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New polynomial exponential distribution:  
properties and applications 

Abdelfateh Beghriche1, Halim Zeghdoudi2, Vinoth Raman3,  
Sarra Chouia4 

ABSTRACT 

The study describes the general concept of the XLindley distribution. Forms of density and 
hazard rate functions are investigated. Moreover, precise formulations for several numerical 
properties of distributions are derived. Extreme order statistics are established using 
stochastic ordering, the moment method, the maximum likelihood estimation, entropies 
and the limiting distribution. We demonstrate the new family's adaptability by applying it 
to a variety of real-world datasets. 

Key words: exponential distribution, Xgamma distribution, Lindley distribution, quantile 
function stochastic ordering, maximum-likelihood estimation, XLindley distribution. 

1. Introduction

Statistical models can be used to describe and predict real-world events. In recent
years, a variety of distributions have been employed for data modelling in a variety of 
domains. Recent advances have centred on establishing new families that extend well-
known distributions while still allowing for a great deal of flexibility in data modelling 
in practice. Several distributions have been proposed in the statistical literature to 
modify lifetime data, including the Lindley, exponential, gamma, Weibull, Zeghdoudi, 
and Xgamma distributions. 
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In this paper, we investigate a new polynomial exponential family that includes the 
distributions of XLindley and Xgamma, as well as Zeghdoudi as special instances, 
to introduce a new family of single-parameter continuous distributions. The existing 
literature on modelling survival data, biological sciences, and actuarial sciences will 
benefit from this new family of distributions. 

Assume X is a random variable with values in the range [0, ∞], and the distribution 
of X depends on an indeterminate parameter θ with values in the range [0, ∞]. The 
distribution of X can be absolutely continuous or discrete. The distribution of X is a new 
one-parameter polynomial exponential family and the probability density function is 
expressed as 

𝑓ே௉ா஽ሺx, θሻ ൌ
௉ሺ௫,ఏሻ௘షഇೣ

∑ ௔ೖ,ഇ
ೖ!

ഇೖశభ
೙
ೖసబ

;   𝑥, θ ൐ 0                                    (1) 

where 𝑃ሺ𝑥,𝜃ሻ ൌ ∑ 𝑎௞,ఏ𝑥௞
௡
௞ୀ଴  , and 𝑎௞,ఏ depend on 𝑘 and θ. 

The following is the format of this research paper: 

Section 2 covers the survival and hazard rate functions, moments stochastic orders, 
mean deviations, extreme domain of attraction, constraint force estimate parameter, 
the Lorenz curve, and entropies of the new polynomial exponential distribution 
(NPED). Sections 3 and 4 look at estimating maximum likelihood distribution 
parameters and inferring a random sample from the XLindley and Xgamma 
distributions. Finally, various real-world applications demonstrate the superior 
performance of the XLindley and Xgamma distributions, two special examples of the 
(NPED) family, as compared to the exponential, Lindley, Zeghdoudi, and exponential 
distributions. 

2.  Statistical and reliability measures of some properties of NPED 
distribution 

We present some key statistical and reliability measures, as well as various NPED 
features, in this section. 

2.1.  Density and distribution functions  

The first derivative of 𝑓ே௉ா஽: 
ௗ

ௗ௫
𝑓ே௉ா஽ሺx,θሻ ൌ

ሾ൫௔భ,ഇିఏ௔బ,ഇ൯ା⋯ା൫௡௔೙,ഇିఏ௔೙షభ,ഇ൯௫೙షభା௔೙,ഇ௫೙ሿ௘షഇೣ

∑ ௔ೖ,ഇ
ೖ!

ഇೖశభ
೙
ೖసబ

ൌ 0           (2) 

gives 1 2, ,...., nx x x  solutions. 
The NPED cumulative distribution function (CDF) is derived in (3). 

𝐹ே௉ா஽ሺxሻ ൌ 1 െ
∑

ೌೖ,ഇ౳ሺೖశభ,ೣഇሻ

ഇೖశభ
೙
ೖసబ

∑ ௔ೖ,ഇ
ೖ!

ഇೖశభ
೙
ೖసబ

;  𝑥, θ ൐ 0                                       (3) 
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2.2.  Survival and hazard rate functions  

𝑆ே௉ா஽ሺxሻ ൌ 1െ𝐹ே௉ா஽ሺxሻ ൌ
∑

ೌೖ,ഇ౳ሺೖశభ,ೣഇሻ

ഇೖశభ
೙
ೖసబ

∑ ௔ೖ,ഇ
ೖ!

ഇೖశభ
೙
ೖసబ

 ;   𝑥, θ ൐ 0                        (4) 

ℎே௉ா஽ሺxሻ ൌ
௙ಿ ುಶವሺ௫ሻ

ଵିிಿ ುಶವሺ௫ሻ
ൌ

∑ ௔ೖ,ഇ௫ೖ௘షഇೣ
೙
ೖసబ

∑
ೌೖ,ഇ౳ሺೖశభ,ೣഇሻ

ഇೖశభ
೙
ೖసబ

  ;   𝑥, θ ൐ 0                            (5) 

Let equation (4) and (5) be the survival and hazard rate function, respectively. 

 
Proposition 1. Let ℎఏሺxሻbe the hazard rate function of X . Then, ℎఏሺxሻ is increasing 
for: 

෍ሺ𝑘 ൅ 1ሻሺ𝑚 െ 2𝑘ሻ𝑎௠ି௞,ఏ𝑎௞ାଵ,ఏ ൒ 0,𝑚 ൌ 0, … … . ,2𝑛 െ 1

௡

௞ୀ଴

. 

Proof. According to Glaser (1980) and from the density function (2) we have: 

𝜌ሺ𝑥ሻ ൌ െ
௙ᇲಿುಶವሺ௫;ఏሻ

௙ಿ ುಶವሺ௫;ఏሻ
ൌ െ

∑ ௞௔ೖ,ഇ௫ೖషభ
೙
ೖసభ

∑ ௔ೖ,ഇ௫ೖ
೙
ೖసబ

൅ 𝜃.                                    (6) 

After simple computations, we obtain: 

𝜌ᇱሺ𝑥ሻ ൌ
∑ ∑ ሺ௞ାଵሻሺ௠ିଶ௞ሻ௔೘షೖ,ഇ௔ೖశభ,ഇ௫೘షభ೘

ೖసబ
మ೙
೘సబ

ሺ∑ ௔ೖ,ഇ௫ೖ
೙
ೖసబ ሻమ

൅ 𝜃                            (7) 

Which implies that ℎఏሺxሻis increasing for: 

෍ሺ𝑘 ൅ 1ሻሺ𝑚 െ 2𝑘ሻ𝑎௠ି௞,ఏ𝑎௞ାଵ,ఏ ൒ 0,𝑚 ൌ 0, … … . ,2𝑛 െ 1

௡

௞ୀ଴

 

2.3.  Moments and related measures 

The 𝑘௧௛ moment about the origin of 𝑁𝑃𝐸𝐷 is: 

𝐸൫𝑋௜൯ ൌ
∑

ೌೖ,ഇሺೖశ೔శభሻ!

