Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


2022 | 41 | 3 | 75-86

Article title

GIS-based land cover analysis and prediction based on open-source software and data

Content

Title variants

Languages of publication

Abstracts

EN
The study aims at land cover prediction based on cellular automata and artificial neural network (CA-ANN) method implemented in the Methods Of Land Use Change Evaluation (MOLUSCE) tool. The Tricity region and the neighbouring counties of Gdański and Kartuzy were taken as the research areas, and coordination of information on the environment (CORINE Land Cover, CLC, CLMS 2022) data for 2006, 2012 and 2018 were used to analyse, simulate and predict land cover for 2024, the next reference year of the CORINE inventory. The results revealed an increase in artificial surfaces, with the highest value during the period 2006–2012 (86.56 km2). In total, during the period 2006–2018, the growth in urbanised area amounted to 95.37 km2. The 2024 prediction showed that artificial surfaces increased by 9.19 km2, resulting in a decline in agricultural land.

Keywords

Year

Volume

41

Issue

3

Pages

75-86

Physical description

Dates

published
2022

Contributors

  • Faculty of Civil Engineering and Geodesy, Military University of Technology, Warsaw, Poland
  • Faculty of Civil Engineering and Geodesy, Military University of Technology, Warsaw, Poland

References

  • Adamiak M., Jażdżewska I., Nalej M. 2021. Analysis of built-up areas of small Polish cities with the use of deep learning and geographically weighted regression. Geosciences 11(5): 223. DOI https://doi.org/10.3390/geosciences11050223
  • Alam N., Swati Saha S., Gupta S., Chakraborty S., 2021. Prediction modelling of riverine landscape dynamics in the context of sustainable management of floodplain: A Geospatial approach. Annals of GIS 27(3): 299-314. DOI https://doi.org/10.1080/19475683.2020.1870558
  • Bielecka E., 2020. GIS spatial analysis modeling for land use change. A bibliometric analysis of the intellectual base and trends. Geosciences 10(11): 421. DOI
  • https://doi.org/10.3390/geosciences10110421
  • Bielecka E., Jenerowicz A. 2019. Intellectual structure of CORINE Land Cover research applications in web of Science: A Europe-wide review. Remote Sensing 11(17): 2017. DOI https://doi.org/10.3390/rs11172017
  • Bielecka E., Jenerowicz A., Pokonieczny K., Borkowska S., 2020. Land cover changes and flows in the Polish Baltic coastal zone: A qualitative and quantitative approach. Remote Sensing 12(13): 2088. DOI https://doi.org/10.3390/rs12132088
  • Borowska-Stefańska M., Leśniewska-Napierała K., Wiśniew¬ski, S. 2018. Land cover changes in Poland between 1990 and 2012. Geografie 123(1): 63-83. DOI
  • https://doi.org/10.37040/geografie2018123010063
  • Büttner G., 2014. CORINE Land Cover and land cover change products. In: Manakos I., Braun M. (eds), Land use and land cover mapping in Europe: Practices & trends. Springer Netherlands, Dordrecht: 55-74. DOI https://doi.org/10.1007/978-94-007-7969-3_5
  • Calka B., Bielecka E., 2020. GHS-POP accuracy assessment: Poland and Portugal case study. Remote Sensing 12(7): 1105. DOI https://doi.org/10.3390/rs12071105
  • CLSM [Copernicus Land Monitoring Service], 2022. Corine Land Cover. Online: https://land.copernicus.eu/pan-european/corine-land-cover (accessed 13 May 2022).
  • Cole B., Smith G., Balzter H., 2018. Acceleration and fragmentation of CORINE land cover changes in the United Kingdom from 2006-2012 detected by Copernicus IMAGE2012 satellite data. International Journal of Applied Earth Observation and Geoinformation 73: 107-122. DOI https://doi.org/10.1016/j.jag.2018.06.003
  • Comber A.J., Wadsworth R.A., Fisher P.F., 2008. Using semantics to clarify the conceptual confusion between land cover and land use: The example of 'forest'. Journal of Land Use Science 3 (2-3): 185-198. DOI https://doi.org/10.1080/17474230802434187
  • Dawid W., Pokonieczny K., 2020. Analysis of the possibilities of using different resolution digital elevation models in the study of microrelief on the example of terrain passability. Remote Sensing 12: 4146. DOI https://doi.org/10.3390/rs12244146
