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The length-biased power hazard rate distribution: Some
properties and applications

Abdelfattah Mustafa1,2, M. I. Khan2

ABSTRACT

In this article, the length-biased power hazard rate distribution has introduced and investi-
gated several statistical properties. This distribution reports an extension of several prob-
ability distributions, namely: exponential, Rayleigh, Weibull, and linear hazard rate. The
procedure of maximum likelihood estimation is taken for parameters. Finally, the applica-
bility of the model is explored by three real data sets. To examine, the performance of the
technique, a simulation study is extracted.
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1. Introduction

Importance of the statistical distributions in different fields of studies, researchers have
shown their curiosity to suggest a new distribution via numerous methods. In pioneering
work, Cox (1962) proposed a model dealing with the unequal probability of sample obser-
vation termed as length-biased technique. This concept has many applications in biomedical
sciences, Lawless (2003).

Several papers have been arisen to investigate the performance of length-biased distri-
butions. For instance see Gupta and Keating (1985), Khattree (1989), Gupta and Tripathi
(1990), Oluyede (1999), Das and Roy (2011a,b), Ratnaparkhi and Nimbalkar (2012), Al-
Khadim and Hussain (2014), Nanuwong and Bodhisuwan (2014), Seenoi et al. (2014) ,
Modi (2015), Saghir et al. (2016), Saghir et al. (2017), Mudasir and Ahmad (2018) and
Parveen and Ahmad (2018), among others.

The lifetime distributions are always characterized by selecting a specific hazard rate
function (HRF). The power HRF is one of them. The HRF is used in many fields of study
(reliability analysis, actuarial sciences, demography, and economics). The inference on
hazard function for lifetime data has become a prevalent tool for researchers.

The power hazard function (PHF) was introduced by Mugdadi (2005).

h(x) = λxν , x > 0, λ > 0, ν >−1. (1)

In view of (1) cumulative distribution function (cdf) is given

F(x) = 1− e−
λ

ν+1 xν+1
, x > 0, λ > 0, ν >−1, (2)
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and the probability density function (pdf) is

f (x) = λxν e−
λ

ν+1 xν+1
, x > 0, λ > 0, ν >−1. (3)

If X has pdf (3), we denote it by X ∼ PHRD(λ ,ν).
The PHF is very simple, and it could be increasing, decreasing, or constant. Therefore,

the PHR distribution contributes a better fit over two-parameter distributions when mod-
elling monotone hazard rates. More explorationon the PHR distribution can be seen in Is-
mail (2014), Mugdadi and Min (2009), Tarvirdizade and Nematollahi (2016) and Tarvirdizade
and Nematollahi (2020). It is important to note that some familiar distributions are special
case of (3) reported in Section 2.1.

The paper is organized as follows. The formulation of length-biased PHR distribution
(LBPHRD) and its structured properties are discussed in Section 2. Section 3 is devoted to
estimating the parameters via the maximum likelihood method. Section 4 reveals the useful-
ness of the new model and, also simulation study is evaluated to examine the performance
of MLEs. The conclusion is presented in Section 5.

2. Length-Biased Power Hazard Rate Distribution

The LBPHR distribution is proposed in this section. The shape of the pdf, hazard rate
and some sub-models are established also.
Definition 1. If the random variable X has a pdf f (x) and expected value E(X)< 0 then the
pdf of the length- biased distribution of X can be formulated as

g(x) =
x f (x)
E(X)

. (4)

From (3) and (4), the LBPHR distribution with two parameters λ (scale) and ν (shape) can
be obtained as follows

g(x) =
λxν+1e−

λ
ν+1 xν+1(

ν+1
λ

) 1
ν+1 Γ

(
ν+2
ν+1

) , x > 0, (5)

where Γ(n) =
∫

∞

0 un−1e−udu is gamma function.
The graph of the pdf of LBPHRD is shown in Figure 1, for various values of λ and ν .

Figure 1. The plot of gLBPHR(x) for λ = 0.73 and various values of ν .
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From Figure 1, the pdf of LBPHRD has one peak, so there is one mode.