ഇೖశ೔శభ
೙
ೖసబ

∑ ௔ೖ,ഇ
ೖ!

ഇೖశభ
೙
ೖసబ

; 𝑖 ൌ 1,2, ….                                       (8) 

Corollary 1. Let 𝑋~𝑁𝑃𝐸𝐷ሺ𝜃ሻ, the mean of 𝑋 is: 

𝐸ሺ𝑋ሻ ൌ
∑

ೌೖ,ഇሺೖశభሻ!

ഇೖశమ
೙
ೖసబ

∑ ௔ೖ,ഇ
ೖ!

ഇೖశభ
೙
ೖసబ

   .                                                              (9) 

Theorem 1. Let 𝑋~𝑁𝑃𝐸𝐷ሺ𝜃ሻ, 𝑚𝑒 ൌ 𝑚𝑒𝑑𝑖𝑎𝑛ሺ𝑋ሻand 𝜇 ൌ 𝐸ሺ𝑋ሻ. Then, 𝑚𝑒 ൏ 𝜇. 

Proof. According to the increasing of 𝐹ሺ𝑋ሻ for all 𝑥 and 𝜃. 

𝐹ே௉ா஽ሺ𝑚𝑒ሻ ൌ
1
2
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and  
𝐹ே௉ா஽ሺ𝜇ሻ ൌ 1 െ ℎሺ𝜃ሻ∑

௔ೖ,ഇ୻ቀ௞ାଵ,ఏ௛ሺఏሻ∑ ௔ೖ,ഇ
ሺೖశభሻ!

ഇೖశమ
೙
ೖసబ ቁ

ఏೖశభ
௡
௞ୀ଴ . 

Note that ଵ
ଶ
൏ 𝐹ሺ𝜇ሻ ൏ 1. It is easy to check that 𝐹ሺ𝑚𝑒ሻ ൏ 𝐹ሺ𝜇ሻ. At the other end 

we have 𝑚𝑒 ൏ 𝜇. 

2.4.  Stochastic orders 

Definition 1. Consider two random variables X and Y. X is said to be smaller than 𝑌  in the:  
a)  Stochastic order 𝑋 ≺ௌ 𝑌if   𝐹௑ሺ𝑡ሻ ൒ 𝐹௒ሺ𝑡ሻ,∀𝑡. 
b)  Convex order 𝑋 ≺஼௑ 𝑌 Nif for all convex functions Φ and provided expectation 

 exist,𝐸ሾΦሺ𝑋ሻሿ ൑ 𝐸ሾΦሺ𝑌ሻሿ. 
c)  Hazard rate order 𝑋 ≺௛௥ 𝑌, if  ℎ௑ሺ𝑡ሻ ൒ ℎ௒ሺ𝑡ሻ,∀𝑡. 
d)  Likelihood ratio order 𝑋 ≺௟௥ 𝑌, if ௙೉ሺ௧ሻ

௙ೊሺ௧ሻ
 is decreasing in t.  

Remark 1. Likelihood ratio order⇒Hazard rate order⇒Stochastic order. 
If E (X) = E (Y), then convex order⇔stochastic order. 

Theorem 2. Let 𝑋௜~𝑁𝑃𝐸𝐷ሺ𝜃௜ሻ𝑖 ൌ 1,2 be two random variables. If 𝜃ଵ ൒ 𝜃ଶ, 
then 𝑋ଵ ≺௟௥ 𝑋ଶ,𝑋ଵ ≺௛௥ 𝑋ଶ,𝑋ଵ ≺ௌ 𝑋ଶ. 

Proof. We have: 
௙೉భሺ௧ሻ

௙೉మሺ௧ሻ
ൌ

∑ ௔ೖ,ഇ
ሺೖశభሻ!

ഇమ
ೖశమ

೙
ೖసబ

∑ ௔ೖ,ഇ
ሺೖశభሻ!

ഇభ
ೖశమ

೙
ೖసబ

𝑒ିሺఏభିఏమሻ.                                       (11) 

For simplification, we use ln ሺ
௙೉భሺ௧ሻ

௙೉మሺ௧ሻ
ሻ. Now, we can find 

ௗ

ௗ௧
ln ൬

௙೉భሺ௧ሻ

௙೉మሺ௧ሻ
൰ ൌ െሺ𝜃ଵ െ 𝜃ଶሻ. 

To this end, if 𝜃ଵ ൒ 𝜃ଶ,, we have 
ௗ

ௗ௧
ln ൬

௙೉భሺ௧ሻ

௙೉మሺ௧ሻ
൰ ൑0. This means that 𝑋ଵ ≺௟௥ 𝑋ଶ. Also, 

according to Remark 1 the theorem is proved. 

2.5.  Mean deviations 

These are two mean deviations: about Mean and Median, defined as: 
𝑀𝐷ଵ ൌ ׬ |𝑥 െ 𝜇|ஶ

଴ 𝑓ሺ𝑥ሻ𝑑𝑥 and 𝑀𝐷ଶ ൌ ׬ |𝑥 െ 𝑚𝑒|ஶ
଴ 𝑓ሺ𝑥ሻ𝑑𝑥  respectively, 

where         𝜇 ൌ 𝐸ሺ𝑋ሻ and 𝑚𝑒 ൌ 𝑀𝑒𝑑𝑖𝑎𝑛ሺ𝑋ሻ.  
The measures 𝑀𝐷ଵ and 𝑀𝐷ଶ can be computed using the following simplified 

formulas: 
𝑀𝐷ଵ ൌ 2𝜇𝐹ሺ𝜇ሻ െ 2න 𝑥𝑓ሺ𝑥ሻ

ఓ

଴
𝑑𝑥 

𝑀𝐷ଶ ൌ 𝜇 െ 2න 𝑥𝑓ሺ𝑥ሻ
௠௘

଴
𝑑𝑥 
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2.6.  Extreme domain of attraction 

