaR forecasting and forecast 
combining methods in the context of commodities. It 
highlights the significance of simplicity in combining 
forecasts and recognises potential avenues for further 
research and improvement. However, generalising the 
findings demands caution, given the study’s specific 
focus and acknowledged limitations.



 CEEJ  • 10(57)  •  2023  •  pp. 343-370  •  ISSN 2543-6821  •  DOI: 10.2478/ceej-2023-0020  368

References

Andreani, M., Candila, V., & Petrella, L. 
(2022). Quantile Regression Forest for Value-at-
Risk Forecasting Via Mixed-Frequency Data. 
In Mathematical and Statistical Methods for Actuarial 

Sciences and Finance: MAF 2022 (pp. 13-18). Cham: 
Springer International Publishing. http://doi.
org/10.1007/978-3-030-99638-3

Angabini, A., Wasiuzzaman, S. (2011). GARCH 
Models and the Financial Crisis: A Study of the 
Malaysian. The International Journal of Applied Economics 

and Finance, 5(3), 226-236. https://doi.org/10.3923/
ijaef.2011.226.236

Armstrong, J. S. (1989). Combining forecasts: 
The end of the beginning or the beginning of the 
end? International Journal of Forecasting, 5(4), 585-588. 
https://doi.org/10.1016/0169-2070(89)90013-7

Aziz, S., & Dowling, M. (2019). Machine learning 
and AI for risk management. Disrupting finance: FinTech 

and strategy in the 21st century, 33-50.

Basel Committee. (1996). Overview of the 
Amendment to the Capital Accord to Incorporate 
Market Risks. Discussion Paper, Basel Committee on 

Banking Supervision.

Bayer, S. (2018). Combining value-at-risk forecasts 
using penalized quantile regressions. Econometrics 

and statistics, 8, 56-77. https://doi.org/10.1016/j.
ecosta.2017.08.001

BCBS (1996). Supervisory Framework for 
the Use of ‘Backtesting’ in Conjunction with the 
Internal Models Approach to Market Risk Capital 
Requirements.

BCBS (2010). The Basel III Capital Framework: A 
Decisive Breakthrough. Speech by Hervé Hannoun at 
BoJ-BIS High Level Seminar on Financial Regulatory 
Reform: Implications for Asia and the Pacific, Hong 
Kong SAR.

Bernardi, M., Catania, L. (2016). Comparison 
of Value-at-Risk models using the MCS 
approach. Computational Statistics, 31(2), 579-608. 
https://doi.org/10.1007/s00180-016-0646-6

Bhowmik, R., & Wang, S. (2020). Stock market 
volatility and return analysis: A systematic literature 
review. Entropy, 22(5), 522. https://doi.org/10.3390/
e22050522

Bollerslev, T. (1986). Generalized autoregressive 
conditional heteroscedasticity. Journal of Econometrics. 

31(3), 307-327. https://doi.org/10.1016/0304-
4076(86)90063-1

Bollerslev, T. (1987). Conditionally heteroskedastic 
time series model for speculative prices and rates of 
return. The Review of Economics and Statistics, 69(3), 542-
547. https://doi.org/10.2307/1925546

Bollerslev, T., Woolridge, J. M. (1992). 
Quasi-maximum likelihood estimation and 
inference in dynamic models with time-varying 
covariances Econometric Reviews 11. https://doi.
org/10.1080/07474939208800229

Buczyński, M., Chlebus, M. (2018). Comparison of 
semi-parametric and benchmark value-at-risk models 
in several time periods with different volatility 
levels. e-Finanse: Financial Internet Quarterly, 14(2), 
67-82. https://doi.org/10.2478/fiqf-2018-0013

Buczyński, M., & Chlebus, M. (2019). Old-
fashioned parametric models are still the best: a 
comparison of value-at-risk approaches in several 
volatility states. Journal of Risk Model Validation, 14(2). 

Caillault, É. P., Lefebvre, A., and Bigand, A. 
(2017). Dynamic time warping-based imputation for 
univariate time series data. Pattern Recognition Letters. 
https://doi.org/10.1016/j.patrec.2017.08.019

Cannon, A. J. (2010). A flexible nonlinear modelling 
framework for nonstationary generalized extreme 
value analysis in hydroclimatology. Hydrological 

Processes: An International Journal, 24(6), 673-685. 
https://doi.org/10.1002/hyp.7506

Cannon, A. J. (2011). Quantile regression neural 
networks: Implementation in R and application 
to precipitation downscaling. Computers & 

Geosciences, 37(9), 1277-1284. https://doi.org/10.1016/j.
cageo.2010.07.005

Christoffersen, P. (1998). Evaluating interval 
forecasts. International Economic Review, 39(4), 841–862. 
https://doi.org/10.2307/2527341

Clemen, R. T., Winkler, R. L. (1986). Combining 
economic forecasts. Journal of Business & Economic 

Statistics, 4(1), 39-46. https://doi.org/10.2307/1391385

Danielsson, J. (2013). The new market-risk 
regulations. VoxEU.