The cdf of LBPHR distribution has the form

G(x) =
γ

(
ν+2
ν+1 ,

λ

ν+1 xν+1
)

Γ
(

ν+2
ν+1

) , x > 0, (6)

where γ(a,x) =
∫ x

0 ta−1e−tdt is an upper incomplete gamma function.

The survival (reliability) function of LBPHRD is given as

Ḡ(x) =
Γ

(
ν+2
ν+1 ,

λ

ν+1 xν+1
)

Γ
(

ν+2
ν+1

) , x > 0, (7)

where Γ(a,x) =
∫

∞

x ta−1e−tdt is an incomplete gamma function.

The hazard rate of LBPHRD takes the form

h(x) =
λxν+1e−

λ
ν+1 xν+1(

ν+1
λ

) 1
ν+1 Γ

(
ν+2
ν+1

) , x > 0. (8)

Derivative the h(x), w.r.t. x,

h
′
(x) =

1(
ν+1

λ

) 1
ν+1 Γ

(
ν+2
ν+1

) [λ (ν +1)−λ
2xν+1]xν e−

λ
ν+1 xν+1

,

by equating h
′
(x) by zero, we find x = 0 and x =

(
ν+1

λ

) 1
ν+1 are the critical points for h(x).

By using the second derivetives test, we can find

h
′′
(x) =

λ(
ν+1

λ

) 1
ν+1 Γ

(
ν+2
ν+1

) [ν(ν +1)−λ (3ν +2)xν+1 +λ
2x2(ν+1)

]
xν−1e−

λ
ν+1 xν+1

.

• At x = 0, h
′′
(x) = 0, then x = 0 is the inflection point.

• At x =
(

ν+1
λ

) 1
ν+1 ,

h
′′
(x) =− λ (ν +1)2xν−1(

ν+1
λ

) 1
ν+1 Γ

(
ν+2
ν+1

)e−
λ

ν+1 xν+1
< 0,

then h(x) has a local maximum at x0 =
(

ν+1
λ

) 1
ν+1 .

Some hazard rate plots of the LBPHR distribution with specific parameter values are
given in Figure 2.
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Figure 2. The HRF of the LBPHRD for λ = 0.73 and various values of ν .

Therefore, the function h(x) ↑ on the interval (0,x0) and h(x) ↓ on the interval (x0,∞).
From the Figure 2, the hazard function exhibits that proposed model becomes a major tool
to fit many lifetime data in (reliability, survival analysis, finance and economics).

2.1. Special cases of LBPHRD

The LBPHRD is very versatile distribution. It covers many noted distribution as follows.

1. Setting ν = λ − 1, we obtain the length-biased Weibull (LBW) distribution as ob-
tained by Shaban and Boudrissa (2007).

2. Setting ν = 1, we obtain the length-biased Rayleigh (LBR) distribution with parame-
ter 1

λ
as obtained by Ajami and Jahanshahi (2017).

3. Setting ν = 0, we obtain the length-biased exponential (LBE) distribution as obtained
by Mir et al. (2013).

4. Setting ν = 1, we obtain the length-biased linear failure rate (LBLFR) distribution.

The results obtained in this paper can be valid for these distributions and the other dis-
tributions which have a power hazard function.

2.2. Statistical properties

Some statistical properties of the LBPHRD are discussed in this section.
Theorem 1. If X ∼ LBPHRD(λ ,ν) then the rth moment is given as

E(X r) =

(
ν+1

λ

) r
ν+1 Γ

( r+ν+2
ν+1

)
Γ
(

ν+2
ν+1

) . (9)

Proof. The rth moments of LBPHRD can be attained by

E(X r) =
∫

∞

0
xrg(x)dx,
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from (5), then

E(X r) =
∫

∞

0

λxr+ν+1e−
λ

ν+1 xν+1(
ν+1

λ

) 1
ν+1 Γ

(
ν+2
ν+1

)dx. (10)

Let u = λ

ν+1 xν+1, du = λxν dx. Upon simplification, (10) leads to

E(X r) =

(
ν+1

λ

) r
ν+1 Γ

( r+ν+2
ν+1

)
Γ
(

ν+2
ν+1

) . (11)