As to the extreme value stability, the 𝐹ே௉ா஽is in the Gumbel extreme value domain 
of attraction, that is, there exist two sequences ሺ𝑎௡ሻ௡ஹ଴ and ሺ𝑏௡ሻ௡ஹ଴of real numbers 
such that for any 𝑥𝜖𝑅, we have 

lim
 ௫→ାஶ

𝑃 ൬
ெ೙ି௕೙,ഇ

௔೙,ഇ
൑ 𝑥൰ ൌ lim

௫→ାஶ
𝐹ே௉ா஽൫𝑎௡,ఏ𝑥 ൅ 𝑏௡,ఏ൯

௡
ൌ 𝑒ሺି௘

షೣሻ                 (12) 

This follows from Formula 1.2.4 in theorem 1.2.1 (Laurens de Haan, Ana Ferreira 
(2006)) since we have 

lim
௧→ାஶ

1 െ 𝐹ே௉ா஽ሺ𝑡 ൅ 𝑥𝑓ሺ𝑡ሻሻ
1 െ 𝐹ே௉ா஽ሺ𝑡ሻ

ൌ lim
௧→ାஶ

𝑓ே௉ா஽ሺ𝑡 ൅ 𝑥𝑓ሺ𝑡ሻሻ
𝑓ே௉ா஽ሺ𝑡ሻ

 

              ൌ lim
௧→ାஶ

∑ ௔ೖ,ഇሺ௧ା௫௙ሺ௧ሻሻೖశభ
೙
ೖసబ ௘షഇሺ೟శೣ೑ሺ೟ሻሻ

∑ ௔ೖ,ഇ
೙
ೖసబ ௧ೖశభ௘ሺషഇ೟ሻ

ൌ 𝑒ି௫                                            (13) 

(Such formula is called  -variation). Then, 𝐹ே௉ா஽ lies in the Gumbelextreme domain 
of attraction. In his case, 𝑓ሺ𝑡ሻ ൌ ଵ

ఏ
. 

So, for (as in the invoked theorem)      𝑎௡,ఏ ൌ 𝑓 ൬𝐹ିଵே௉ா஽ ቀ1 െ
ଵ

௡
ቁ൰ ൌ

ଵ

ఏ
     and   𝑏௡,ఏ ൌ 𝐹ିଵ

ே௉ா஽
ቀ1 െ

ଵ

௡
ቁ, we have: 

lim
௫→ାஶ

𝐹ே௉ா஽൫𝑎௡,ఏ𝑥 ൅ 𝑏௡,ఏ൯
௡
ൌ 𝑒ሺି௘

షೣሻ 

2.7.  Estimation of the Stress-Strength Parameter and Lorenz curve 

Because it evaluates the system performance, the stress-strength parameter (R) is 
crucial in the reliability analysis. Furthermore, R indicates the likelihood of a system 
failure; the system breaks when the applied stress exceeds its strength, i.e. 

 𝑅 ൌ 𝑃ሺ𝑋 ൐ 𝑌ሻ. Here, 𝑋~𝑁𝑃𝐸𝐷ሺ𝜃ଵሻ, denotes the strength of a system subject to 
stress Y, and 𝑌~𝑁𝑃𝐸𝐷ሺ𝜃ଶሻ,, X and Y are independent of each other. In our case, the 
stress-strength parameter R is given by: 

𝑅 ൌ 𝑃ሺ𝑋 ൐ 𝑌ሻ ൌ න 𝑆௑ሺ𝑦ሻ𝑓௒ሺ𝑦ሻ𝑑𝑦
ஶ

଴
 

ൌ
׬ ∑ ௔ೖ,ഇ୻ሺ௞ାଶ,௬ఏభሻ

ఏభ
ೖశమ

௡
௞ୀ଴

ஶ
଴

∑ 𝑎௞,ఏy௞ାଵ𝑒ሺିఏమ௬ሻ𝑑𝑦௡
௞ୀ଴

ሺ∑ 𝑎௞,ఏ
ሺ௞ାଵሻ!

ఏభ
ೖశమ ሻ

௡
௞ୀ଴ ሺ∑ 𝑎௞,ఏ

ሺ௞ାଵሻ!

ఏమ
ೖశమ ሻ

௡
௞ୀ଴
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The Lorenz curve is a well-known way of describing income and wealth 
distributions. The graph of the ratio is the Lorenz curve for a positive random 
variable 𝑋. Against 𝐹ሺ𝑥ሻwith the properties 𝐿ሺ𝑝ሻ ൑ 𝑝, 𝐿ሺ0ሻ ൌ 0and 𝐿ሺ1ሻ ൌ 1. If 
𝑋 represents annual income, 𝐿ሺ𝑝ሻ is the proportion of total income that accrues to 
individuals with the 100%𝑝 lowest incomes. 

If all individuals earn the same income then 𝐿ሺ𝑝ሻ ൌ 𝑝 for all 𝑝. The area between 
the line 𝐿ሺ𝑝ሻ ൌ 𝑝 and the Lorenz curve can be used to calculate income inequality or, 
more broadly, the variability of 𝑋. The Lorenz curve is well known for the exponential 
distribution and is given by: 

𝐿ሺ𝑝ሻ ൌ 𝑝ሼ𝑝 ൅ ሺ1 െ 𝑝ሻ logሺ1 െ 𝑝ሻሽ 

For the 𝑁𝑃𝐸𝐷 distribution in (3), 

𝐸ሺ𝑋 𝑋⁄ ൑ 𝑥ሻ𝐹ே௉ா஽ሺ𝑥ሻ∑ 𝑎௞,ఏ
ሺ௞ାଶሻ!

ఏೖశయ
௡
௞ୀ଴ ሺ

ଵି∑
ೌೖ,ഇ౳ሺೖశమ,ೣഇሻ

ഇೖశమ
ሻ೙

ೖసబ

ሺ∑ ௔ೖ,ഇ
ሺೖశభሻ!

ഇೖశమ
ሻ೙

ೖసబ

మ              (14) 

2.8.  Entropies 

It is commonly understood that entropy and information can be used to calculate 
the degree of uncertainty in a probability distribution. However, many correlations 
have been created based on the features of entropy. 
The entropy of a random variable 𝑋 is a measure of the uncertainty's variation. The 
entropy of Rényi is defined as: 

𝐽ሺ𝛾ሻ ൌ
1

1 െ 𝛾
log ሼන 𝑓ఊሺ𝑥ሻ

ஶ

଴
𝑑𝑥ሽ 

where 𝛾 ൐ 0  and 𝛾 ് 1. For the 𝑁𝑃𝐸𝐷 distribution in (2), note that for 𝛾 integer we 
have: 

න𝑓ே௉ா஽
ఊሺ𝑥ሻ𝑑𝑥 ൌ

∑ሺ׬ 𝑎௞,ఏ𝑥௞ሻ
௡
௞ୀ଴

ఊ
𝑒ሺିఏఊ௫ሻ𝑑𝑥

ሺ∑ 𝑎௞,ఏ
௞!