Danielsson, J., Morimoto, Y. (2000). Forecasting 

extreme financial risk: A critical analysis of practical 

https://doi.org/10.1016/0169-2070(89)90013-7
https://doi.org/10.1016/0304-4076(86)90063-1
https://doi.org/10.1016/0304-4076(86)90063-1


 CEEJ  • 10(57)  •  2023  •  pp. 343-370  •  ISSN 2543-6821  •  DOI: 10.2478/ceej-2023-0020  369

methods for the Japanese market. Institute for Monetary 
and Economic Studies, Bank of Japan. 

Dudziński, J. (2016). Ceny w handlu 
międzynarodowym w drugiej dekadzie XXI wieku. 
Kierunki zmian i ich czynniki. International Business 

and Global Economy, 35(2), 249-260. https://doi.org/10
.4467/23539496IB.16.061.5642

Duffie, D., Pan, J. (1997). An overview of value 
at risk. Journal of Derivatives, 4(3), 7-49. http://doi.
org/10.3905/jod.1997.407971

Engle, R. F., Manganelli, S. (2004). CAViaR: 
Conditional Autoregressive Value at Risk by Regression 
Quantiles. Journal of Business & Economic Statistics, 22(4), 
367-381. http://doi.org/10.1198/073500104000000370

Fameliti, S. P., & Skintzi, V. D. (2020). Predictive 
ability and economic gains from volatility forecast 
combinations. Journal of Forecasting, 39(2), 200-219. 
http://doi.org/10.1002/for.2622

Friedman, J. H. (2001). Greedy function 
approximation: a gradient boosting machine. Annals 

of Statistics, 1189-1232. http://dx.doi.org/10.1214/
aos/1013203451

Gençay, R., Selçuk, F., Ulugülyaǧci, A. (2003). 
High volatility, thick tails and extreme value theory 
in value-at-risk estimation. Insurance: Mathematics and 

Economics, 33(2), 337-356. http://dx.doi.org/10.1016/j.
insmatheco.2003.07.004

Giacomini, R., Komunjer, I. (2005). Evaluation and 
combination of conditional quantile forecasts. Journal 

of Business and Economic Statistics, 23(4), 416-431. http://
doi.org/10.1198/073500105000000018

Grömping, U. (2009). Variable importance 
assessment in regression: linear regression versus 
random forest. The American Statistician, 63(4), 308-
319. https://doi.org/10.1198/tast.2009.08199

Halbleib, R., Pohlmeier, W. (2012). Improving 
the value at risk forecasts: Theory and evidence from 
the financial crisis. Journal of Economic Dynamics and 

Control, 36(8), 1212-1228. https://doi.org/10.1016/j.
jedc.2011.10.005

Hansen, P. R., Lunde, A., Nason, J. M. (2011). The 
model confidence set. Econometrica, 79(2), 453-497. 
https://doi.org/10.3982/ECTA5771

Holthausen, D. M., Hughes, J. S. (1978). Commodity 
returns and capital asset pricing. Financial Management, 
37-44. https://doi.org/10.1177/0972262912460186

Huang, H., Lee, T. H. (2013). Forecasting 
value-at-risk using high-frequency 
information. Econometrics, 1(1), 127-140. https://doi.
org/10.3390/econometrics1010127

Ichev, R., Marinč, M. (2018). Stock prices and 
geographic proximity of information: Evidence from 
the Ebola outbreak. International Review of Financial 

Analysis, 56, 153-166. https://doi.org/10.1016/j.
irfa.2017.12.004

Jeon, J., Taylor, J. W. (2013). Using CAViaR 
models with implied volatility for Value‐at‐Risk 
estimation. Journal of Forecasting, 32(1), 62-74. http://
dx.doi.org/10.1002/for.1251

Kupiec, P. (1995). Techniques for verifying the 
accuracy of risk management models. Journal of 

Derivatives, 3(2), 73-84. https://doi.org/10.3905/
jod.1995.407942

Laporta, A. G., Merlo, L., & Petrella, L. (2018). 
Selection of value at risk models for energy 
commodities. Energy Economics 74, 628–643.

Laurent, S., Rombouts, J. V., & Violante, F. (2012). 
On the forecasting accuracy of multivariate GARCH 
models. Journal of Applied Econometrics, 27(6), 934-955. 
https://doi.org/10.1002/jae.1248

Lyócsa, Š., Todorova, N., & Výrost, T. (2021). 
Predicting risk in energy markets: low-frequency data 
still matter. Applied Energy, 282, 116–146.