The mean and variance for LBPHRD can be calculated from (11) as follows.
Setting r = 1, in (11),

E(X) =

(
ν+1

λ

) 1
ν+1 Γ

(
ν+3
ν+1

)
Γ
(

ν+2
ν+1

) . (12)

Putting r = 2, in (11),

E(X2) =

(
ν+1

λ

) 2
ν+1 Γ

(
ν+4
ν+1

)
Γ
(

ν+2
ν+1

) . (13)

Therefore, variance of LBPHRD is

Var(X) =

(
ν+1

λ

) 2
ν+1 Γ

(
ν+4
ν+1

)
Γ
(

ν+2
ν+1

) −

(
ν+1

λ

) 1
ν+1 Γ

(
ν+3
ν+1

)
Γ
(

ν+2
ν+1

)
2

. (14)

The shape characteristics of the probability distribution, skewness and kurtosis play an
important role.These can be derived from Theorem 1, using the following relations.

Sk =
µ

′
3 −3µ

′
1µ

′
2 +2µ

′
1

3

(µ
′
2 −µ

′
1)

3/2
, Ku =

µ
′
4 −4µ

′
1µ

′
3 +6µ

′
1

2
µ

′
2 −3µ

′
1

4

(µ
′
2 −µ

′
1)

2
,

where µ
′
r = E(X r).

The mode of the LBPHRD:

Taking the logarithm of (5), we have

lng(x) = ln(λ )+(ν +1) ln(x)− λ

ν +1
xν+1 − ln

[(
ν +1

λ

) 1
ν+1

Γ

(
ν +2
ν +1

)]
. (15)

Differentiate (15) w.r.t. x and equating it zero,

d
dx

lng(x) =
ν +1

x
−λxν = 0, (16)
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therefore

x =
(

ν +1
λ

) 1
ν+1

.

Again differentiate (16),

d2

dx2 lng(x) =−ν +1
x2 −λνxν−1 =− (ν +1)+λνxν+1

x2 ,

at x =
(

ν+1
λ

) 1
ν+1 , then

d2

dx2 lng(x) =− (ν +1)2

x2 < 0.

Therefore, the mode is x =
(

ν+1
λ

) 1
ν+1 .

Using the following relation, pth percentile can be obtained

G(xp;λ ,ν) = p. (17)

Substituting from (6) into (17), xp satisfies the equation

Γ

(
ν +2
ν +1

,
λ

ν +1
xν+1

)
− pΓ

(
ν +2
ν +1

)
= 0. (18)

The pth percentile can be calculated numerically by using Equation (18).
The median can be calculated from Equation (18), at p = 0.5.
For λ = 0.5, ν ∈ (0,5), the values of E(X), mode, Var(X), sk, ku and CV for LBPHRD

and PHRD, respectively are presented in Table 1.

Table 1. Some statistical measures for λ = 0.5,ν ∈ (0,5).
LBPHRD PHRD

ν E(X) Mode Var(X) Sk Ku CV E(X) Mode Var(X) Sk Ku CV
0.0 4.000 2.000 8.000 1.414 6.000 70.71 2.000 0.000 4.000 2.000 9.000 100.00
0.5 2.743 2.080 2.059 0.813 3.780 52.31 1.878 1.000 1.626 1.072 4.390 67.90
1.0 2.257 2.000 0.907 0.486 3.108 42.20 1.772 1.414 0.858 0.631 3.245 52.27
1.5 1.998 1.904 0.507 0.269 2.864 35.64 1.689 1.552 0.522 0.359 2.857 42.78
2.0 1.837 1.817 0.323 0.111 2.786 30.94 1.623 1.587 0.348 0.168 2.729 36.35
2.5 1.726 1.744 0.224 -0.012 2.784 27.42 1.569 1.584 0.246 0.025 2.713 31.61
3.0 1.644 1.682 0.164 -0.110 2.819 24.63 1.524 1.565 0.183 -0.087 2.748 28.07
3.5 1.582 1.629 0.125 -0.191 2.874 22.35 1.487 1.541 0.141 -0.178 2.808 25.25
4.0 1.532 1.585 0.099 -0.259 2.938 20.54 1.455 1.516 0.111 -0.254 2.880 22.90
4.5 1.491 1.546 0.080 -0.318 3.006 18.97 1.428 1.491 0.09 -0.318 2.957 21.01
5.0 1.456 1.513 0.066 -0.369 3.076 17.64 1.404 1.468 0.074 -0.373 3.035 19.38