ఏೖశభ
௡
௞ୀ଴ ሻఊ

 

ൌ
∑ 𝑏௞,ఏሺ𝛾ሻ ׬ 𝑥௞ఊ
௡
௞ୀ଴ 𝑒ሺିఏఊ௫ሻ𝑑𝑥

ሺ∑ 𝑎௞,ఏ
௞!

ఏೖశభ
௡
௞ୀ଴ ሻఊ

 

where: ׬𝑥௞ఊ 𝑒ሺିఏఊ௫ሻ𝑑𝑥 ൌ െ
ଵ

ሺఏఊሻೖംశభ
Γሺ𝑘𝛾 ൅ 1, 𝑥𝛾𝜃ሻ and 𝑏௞,ఏሺ𝛾ሻ in function 

𝑎௞,ఏ and 𝛾. Now, the Rényi entropy is given by: 

𝐽ሺ𝛾ሻ ൌ
ଵ

ଵିఊ
log൭

∑ ௕ೖ,ഇሺఊሻ
ሺೖംሻ!౳ሺೖംశభሻ

ሺഇംሻೖംశభ
೙
ೖసబ

ቀ∑ ௔ೖ,ഇ
ೖ!

ഇೖశభ
೙
ೖసబ ቁ

൱                                     (15) 
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2.9. Estimation and inference 

Let 𝑋ଵ, … …𝑋௡ be a random sample of 𝑁𝑃𝐸𝐷. The ln-likelihood function 
𝑙𝑛𝑙ሺ𝑥௜;𝜃ሻ is given by: 

𝑙𝑛𝑙ሺ𝑥௜; 𝜃ሻ ൌ 𝑛𝑙𝑛ℎሺ𝜃ሻ ൅ ∑ ln ሺ∑ 𝑎௞,ఏ𝑥௜௞ሻ െ 𝜃 ∑ 𝑥௜
௡
௜ୀଵ

௠
௞ୀ଴

௡
௜ୀଵ           (16) 

The derivative of 𝑙𝑛𝑙ሺ𝑥௜; 𝜃ሻ with respect to 𝜃 is: 

𝑙𝑛𝑙ሺ𝑥௜;𝜃ሻ

𝑑𝜃
ൌ
𝑛ℎሶ ሺ𝜃ሻ
ℎሺ𝜃ሻ

൅෍
𝑝ሶሺ𝑥௜ ,𝜃ሻ
𝑝ሺ𝑥௜ ,𝜃ሻ

௡

௜ୀଵ

െ෍𝑥௜

௡

௜ୀଵ

 

The Method of Moments (MoM) and Maximum Likelihood (ML) estimators of the 
parameter are the same after using 𝑵𝑷𝑬𝑫 (16), and they may be found by solving the 
following non-linear equation: 

ℎሶ ሺ𝜃ሻ
ℎሺ𝜃ሻ

൅
1
𝑛
෍

𝑝ሶሺ𝑥௜ ,𝜃ሻ
𝑝ሺ𝑥௜ ,𝜃ሻ

௡

௜ୀଵ

െ 𝑥̅ ൌ 0 

where:  

ℎሶ ሺ𝜃ሻ ൌ
𝑑ℎሺ𝜃ሻ
𝑑𝜃

 𝑎𝑛𝑑 𝑝ሶሺ𝜃ሻ ൌ
𝑑𝑝ሺ𝜃ሻ
𝑑𝜃

 

ℎሺ𝜃ሻሾ∑
௞!

ఏೖశమ
൫𝑎௞,ఏሺ𝑘 ൅ 1ሻ െ 𝑎௞,ఏሶ 𝜃൧ ൅

ଵ

௡
∑ ௣ሶሺ௫೔,ఏሻ

௣ሺ௫೔,ఏሻ
௡
௜ୀଵ െ 𝑥̅ ൌ 0                    ௠

௞ୀ଴ (17) 

Although this equation is difficult to answer, we can consider a specific scenario 

in which, 𝑝ሺ𝑥௜ ,𝜃ሻ ൌ ሺ2 ൅ 𝜃 ൅ 𝑥௜ሻ 𝑎𝑛𝑑 ℎሺ𝜃ሻ ൌ
ఏమ

ሺଵାఏሻమ
. This case will be studied 

in Section 3. 

3.  XLindley distribution and some properties 

In this section, we present the XLindley (XL) distribution, which belongs to the new 
polynomial exponential family of distributions. 

A random variable X is said to possess an XL distribution if it has the following 
form: 

𝑓௑௅ሺ𝑥; 𝜃ሻ ൌ
ఏమሺଶାఏା௫ሻ

ሺଵାఏሻమ
𝑒ିఏ௫        𝑥,𝜃 ൐ 0                                    (18) 

Note that the XL distribution is a member of the new polynomial exponential 
family where 𝑛 ൌ 1,𝑎଴,ఏ ൌ 2 ൅ 𝜃,𝑎ଵ,ఏ ൌ 1using formula (1). Therefore, the mode of 
XL is given by 

𝑚𝑜𝑑𝑒ሺ𝑋ሻ ൌ െ
ఏమାଶఏିଵ

ఏ
 𝑓𝑜𝑟  𝑥, 0 ൏ 𝜃 ൏ √2 െ 1                            (19) 
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We can find easily the CDF of the XL distribution 

𝐹௑௅ሺ𝑥; 𝜃ሻ ൌ 1 െ ቀ1 ൅
ఏ௫

ሺଵାఏሻమ
ቁ 𝑒ିఏ௫        𝑥,𝜃 ൐ 0                             (20) 

 

  
Figure.1.  Plots of the density function for some 

parameter values of 𝜃 
Figure.2. Plots of the cumulative function for 

some parameters values of 𝜃 

 

3.1.  Survival and hazard rate function 

For a continuous distribution, the survival function and the failure rate (hazard 
rate) functions are defined as: 

𝑆௑௅ሺ𝑥; 𝜃ሻ ൌ 1 െ 𝐹ூ௑௅ሺ𝑥;𝜃ሻ ൌ ሺ1 ൅
ఏ௫

ሺଵାఏሻమ
ሻ𝑒ିఏ௫      𝑥,𝜃 ൐ 0                    (21) 

ℎ௑௅ሺ𝑥;𝜃ሻ ൌ
௙ᇲ೉ಽሺ௫;ఏሻ

ଵିி೉ಽሺ௫;ఏሻ
ൌ

ఏమሺ௫ାఏାଶሻ

ሺଵାఏሻమାఏ௫
        𝑥,𝜃 ൐ 0                          (22) 

Let equation (21) and (22) be the survival and hazard rate function, respectively. 