Mashrur, A., Luo, W., Zaidi, N. A., & Robles-
Kelly, A. (2020). Machine learning for financial risk 
management: a survey. IEEE Access, 8, 203203–203223.

McAleer, M., Jimenez-Martin, J. A., Perez 
Amaral, T. (2010). Has the Basel II Accord encouraged 
risk management during the 2008-09 financial crisis? 
SSRN Electronic Journal, http://dx.doi.org/10.2139/
ssrn.1397239

Meinshausen, N., Ridgeway, G. (2006). Quantile 
regression forests. Journal of Machine Learning 

Research, 7(6).

Mensi, W., Sensoy, A., Vo, X. V., Kang, S. H. 
(2020). Impact of COVID-19 outbreak on asymmetric 
multifractality of gold and oil prices. Resources 

Policy, 69, 101829. https://doi.org/10.1016%2Fj.
resourpol.2020.101829

Phillips, P. C., Yu, J. (2011). Dating the 
timeline of financial bubbles during the subprime 
crisis. Quantitative Economics, 2(3), 455–491. http://
dx.doi.org/10.3982/QE82

http://dx.doi.org/10.1214/aos/1013203451
http://dx.doi.org/10.1214/aos/1013203451
https://doi.org/10.3905/jod.1995.407942
https://doi.org/10.3905/jod.1995.407942
https://doi.org/10.1002/jae.1248


 CEEJ  • 10(57)  •  2023  •  pp. 343-370  •  ISSN 2543-6821  •  DOI: 10.2478/ceej-2023-0020  370

Parot, A., Michell, K., & Kristjanpoller, W. D. 
(2019). Using Artificial Neural Networks to forecast 
Exchange Rate, including VAR‐VECM residual 
analysis and prediction linear combination. Intelligent 

Systems in Accounting, Finance and Management, 26(1), 
3-15. https://doi.org/10.1002/isaf.1440

Pradeepkumar, D., & Ravi, V. (2017). Forecasting 
financial time series volatility using particle swarm 
optimisation trained quantile regression neural 
network. Applied Soft Computing, 58, 35-52. https://doi.
org/10.1016/j.asoc.2017.04.014

Rundo, F., Trenta, F., di Stallo, A. L., & Battiato, 
S. (2019). Machine learning for quantitative finance 
applications: A survey. Applied Sciences, 9(24), 5574.

Stuermer, M., & Valckx, N. (2021). Four Factors 
Behind the Metals Price Rally. IMF.

Szakmary, A. C., Shen, Q., Sharma, S. C. (2010). 
Trend-following trading strategies in commodity 
futures: A re-examination. Journal of Banking & 

Finance, 34(2), 409–426. http://dx.doi.org/10.1016/j.
jbankfin.2009.08.004

Tibshirani, R. (1996). Regression shrinkage and 
selection via the LASSO. Journal of the Royal Statistical 

Society: Series B (Methodological), 58(1), 267–288. https://
doi.org/10.1111/j.2517-6161.1996.tb02080.x

Taylor, J. W. (2020). Forecast combinations for 
value at risk and expected shortfall. International 

Journal of Forecasting, 36(2), 428–441. https://doi.
org/10.1016/j.ijforecast.2019.05.014

Terui, N., Van Dijk, H. K. (2002). Combined 
forecasts from linear and nonlinear time series 
models. International Journal of Forecasting, 18(3), 421–
438. https://doi.org/10.1016/S0169-2070(01)00120-0

Timmermann, A. (2006). Forecast 
combinations. Handbook of economic forecasting, 1, 135–
196. https://doi.org/10.1016/S1574-0706(05)01004-9

Tsay, R. S. (2005). Analysis of Financial Time 

Series (Vol. 543). John Wiley & Sons.

Tse, Y. (2016). Asymmetric volatility, skewness, 
and downside risk in different asset classes: Evidence 
from futures markets. Financial Review, 51(1), 83–111. 
https://doi.org/10.1111/fire.12095

Wasserbacher, H., & Spindler, M. (2022). Machine 
learning for financial forecasting, planning and 
analysis: recent developments and pitfalls. Digital 

Finance, 4(1), 63–88.

Xiao, D., Su, J., & Ayub, B. (2022). Economic 
policy uncertainty and commodity market volatility: 
implications for economic recovery. Environmental 

Science and Pollution Research, 29(40), 60662–60673.

Youssef, M., Belkacem, L., Mokni, K., 2015. 
Value-at-Risk estimation of energy commodities: 
A long-memory GARCH–EVT approach. Energy 

Economics, 51, 99–110. https://doi.org/10.1016/j.
eneco.2015.06.010

https://doi.org/10.1016/j.asoc.2017.04.014
https://doi.org/10.1016/j.asoc.2017.04.014
https://doi.org/10.1016/S0169-2070(01)00120-0
https://doi.org/10.1111/fire.12095