  • Dawid W., Pokonieczny K., 2021. Methodology of using terrain passability maps for planning the movement of troops and navigation of unmanned ground vehicles. Sensors 21: 4682. DOI https://doi.org/10.3390/s21144682
  • Dukaczewski D., 2019. Method of elaboration of detailed existing land use (ELU) map of Poland. Abstracts of the International Cartographic Association 1: 67. DOI https://doi.org/10.5194/ica-abs-1-67-2019
  • Faisal A.-A., Kaf, A.-A., Al Rakib A., Akter K.S., Jahir D.A.J., Sikdar Md.S., Ashrafi T.J.A., Mallik S., Rahman Md.M., 2021. Assessing and predicting land use/land cover, land surface temperature and urban thermal field variance index using Landsat imagery for Dhaka Metropolitan area. Environmental Challenges 4: 100192. DOI https://doi.org/10.1016/j.envc.2021.100192
  • Feranec J., Jaffrain G., Soukup T., Hazeu G., 2010. Determining changes and flows in European landscapes 1990-2000 using CORINE land cover data. Applied Geography 30: 19-35. DOI https://doi.org/10.1016/j.apgeog.2009.07.003
  • Fiedeń Ł., 2019. Changes in land use in the communes crossed by the A4 motorway in Poland. Land Use Policy 85: 397-406. DOI https://doi.org/10.1016/j.landusepol.2019.04.025
  • Fisher P., Comber A., Wadsworth R., 2005. Land use and land cover: Contradiction or complement. In: Fisher P. (ed.), Re-presenting GIS. John Wiley & Sons, London: 85-98.
  • Gąsiorowski J., Poławski Z.F., 2011. Wpływ założeń metodycznych programu CORINE Land Cover na szczegółowość opracowanych baz danych (Impact of CORINE Land Cover's methodological assumptions on the detail of the databases developed). Polski Przegląd Kartograficzny 43(1): 35-42.
  • GHS-POP [Global Human Settlement - Population], 2022. Online: https://ghsl.jrc.ec.europa.eu/ghs_pop.php (accessed 13 May 2022).
  • GUGiK [Główny Urząd Geodezji i Kartografii], 2022. BDOT10k. Online: https://mapy.geoportal.gov.pl/imap/Imgp_2.html?gpmap=gp0 (accessed 13 May 2022).
  • Hościło A., Tomaszewska M., 2014. CORINE Land Cover 2012-4th CLC inventory completed in Poland. Geoinformation Issues 6(1(6)): 49-58. DOI https://doi.org/10.34867/gi.2014.4.
  • Izdebski W., Zwirowicz-Rutkowska A., Nowak da Costa J., 2021. Open data in spatial data infrastructure: the practices and experiences of Poland. International Journal of Digital Earth 14(11): 1547-1560. DOI https://doi.org/10.1080/17538947.2021.1952323
  • Jansen L.J.M., Gregorio A. Di., 2002. Parametric land cover and land-use classifications as tools for environmental change detection. Agriculture, Ecosystems & Environment 91(1-3): 89-100. DOI https://doi.org/10.1016/S0167-8809(01)00243-2
  • Jayasinghe P., Kantakumar L., Raghavan V., Yonezawa G., 2021. Comparative evaluation of open source urban simulation models applied to Colombo city and environs in Sri Lanka. International Journal of Geoinformatics 17(3): 49-60. DOI https://doi.org/10.52939/ijg.v17i3.1897
  • Jogun T., Lukić A., Gašparović M., 2019. Simulation model of land cover changes in a post-socialist peripheral rural area: Požega-Slavonia County, Croatia. Croatian Geographical Bulletin 81(1): 31-50. DOI https://doi.org/10.21861/HGG.2019.81.01.02
  • Jończy R., Śleszyński P., Dolińska A., Ptak M., Rokitowska-Malcher J., Rokita-Poskart D., 2021. Environmental and economic factors of migration from urban to rural areas: Evidence from Poland. Energies 14(24): 8467. https://doi.org/10.3390/en14248467
  • Kocur-Bera K., Lyjak A., 2021. Analysis of changes in agricultural use of land after Poland's accession to the EU. European Research Studies Journal 24(4): 517-533. DOI https://doi.org/10.35808/ersj/2604
  • Kocur-Bera K., Pszenny A., 2020. Conversion of agricultural land for urbanization purposes: A case study of the suburbs of the capital of Warmia and Mazury, Poland. Remote Sensing 12: 2325. DOI https://doi.org/10.3390/rs12142325
  • Kowalewski A., Mordasewicz J., Osiatyński J., Regulski J., Stępień J., Śleszyński P., 2013. Raport o ekonomicznych stratach i społecznych kosztach niekontrolowanej urbanizacji w Polsce. PAN IGiPZ, Warszawa.