 
Proposition 2. Let XLh be the hazard rate function of X. Then, XLh  is increasing. 
Proof. According to Glaser (1980) and from the density function (18): 

𝜌ሺ𝑥ሻ ൌ െ
𝑓ᇱ௑௅ሺ𝑥ሻ

𝑓௑௅ሺ𝑥;𝜃ሻ
ൌ
𝑥𝜃 ൅ 𝜃ଶ െ 2𝜃 െ 1

𝑥 ൅ 𝜃 ൅ 2
 

 
It follows that: 

𝜌ᇱሺ𝑥ሻ ൌ
1

ሺ𝑥 ൅ 𝜃 ൅ 2ሻଶ
 

Imply that XLh is increasing. 
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3.2.  Moments and related measures 

The 𝑟௧௛ moment about the origin of the XLindley distribution can be obtained as: 

𝜇௥ᇱ ൌ 𝐸ሺ𝑋௥ሻ ൌ න 𝑥௥
ஶ

଴
𝑓௑௅ሺ𝑥ሻ𝑑𝑥 

ൌ න 𝑥௥
ஶ

଴

𝜃ଶሺ2 ൅ 𝜃 ൅ 𝑥ሻ
ሺ1 ൅ 𝜃ሻଶ

𝑒ିఏ௫𝑑𝑥 

𝜃ଶ

ሺ1 ൅ 𝜃ሻଶ
න 𝑥௥
ஶ

଴
ሺ2 ൅ 𝜃 ൅ 𝑥ሻ𝑒ିఏ௫𝑑𝑥 

Finally, using gamma integral and little algebraic simplification, we get a general 
expression for the 𝑟௧௛ factorial moment of XL distribution as: 

𝜇௥ᇱ ൌ
ሺఏమାଶఏା௥ାଵሻ௥!

ሺଵାఏሻమఏೝ
                                                (23) 

The first four moments can be derived by substituting 𝑟 ൌ 1; 2; 3 and 4 in (23), and 
then using the relationship between moments about origin and moments about mean, 
the first four moments about origin of the XL distribution may be obtained as follows: 

𝜇ଵ
ᇱ ൌ

ሺ𝜃ଶ ൅ 2𝜃 ൅ 2ሻ
ሺ1 ൅ 𝜃ሻଶ𝜃

ൌ
ሺ1 ൅ 𝜃ሻଶ ൅ 1
ሺ1 ൅ 𝜃ሻଶ𝜃

ൌ
1
𝜃
൅

1
ሺ1 ൅ 𝜃ሻଶ𝜃

 

𝜇ଶ
ᇱ ൌ

2ሺ𝜃ଶ ൅ 2𝜃 ൅ 3ሻ
ሺ1 ൅ 𝜃ሻଶ𝜃ଶ

 

𝜇ଷ
ᇱ ൌ

6ሺ𝜃ଶ ൅ 2𝜃 ൅ 4ሻ
ሺ1 ൅ 𝜃ሻଶ𝜃ଷ

 

𝜇ସ
ᇱ ൌ

24ሺ𝜃ଶ ൅ 2𝜃 ൅ 5ሻ
ሺ1 ൅ 𝜃ሻଶ𝜃ସ

 

Let 𝑋~𝑋𝐿ሺ𝜃ሻ, the mean, variance for X be: 

𝜇ଵ
ᇱ ൌ 𝐸ሺ𝑋ሻ ൌ

ሺଵାఏሻమାଵ

ሺଵାఏሻమఏ
                                                (24) 

𝐸ሺ𝑋ଶሻ ൌ
2ሺ𝜃ଶ ൅ 2𝜃 ൅ 3ሻ
ሺ1 ൅ 𝜃ሻଶ𝜃ଶ

 

𝜇ଶ ൌ 𝑉𝑎𝑟ሺ𝑋ሻ ൌ
ሺ1 ൅ 𝜃ሻସ ൅ 4𝜃ଶ ൅ 6𝜃 ൅ 1

ሺ1 ൅ 𝜃ሻସ𝜃ଶ
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3.3.  Estimation of parameter 

3.3.1.  Maximum Likelihood Estimation (MLE) 

Let 𝑋௜~𝑋𝐿ሺ𝜃ሻ, 𝑖 ൌ 1, … . . ,𝑛 be 𝑛 random variables, the 𝑙𝑛-likelihood function, 
𝑙𝑛𝑙ሺ𝑥௜;𝜃ሻ is: 

𝐿ሺ𝜃ሻ ൌ ሺ
ఏమ

ሺଵାఏሻమ
ሻ௡ ∏ ሺ2 ൅ 𝜃 ൅ 𝑥௜ሻ

௡
௜ୀଵ 𝑒ିఏ∑ ௫೔

೙
೔సభ                  (25) 

The logarithm of the likelihood function is: 

𝑙𝑛𝑙ሺ𝑥௜; 𝜃ሻ ൌ 2𝑛𝑙𝑜𝑔𝜃 െ 2𝑛𝑙𝑜𝑔ሺ𝜃 ൅ 1ሻ ൅෍𝑙𝑜𝑔ሺ2 ൅ 𝜃 ൅ 𝑥௜ሻ
௡

௜ୀଵ

െ 𝜃෍𝑥௜

௡

௜ୀଵ

 

𝑙𝑛𝑙ሺ𝑥௜; 𝜃ሻ ൌ 2𝑛ሾ𝑙𝑜𝑔𝜃 െ 𝑙𝑜𝑔ሺ𝜃 ൅ 1ሻሿ ൅ ∑ 𝑙𝑜𝑔ሺ2 ൅ 𝜃 ൅ 𝑥௜ሻ
௡
௜ୀଵ െ 𝜃 ∑ 𝑥௜

௡
௜ୀଵ      (26) 

The derivatives of 𝑙𝑛𝑙ሺ𝑥௜;𝜃ሻ with respect to 𝜃 are: 
𝑙𝑛𝑙ሺ𝑥௜;𝜃ሻ

𝛿𝜃
ൌ 0 

𝛿𝑙𝑛𝑙ሺ𝑥௜; 𝜃ሻ

𝛿𝜃
ൌ

2𝑛
𝜃
െ

2𝑛
1 ൅ 𝜃

൅෍
1

2 ൅ 𝜃 ൅ 𝑥௜
െ෍𝑥௜

௡

௜ୀଵ

௡

௜ୀଵ

 