From Table 1, we can conclude that:

1. the LBPHRD is positive skewed, for ν < 2.5, while PHRD is positive skewed, for
ν ≤ 2.5.

2. the LBPHRD is negative skewed, for ν ≥ 2.5, while PHRD is negative skewed, for
ν > 2.5

3. when ν = 0.0, the LBPHRD and PHR are highly skewed, (Sk > 1).
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4. when ν = 0.5, the LBPHRD is moderately skewed, (0.5 < Sk < 1), while PHRD is
highly skewed.

5. when ν = 1, the LBPHRD is approximately symmetric, (−0.5 < Sk < 0.5), while
PHRD is moderately skewed (0.5 < sk < 1).

6. when 1.5 ≤ ν ≤ 5, the LBPHRD and PHRD are approximately symmetric.

7. the dispersion for the distributions are decreasing for ν increasing.

8. for 0.0 ≤ ν ≤ 1.0 the LBPHRD and PHRD are leptokurtic (Sk > 3).

9. for 1.5 ≤ ν ≤ 4, the LBRHRD and PHRD are platykurtic (Sk < 3).

10. for 4.5 ≤ ν ≤ 5, the LBPHRD and PHRD are mesokurtic (Sk ∼= 3).

11. Since the coefficient of variation (Cv=
√

Var(X)

mean ×100) is larger for PHRD, the PHRD
are more variable than the LBPHRD, for all values of ν .

Therefore, the LBPHR model is more flexible than PHR model.

3. Estimation of Parameters

Consider X1,X2, · · · ,Xn be a random sample from LBPHRD, the Maximum likelihood
estimation (MLE) can be applied to estimate the parameters as follows. The likelihood
function is given by

L(λ ,ν ;x) =
λ n

(
∏

n
i=1 xν+1

i

)
e−

λ
ν+1 ∑

n
i=1 xν+1

i(
ν+1

λ

) n
ν+1

( 1
ν+1

)n
Γn

( 1
ν+1

) , x > 0. (19)

The log-likelihood function is

L = n ln(λ )+(ν +1)
n

∑
i=1

ln(xi)−
λ

ν +1

n

∑
i=1

xν+1
i − n

ν +1
ln
(

ν +1
λ

)
+n ln(ν +1)−n ln

[
Γ

(
1

ν +1

)]
. (20)

Differentiate Equation (20) w.r.t. λ and ν . Equating the derivatives to zero, we get the
normal equations as follows.

∂L

∂λ
=

n
λ

(
1+

1
ν +1

)
− 1

ν +1

n

∑
i=1

xν+1
i = 0, (21)

∂L

∂ν
=

n

∑
i=1

ln(xi)+
λ

(ν +1)2

n

∑
i=1

xν+1
i

[
1− (ν +1) ln(xi)

]
+

n
(ν +1)2 ln

(
ν +1

λ

)
+

nν

(ν +1)2 −nψ

(
1

ν +1

)
= 0, (22)
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where ψ(x) = d
dx lnΓ(x) be a digamma function.