  • Kurowska K., Kryszk H., Marks-Bielska R., Mika M., Leń P., 2020. Conversion of agricultural and forest land to other purposes in the context of land protection: Evidence from Polish experience. Land Use Policy 95: 104614. DOI https://doi.org/10.1016/j.landusepol.2020.104614
  • Lambin E.F., Geist H.J., Lepers E., 2003. Dynamics of land-use and land-cover change in tropical regions. Annual Review of Environment and Resources 28: 205-241. DOI https://doi.org/10.1146/annurev.energy.28.050302.105459
  • Lambin E.F., Rounsevell M.D.A., Geist H.J., 2000. Are agricultural land-use model able to predict changes in land-use intensity. Agriculture, Ecosystems & Environment 82: 321-331. DOI https://doi.org/10.1016/S0167-8809(00)00235-8
  • Land Copernicus, 2017. CORINE Land Cover 2012 Final Validation Report. GIO_CLC2012_Validation_Report_SC2 Issue: 1.4, 10 February 2017. Online: https://land.copernicus.eu/user-corner/technical-library/clc-2012-validation-report-1 (accessed 13 February 2022).
  • Leśniewska-Napierała K., Nalej M., Napierała T., 2019. The impact of EU grants absorption on land cover changes - The case of Poland. Remote Sensing 11(20): 2359. DOI https://doi.org/10.3390/rs11202359
  • Łowicki D., Mizgajski A., 2013. Typology of physical-geographical regions in Poland in line with land-cover structure and its changes in the years 1990-2006. Geographia Polonica 86(3): 255-266. DOI https://doi.org/10.7163/GPol.2013.22
  • Mas J.-F., Kolb M., Paegelow M., Olmedo M.T.C., Houet T., 2014. Inductive pattern-based land use/cover change models: A comparison of four software packages. Environmental Modelling & Software 51: 94-111. DOI https://doi.org/10.1016/j.envsoft.2013.09.010
  • Mierzwiak M., Calka B., 2019. Zmiany pokrycia terenu w Polsce w latach 1990-2012 na podstawie danych CORINE Land Cover (Land cover changes in Poland in 1990-2012). Annals of Geomatics 17(2(85)): 127-140.
  • MIL-PRF-89020B. 2004. Performance specification Digital Terrain Elevation Data (DTED). Online: http://everyspec.com/MIL-PRF/MIL-PRF-080000-99999/MIL-PRF-89020B_25316/ (accessed: 13 May 2022).
  • Noszczyk T., 2018. A review of approaches to land use changes modeling. Human and Ecological Risk Assessment: An International Journal 25: 1377-1405. DOI https://doi.org/10.1080/10807039.2018.1468994
  • Pabjanek P., Szumacher I., 2017. Land use and ecosystem services temporal changes in the urban sprawl zone, Warsaw, Poland. The Problems of Landscape Ecology XLIV: 29-40.
  • Pokonieczny K., 2018. Comparison of land passability maps created with use of different spatial data bases. Geografie 123: 317-352. DOI
  • https://doi.org/10.37040/geografie2018123030317
  • Poławski Z., 2009. Land use changes in Poland during last two centuries. Teledetekcja Środowiska 42: 69-82.
  • Prus B., 2012. Kierunki zmian przeznaczenia gruntów rolnych i leśnych w Polsc, Acta Scientiarum Polonorum Geodesia et Descriptio Terrarum 11(2): 27-40.
  • Rahman M., Tabassum F., Rasheduzzaman M., Rasheduzzaman M.D., Saba H., Sarkar L., Ferdous J., Uddin S.Z., Zahedul Islam A.Z.M., 2017. Temporal dynamics of land use/land cover change and its prediction using CA-ANN model for southwestern coastal Bangladesh. Environmental Monitoring and Assessment 189: 565. DOI https://doi.org/10.1007/s10661-017-6272-0
  • Seto K.C., Fragkias M., Güneralp B., Reilly M.K., 2011. A meta-analysis of global urban land expansion. PLoS ONE 6: e23777. DOI https://doi.org/10.1371/journal.pone.0023777
  • USGS [U.S. Geological Survey], 2022. Earth Explorer. Online: https://earthexplorer.usgs.gov/ (accessed 13 May 2022).
  • Vitousek P.M., 1994. Beyond global warming: Ecology and global change. Ecology 75: 1861-1876. DOI https://doi.org/10.2307/1941591
  • Wiatkowska B., Słodczyk J., Stokowska A., 2021. Spatial-temporal land use and land cover changes in urban areas using remote sensing images and GIS analysis: The case study of Opole, Poland. Geosciences 11(8): 312. DOI https://doi.org/10.3390/geosciences11080312

Document Type

Publication order reference

Identifiers

Biblioteka Nauki
15805022

YADDA identifier

bwmeta1.element.ojs-doi-10_2478_quageo-2022-0026
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.