𝛿𝑙𝑛𝑙ሺ𝑥௜;𝜃ሻ

𝛿𝜃
ൌ

2
𝜃
െ

2
1 ൅ 𝜃

൅
1
𝑛
෍

1
2 ൅ 𝜃 ൅ 𝑥௜

െ 𝑋ത
௡

௜ୀଵ

 

ఋ௟௡௟ሺ௫೔;ఏሻ

ఋఏ
ൌ

ଶ

ఏሺଵାఏሻ
൅

ଵ

௡
∑ ଵ

ଶାఏା௫೔
െ 𝑋ത௡

௜ୀଵ                                    (27) 

To obtain the MLE of 𝜃:𝜃෠ெ௅ா  we can maximize equation (27) directly with respect 
to𝜃, or we can solve the non-linear equationఋ௟௡௟ሺ௫೔;ఏሻ

ఋఏ
ൌ 0. Note that 𝜃෡ெ௅ா  cannot be 

solved analytically; numerical iteration techniques, such as the Newton-Raphson 
algorithm, are thus adopted to solve the logarithm of the likelihood equation for which 
(27) is maximized. 

3.3.2.  Method of Moments Estimation (MME) 

Let 𝑋ത be the sample mean, equating sample mean and population mean 𝐸ሺ𝑋ሻ, 

𝐸ሺ𝑋ሻ ൌ ∑ ௫೔
௡

௡
௜ୀଵ                                                         (28) 

When we plug in the expression of 𝐸ሺ𝑋ሻ from equation (24) and solve the equation 
for 𝜃, we get 

𝑋ത ൌ
ሺ1 ൅ 𝜃ሻଶ ൅ 1
ሺ1 ൅ 𝜃ሻଶ𝜃

ൌ
𝜃ଶ ൅ 2𝜃 ൅ 2
𝜃ଷ ൅ 2𝜃ଶ ൅ 𝜃
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We obtain equation of 3rd degree 𝑋ത𝜃ଷ ൅ 𝜃ଶሺ2𝑋ത െ 1ሻ ൅ 𝜃ሺ𝑋ത െ 2ሻ െ 2 ൌ 0. We 
take the real part for the solution 

𝜃෠ெ௅ா ൌ െ
ଵ

ଷ௑ത
ሺ2𝑋ത െ 1ሻ ൅

మ
వ೉ഥ
ା భ
వ೉ഥమ

ାభ
వ

ඨට భ
మళ೉ഥ

ା భయ
యల೉ഥమ

ା భ
వ೉ഥయ

ା భ
మళ೉ഥర

ା భభ
భఴ೉ഥ

ା భ
వ೉ഥమ

ା భ
మళ೉ഥయ

ା భ
మళ

൅

    ඨට
ଵ

ଶ଻௑ത
൅

ଵଷ

ଷ଺௑തమ
൅

ଵ

ଽ௑തయ
൅

ଵ

ଶ଻௑തర
൅

ଵଵ

ଵ଼௑ത
൅

ଵ

ଽ௑തమ
൅

ଵ

ଶ଻௑തయ
൅

ଵ

ଶ଻

య

                                         (29) 

 

3.4.  Simulation 

The behaviour of the estimators for a finite sample size (𝑛) is investigated in this 
subsection. A simulation study consisting of the following steps is being carried out 
N=10000 times for selected values of ሺ𝜃,𝑛ሻ, where 𝜃 ൌ 0.05; 0.25; 1; 2; 5 and 𝑛 ൌ
20; 50; 100. 

 Generate 𝑈௜ Uniform (0; 1),    𝑖 ൌ 1, … . . ,𝑛. 
     Generate 𝑌௜  Exponentialሺ𝜃ሻ, 𝑖 ൌ 1, … . . ,𝑛. 
     Generate 𝑍௜ Lindleyሺ𝜃ሻ, 𝑖 ൌ 1, … . . ,𝑛. 
 If 𝑈௜ ൑ 𝑝ሺ𝜃ሻ, then set 𝑋௜ ൌ 𝑌௜  otherwise, set 𝑋௜ ൌ 𝑍௜,  𝑖 ൌ 1, … . . ,𝑛 

𝑣𝑒𝑟𝑎𝑔𝑒 𝑏𝑖𝑎𝑠ሺ𝜃ሻ ൌ
1
𝑁
෍൫𝜃෠௜ െ 𝜃൯.

ே

௜ୀଵ

 

And the average square error: 

 𝑀𝑆𝐸ሺ𝜃ሻ ൌ
1
𝑁
෍ሺ𝜃෠௜ െ 𝜃ሻଶ
ே

௜ୀଵ

 

 

Table 1.  Average bias of the estimator 𝜃෡  

Bias 𝜃 ൌ 0.05 𝜃 ൌ 0.25 𝜃 ൌ 1 𝜃 ൌ 2 𝜃 ൌ 5 

𝑛 ൌ 20 0.00131 0.01002 0.0456 0.2451 0.7512 
𝑛 ൌ 50 0.00095 0.0124 0.0106 0.1162 0.1421 
𝑛 ൌ 100 0.00011 0.00251 0.0122 0.0423 0.0506 

 

Table 2.  The average square error of the estimator 𝜃෠ 

MSE 𝜃 ൌ 0.05 𝜃 ൌ 0.25 𝜃 ൌ 1 𝜃 ൌ 2 𝜃 ൌ 5 

𝑛 ൌ 20 1,03.10-6 0.000113 0.00236 0.0654 0.6177 
𝑛 ൌ 50 2, 55.10-7 0.000214 0.000162 0.01233 0.03135 
𝑛 ൌ 100 1,04.10-8 1.34.10-5 0.000216 0.00184 0.00301 
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Table 1 and 2 show the outcomes of the simulation. The simulation analysis yielded 
the following conclusions: 

 for some given value of 𝜃, the average of bias of 𝜃 and the mean square error of 
𝜃 decrease as the sample size n increases, 

 the mean square error (MSE) gets higher and following a similar way for larger 
value of 𝜃 as we mentioned before. 

3.5.  Application and goodness of fit 

Data set 1: Survival times (in months) of 94 Sierra Leone individuals infected with 
Ebola virus. It is available at https://apps.who.int/gho/data/node.ebola-sitrep. In table 3, 
we compare the Lindley (LD), Zeghdoudi, exponential, XGamma, and XL distributions 
using data set 1. 