The asymptotic normality of the MLEs can be applied to compute the confidence inter-
val (C.I.) for the parameters. The observed variance and covariance matrix of Θ = (λ ,ν)

is

I−1(Θ) =

[
− ∂ 2L

∂λ 2 − ∂ 2L
∂λ∂ν

− ∂ 2L
∂ν∂λ

− ∂ 2L
∂ν2

]−1

=

[
−I11 −I12

−I21 −I22

]−1

,

where

I11 = − n
λ 2

(
1+

1
ν +1

)
, (23)

I12 = − n
λ (ν +1)2 +

1
(ν +1)2

n

∑
i=1

xν+1
i − 1

ν +1

n

∑
i=1

xν+1
i ln(xi), (24)

I21 = I12, (25)

I22 = − λ

(ν +1)3

n

∑
i=1

xν+1
i

[
1− (ν +1) ln(xi)

][
2− (ν +1) ln(xi)

]
− λ

(ν +1)2 ×

n

∑
i=1

xν+1
i ln(xi)−

2n
(ν +1)3 ln

(
ν +1

λ

)
+

(2−ν)n
(ν +1)3 −nψ

′
(

1
ν +1

)
, (26)

and ψ
′
(x) = d2

dx2 lnΓ(x).

Asymptotic confidence interval can be derived by using observed variance and covari-

ance matrix. A 100(1−α)% C.I.s of Θ = (λ ,ν) have the form λ̂ ± zα/2

√
Var(λ̂ ) and

ν̂ ± zα/2
√

Var(ν̂). The zα/2 is upper (α/2)th percentile of the standard normal distribu-
tion.

4. Applications

4.1. Real data

In this section, an application of LBPHR distribution using three real data sets to illus-
trate that it provides significant improvements over its sub-model.

Example 4.1. The data of fatigue cycle of 6061–T6 aluminum coupons cut in the horizontal
direction of rolling, which is oscillated 18 rounds per second reported by Birnbaum and
Saunders (1969). The data set includes 100 observations having an optional stress per round
31×103 psi which is reported after reducing 65 as follows.
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5 25 31 32 34 35 38 39 39 40 42 43 43 43 44 44
47 47 48 49 49 49 51 54 55 55 55 56 56 56 58 59
59 59 59 59 63 63 64 64 65 65 65 66 66 66 66 66
67 67 67 68 69 69 69 69 71 71 72 73 73 73 74 74
76 76 77 77 77 77 77 77 79 79 80 81 83 83 84 86
86 87 90 91 92 92 92 92 93 94 97 98 98 99 101 103

105 109 136 147

In Table 2, MLEs of the unknown parameters of LBR, LBW, PHR and LBPHR distri-
butions are given along with criterion log-likelihood, AIC (Akaike’s information criterion)
and BIC (Bayesian information criterion).

Table 2. MLEs, L , AIC and BIC.
Model θ λ ν L AIC BIC
LBR 1.722×103 – – -874.485 1.751×103 1.754×103

LBW – 0.342 – -553.06 1.108×103 1.111×103

PHR – 1.303×10−5 1.85 -475.692 955.384 960.594
LBPHR – 1.028×10−4 1.425 -454.493 912.986 918.197

Table 2 indicates that the LBPHR is best than LBR, LBW and PHR distributions in
terms of model fitting for this data.

The variance and covariance matrix is given as

I−1 =

[
8.494×10−9 −1.991×10−5

−1.991×10−5 0.047

]
Then the 95% C.I. for λ and ν for LBPHRD are (0,2.83481×10−4) and (0.9993,1.84998),

respectively.
Figure 3 shows that the likelihood function has unique solution.

Figure 3. The outline of the L of λ and ν .

For λ̂ = 1.028× 10−4 and ν̂ = 1.425, some statistical measures can be calculated, see
Table 3.

Table 3. Some statistical measures for LBPHR at λ̂ and ν̂ .

Mean Mode Variance Skewness Kurtosis
67.283 63.585 602.188 0.297 2.887
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From Table 3, the LBPHR distribution has,

1. the distribution is right skewed (Sk > 0) and it is approximately symmetric(−0.5 <

Sk < 0.5).

2. the distribution is platykurtic (Ku < 3).

Example 4.2. We use data collected by Balakrishnan et al. (l2010). The behavioral and
emotional issues of children are scaled by GRASP (general rating of affective symptoms for
preschoolers). The data (with frequency in parenthesis is the score of GRASP measurement
of children) are:

19(16) 20(15) 21(14) 22(9) 23(12) 24(10) 25(6) 26(9) 27(8) 28(5) 29(6)
30(4) 31(3) 32(4) 33 34 35(4) 36(2) 37(2) 39 42 44

The MLEs and L , AIC and BIC are reported in Table 4.