Table 3.   Comparison between LD, XG, ZD, Exp and XL distributions. 

Survival time 
m=3.17 , s=2.095 

Obsfreq LD  
𝜃෠ ൌ 0.522 

Xgamma 
𝜃෠ ൌ 0.689 

ZD 
𝜃෠ ൌ 0.852 

Exp  
𝜃෠ ൌ 0.315 

XL 
𝜃෠ ൌ 0.467 

[0,2] 45 38. 262 37. 652 30. 339 43. 937 41. 028 
[2,4] 22 28. 164 27. 197 37.27 23. 4 25. 855 
[4,6] 17 15. 075 16. 342 17.743 12. 463 13. 984 
[6,8] 7 7. 1187 7. 7769 6.1658 6. 6375 6. 9986 

[8,10] 3 3. 1423 3. 2015 1.828 3. 5351 3. 3409 
Total 94 94 94 94 94 94 
 2 - 2. 7899 3. 2040 14.236 1. 8619 1. 6446 

4.  Exponential-gamma (𝟑, 𝜽) (X gamma ) distribution and its applications 

In this section, we give an overview on Exponential-gamma Eg (𝜽) (X gamma ) 
distribution (see Subhradev (2016)), which is a member of the NPED. A random 
variable X is said to possess Eg(𝜽) distribution if it has the following form: 

𝑓ாீሺ𝑥;𝜃ሻ ൌ
ఏమ

ሺଵାఏሻ
ሺ1 ൅

ఏ

ଶ
𝑥ଶሻ 𝑒ିఏ௫        𝑥,𝜃 ൐ 0                              (30) 

Note that the Eg distribution is a member of the NPED family where: 
𝑛 ൌ 2,𝑎଴,ఏ ൌ 1,𝑎ଵ,ఏ ൌ 0,𝑎ଶ,ఏ ൌ

ఏ

ଶ
, using formula (1). 

Therefore, the mode of Eg (𝜽) distribution is given by: 

𝑚𝑜𝑑𝑒ሺ𝑋ሻ ൌ
ଵା√ଵିଶఏ

ఏ
 𝑓𝑜𝑟  0 ൏ 𝜃 ൏

ଵ

ଶ
                                         (31) 

We can find easily the CDF of the Eg (𝜽) distribution: 

𝐹ா௚ሺ𝑥;𝜃ሻ ൌ 1 െ
ሺଵାఏାఏ௫ାഇ

మೣమ

మ
ሻ

ሺଵାఏሻ
𝑒ିఏ௫        𝑥,𝜃 ൐ 0                              (32) 
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Figure 3.  Plots of the density function for some 
parameters values of 𝜃 

Figure4. Plots of the cumulative function for 
some parameters values of 𝜃    

4.1.  Survival and hazard rate function 

For a continuous distribution, the survival function and failure rate (hazard rate) 
functions are defined as: 

𝑆ா௚ሺ𝑥; 𝜃ሻ ൌ 1 െ 𝐹ா௚ሺ𝑥;𝜃ሻ ൌ
ሺଵାఏାఏ௫ାഇ

మೣమ

మ
ሻ

ሺଵାఏሻ
𝑒ିఏ௫         𝑥,𝜃 ൐ 0                 (33) 

4.2.  Moments and related measures 

The 𝑟௧௛ moment about the origin of the Eg (𝜽) distribution can be obtained as: 

𝜇௥ᇱ ൌ 𝐸ሺ𝑋௥ሻ ൌ
௥!ሺఏା௥ା௔ೝሻ

ఏೝሺଵାఏሻ
                                          (34) 

where 𝑎௥ ൌ 𝑎௥ିଵ ൅ 𝑟 for 𝑟 ൌ 1,2,3, … ..with 𝑎଴ ൌ 0 and 𝑎ଵ ൌ 2. In particular, 

𝜇ଵ
ᇱ ൌ

ሺ𝜃 ൅ 3ሻ
𝜃ሺ𝜃 ൅ 1ሻ

ൌ 𝑀𝑒𝑎𝑛ሺ𝑋ሻ ൌ 𝜇 

𝜇ଶ
ᇱ ൌ

2ሺ𝜃 ൅ 6ሻ
𝜃ଶሺ𝜃 ൅ 1ሻ

, 𝜇ଷ
ᇱ ൌ

6ሺ𝜃 ൅ 10ሻ
𝜃ଷሺ𝜃 ൅ 1ሻ

, 𝜇ସ
ᇱ ൌ

24ሺ𝜃 ൅ 15ሻ
𝜃ସሺ𝜃 ൅ 1ሻ

 

It is to be noted that, for the exponential distribution with parameter 𝜃, the 𝑟௧௛ 
order moment about origin is  

𝜇௥ᇱ ൌ
𝑟!
𝜃௥

 
The 𝑗௧௛ order central moment of the Eg (𝜽) is 

𝜇௝ ൌ 𝐸ൣሺ𝑋 െ 𝜇ሻ௝൧ ൌ ∑ ቀ𝑗
𝑟
ቁ௝

௥ୀ଴ 𝜇௥ᇱ ሺെ𝜇ሻ௝ି௥. In particular, 
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𝜇ଶ ൌ
ሺఏమା଼ఏାଷሻ

ఏమሺଵାఏሻమ
ൌvar(X) ൌ 𝜎ଶ 

𝜇ଷ ൌ
2ሺ𝜃ଷ ൅ 15𝜃ଶ ൅ 9𝜃 ൅ 3ሻ

𝜃ଷሺ1 ൅ 𝜃ሻଷ
 

𝜇ସ ൌ
3ሺ5𝜃ସ ൅ 88𝜃ଷ ൅ 310𝜃ଶ ൅ 288𝜃 ൅ 177ሻ

𝜃ସሺ1 ൅ 𝜃ሻସ
 

4.3. Estimation of parameter 

Let 𝑋௜~𝐸𝑔ሺ𝜃ሻdistribution, 𝑖 ൌ 1, … . . ,𝑛 be 𝑛 random variables. The 𝑙𝑛-likelihood 
function, 𝑙𝑛𝑙ሺ𝑥௜; 𝜃ሻ is: 