Table 4. MLEs and L , AIC and BIC.
Model θ λ ν L AIC BIC
LBR 217.216 – – -884.464 1.771×103 1.774×103

LBW – 0.411 – -594.469 1.191×103 1.194×103

PHR – 8.275×10−5 2.234 -436.482 876.963 882.759
LBPHR – 1.216×10−5 2.929 -420.866 845.731 851.527

Table 4 indicates that the LBPHR is best than LBR, LBW and PHR distributions in
terms of model fitting for this data.

The variance and covariance matrix is given as

I−1 =

[
1.091×10−10 −2.797×10−6

−2.797×10−6 0.072

]
Then the 95% C.I. for λ and ν are (0,3.26336×10−5) and (2.40217,3.45613), respec-

tively.
Figure 4 shows that the likelihood function has unique solution.

Figure 4. The sketch of the log-likelihood function of λ and ν .

For λ̂ = 1.216× 10−5 and ν̂ = 2.929, some statistical measures can be calculated, see
Table 5.
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Table 5. Some statistical measures, for LBPHR at λ̂ and ν̂ .

Mean Mode Variance Skewness Kurtosis
24.716 25.244 38.138 -0.097 2.813

From Table 5,

1. the distribution is left skewed (Sk < 0) and it is approximately symmetric (−0.5 <

Sk < 0.5).

2. the distribution is platykurtic (Ku < 3).

Example 4.3. The following uncensored data is taken from Mahmoud and Mandouh (2013),
which comprises 100 observations(breaking the stress of carbon fibers in Gba) are:

0.92 0.928 0.997 0.9971 1.061 1.117 1.162 1.183 1.187 1.192 1.196
1.213 1.215 1.2199 1.22 1.224 1.225 1.228 1.237 1.24 1.244 1.259
1.261 1.263 1.276 1.31 1.321 1.329 1.331 1.337 1.351 1.359 1.388
1.408 1.449 1.4497 1.45 1.459 1.471 1.475 1.477 1.48 1.489 1.501
1.507 1.515 1.53 1.5304 1.533 1.544 1.5443 1.552 1.556 1.562 1.566
1.585 1.586 1.599 1.602 1.614 1.616 1.617 1.628 1.684 1.711 1.718
1.733 1.738 1.743 1.759 1.777 1.794 1.799 1.806 1.814 1.816 1.828
1.830 1.884 1.892 1.944 1.972 1.984 1.987 2.020 2.0304 2.029 2.035
2.037 2.043 2.046 2.059 2.111 2.165 2.686 2.778 2.972 3.504 3.863
5.306

The MLES, L , AIC and BIC are given in Table 6.

Table 6. MLEs of the parameters and L , AIC and BIC.
Model θ λ ν L AIC BIC
LBR 1.035 – – -131.653 265.306 267.911
LBW – 1.406 – -101.918 205.835 208.44
PHR – 0.521 1.632 -90.149 184.298 189.509

LBPHR – 0.877 1.237 -84.566 173.132 178.342

Table 6 indicates that the LBPHR is best than LBR, LBW and PHR distributions in
terms of model fitting for this data.

The variance and covariance matrix is given as

I−1 =

[
9.448×10−3 −0.011

−0.011 0.027

]
Then the 95% C.I. for λ and ν are (0.68651,1.06753) and (0.91431,1.55924), respec-

tively.
Figure 5 shows that the likelihood function has unique solution.
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Figure 5. The shape of the log-likelihood function of λ and ν .

For λ̂ = 0.877 and ν̂ = 1.237, some statistical measures can be calculated, see Table 7.

Table 7. Some statistical measures, for LBPHRD at λ̂ and ν̂ .
Mean Mode Variance Skewness Kurtosis
1.647 1.52 0.408 0.374 2.962

From Table 7, we observe that

1. the distribution is right skewed (Sk > 0) and it approximately symmetric skewed
(−0.5 < Sk < 0.5).

2. the distribution is platykurtic. (Ku < 3).

4.2. Simulation study

We evaluate the performance of MLE of the model through Monte-Carlo simulation.
The simulation’s steps are as follows.

1. Fix the vector of parameters Θ = (λ ,ν), and sample of size n.

2. From LBPHR(λ ,ν) distribution generate random observation with size n. Since CDF
for LBPHR has no closed form, the random observation can be generated by using
the Newton’s Raphson method.

xi+1 = xi −
F(xi,Θ)−ui

f (xi,Θ)
, i = 0,1, · · · ,n−1, (27)

where, u ∼ uni f orm(0,1).

3. Using step 2, estimate Θ̂ through MLE scheme.

4. Steps 2 and 3, repeated N times.

5. To enumerate MREs (mean relative estimates) and MSEs (mean square errors) using
Θ̂ and Θ through the following equations.
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MRE =
1
N

N

∑
j=1

Θ̂i, j

Θi
, MSE =

1
N

N

∑
j=1

(
Θ̂i, j −Θi

)2
,

Bias =
1
N

N

∑
j=1

Θ̂i j −Θi, i = 1,2.

Simulation results are obtained via MATHCAD 2007. The selected parameter values are
Θ = (0.5,2), N = 10000 and n = (10,20,30,40,50,75,100,150,200,250,300,400,500).

Table 8 contains the MLEs, Bias, MREs, and MSEs, for the estimators Θ̂i, i = 1,2, for
different values of n.

Table 8. The MLEs, MREs and MSEs, for different values of n.
λ ν

n MLE Bias MRE MSE MLE Bias MRE MSE
10 0.22357 -0.27643 0.44714 0.08764 3.56421 1.56421 1.78211 3.32282
20 0.49478 -0.00522 0.98956 0.00040 2.30885 0.30885 1.15443 0.15088
30 0.64100 0.14100 1.28200 0.02070 1.85722 -0.14278 0.92861 0.02979
40 0.49451 -0.00549 0.98902 0.00021 2.33661 0.33661 1.16830 0.17403
50 0.56267 0.06267 1.12535 0.00423 2.37851 0.37851 1.18926 0.14668
75 0.50153 0.00153 1.00306 0.00018 2.12308 0.12308 1.06154 0.01756
100 0.35535 -0.14465 0.71069 0.02103 2.42129 0.42129 1.21064 0.18009
150 0.39449 -0.10551 0.78898 0.01120 2.53190 0.53190 1.26595 0.30598
200 0.55981 0.05981 1.11963 0.00361 2.06537 0.06537 1.03269 0.00489
250 0.50780 0.00780 1.01559 0.00008 2.07485 0.07485 1.03743 0.00591
300 0.42144 -0.07856 0.84289 0.00618 2.16489 0.16489 1.08244 0.02738
400 0.54172 0.04172 1.08344 0.00175 1.90172 -0.09828 0.95086 0.00976
500 0.54186 0.04186 1.08372 0.00176 1.89278 -0.10722 0.94639 0.01154

Average 0.48004 -0.01996 0.96008 0.01223 2.27856 0.27856 1.13928 0.33749

MREs approximate to one when MSEs approaches to zero. Figures 6 – 9 display the
estimated MLs,Bias, MREs and MSEs.

Figure 6. The MLEs for λ and ν .

Figure 7. The Bias for λ and ν .
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Figure 8. The MREs for λ and ν .

Figure 9. The MSEs for λ and ν ,

We notice from Figures 6–9 as follows.

1. For large same size: (i) Estimate of MSE → 0, (ii) Expected (MRS) → 1, (iii) Biases
of (λ ,ν) → 0.

2. Biases of λ are positive/negative.

3. Biases of ν are approximately positive.

4. Estimates of parameters are asymptotically unbiased.

Therefore, the MLE is an suitable for estimating parameters of LBPHR distribution.
Similar results can be obtained for different parameters.

5. Conclusions

We propose the length-biased power hazard rate distribution and study its various char-
acteristics. The maximum likelihood estimate for parameters is derived. The superiority of
the new model has been exhibited by some real data sets. It has been seen that PHRD can
adequately provide better fits over other models.
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