𝐿ሺ𝜃ሻ ൌෑ𝑓ሺ𝑥௜:𝜃ሻ

௡

௜ୀଵ

ൌෑ
𝜃ଶሺ1 ൅

ఏ

ଶ
𝑥௜
ଶሻ𝑒ିఏ௫೔

1 ൅ 𝜃

௡

௜ୀଵ
 

The logarithm of the likelihood function is: 

log 𝐿 ሺ𝑥௜;𝜃ሻ ൌ 2𝑛𝑙𝑜𝑔𝜃 െ 𝑛𝑙𝑜𝑔ሺ1 ൅ 𝜃ሻ ൅ ∑ ሾlog ቀ1 ൅
ఏ

ଶ
𝑥௜
ଶቁ െ 𝜃𝑥௜ሿ

௡
௜ୀଵ      (35) 

The derivatives of log 𝐿 ሺ𝑥௜;𝜃ሻwith respect to 𝜃 are: 

𝛿𝐿
𝛿𝜃

ൌ
2𝑛
𝜃
െ

𝑛
1 ൅ 𝜃

൅෍ቌ
𝑥௜
ଶ

2ሺ1 ൅
ఏ

ଶ
𝑥௜
ଶሻ
െ 𝑥௜ቍ

௡

௜ୀଵ

 

We get the likelihood equation as a system of nonlinear equations in 𝜃 by setting 
the left side of the above equation to zero. The MLE of 𝜃 in this system is obtained by 
solving it in 𝜃. It is simple to calculate numerically using a statistical software tool such 
as the 𝑛𝑙𝑚package in R programming with arbitrary initial values. 

The Fisher information about 𝜃,I(𝜃), is 

𝐼ሺ𝜃ሻ ൌ 𝐸 ቊെ
𝜕ଶ

𝜕ଶ𝜃ଶ
𝑙𝑛𝑓ሺ𝑋,𝜃ሻቋ ൌ 𝐸 ቐ

2
𝜃ଶ

െ
1

ሺ1 ൅ 𝜃ሻଶ
൅
𝑥ସ

4
1

ቀ1 ൅
ఏ

ଶ
𝑥ଶቁ

ଶቑ 

ൌ
ଶ

ఏమ
െ

ଵ

ሺଵାఏሻమ
൅ 𝐸 ቊ

௫ర

ସ

ଵ

ሺଵାഇ
మ
௫మሻమ

ቋ                                                                   (36) 
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Then the asymptotic 100ሺ1 െ 𝛼ሻ% confidence interval for 𝜃 is given by 𝜃෠ േ

𝑧ఈ
ଶൗ
ூష

భ
మൗ

√௡
. 

4.4.  Simulation 

Table 4.  Average bias and MSE of the estimator 𝜃෠ 

θ n Bias MSE 
1 50 -0.00086 3.65 05e  

100 0.00040 1.56 05e  
500 1.32 05e  8.56 08e  

1.5 50 -0.000061 2.64 05e  
100 -0.00063 3.34 05e  
500 -3.92 06e  7.63 09e  

1.85 50 0.00174 0.000153 
100 0.00090 8.61 05e  
500 0.000168 1.4097 05e  

4.5.  Data analysis and applications 

Application of the Eg distribution is illustrated in two examples. 
Data set 2: The data set is taken from Klein and Berger. It shows the survival data on 
the death times of 26 psychiatric inpatients admitted to the University of Iowa hospitals 
during the years 1935-1948. 

Table. 5.  The survival data on the death times of psychiatric inpatients. 

1 1 2 22 30 28 32 11 14 36 31 33 33 
37 35 25 31 22 26 24 35 34 30 35 40 39 

To evaluate the data, we used three different distributions: ED, EED, and Eg 
distributions. Table 6 shows the estimated unknown parameters, as well as the 
accompanying Kolmogorov-Sminrov (K-S) test statistic and LogL values for three 
alternative models. 

Table 6.  The estimates, K-S test statistic and 𝑙𝑜𝑔 െ 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 for the data set 2 

Model Estimates K-S LogL 
ED 𝜃෠ ൌ 0.0378 0.377 -112.321 
EED 𝑎ො ൌ 1.797, 𝑏෡ ൌ 0.052 0.318 -109.998 
Eg 𝜃෠ ൌ 0.0105 0.3146 -104.611 

We present the p-value, corresponding Akaikes Information Criterion (AIC) 
(see Akaike, H. (1974) and Bayesian Information Criterion (BIC) in the following table 7. 
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Table 7.  The p-value, AIC and BIC  of the models on the base data set 1 

Model p-value AIC BIC 
ED 0.001 224.264          225.518 

EED 0.011 221.974          224.490 
Eg 0.057 211.171          212.429 

Table 6 provides the fitted distributions' parameter MLEs and log likelihood values, 
while table 7 shows the AIC, BIC, and p-value values. Tables 6 and 7 show that the 
Eg (θ) distribution is a strong rival to the other distributions chosen to suit the dataset 
here. 

Data set 3: Chen (Gupta R. D. and Kundu D. (1999)) gave type-II censoring data of 
samples with complete unit failures: 0.29, 1.44, 8.38, 8.66, 10.20, 11.04, 13.44, 14.37, 
17.05, 17.13, and 18.35. Table 8 shows the estimated unknown parameters, as well as 
the accompanying Kolmogorov-Smirnov (K-S) test statistic and Log L values for three 
alternative models. 

Table 8.  The estimates, K-S test statistic and log-likelihood for the data set 2 

Model Estimates K-S LogL 
ED 𝜃෠ ൌ 0.091 0.3622 -40.432 

EED 𝑎ො ൌ 1.355,𝑏෠ ൌ 0.109 0.3183 -38.523 
Eg 𝜃෠ ൌ 0.237 0.251 -35.642 

We present the p-value, corresponding AIC and BIC for the data set in 2 in Table 9. 

Table 9.  The p values , (AIC) and (BIC) of the models based on the data set 3 

Model p-value AIC BIC 
ED 0.098 76.635 77.033 

EED 0.172 78.093 78.889 
Eg 0.462 72.504 72.902 

The parameter MLEs and log-likelihood values of the fitted distributions are shown 
in table 8, and the values of AIC, BIC, and p-values are shown in Table 9. Tables 8 and 
9 show that the Eg (θ) is a strong rival to the other distributions employed to suit the 
dataset here. 

5. Conclusions 

We have suggested a family of distributions with only one parameter in this paper. 
Moments, distribution function, characteristic function, failure rate, stochastic order, 
maximum likelihood approach, and method of moments were among the properties 
studied. 
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The Lindley and Zeghdoudi distributions lack the flexibility needed to examine and 
model many forms of data related to lifetime data and survival analysis. The 𝑁𝑃𝐸𝐷 
distribution, on the other hand, is adaptable, straightforward, and simple to use. The 
novel distribution was used to evaluate two real data sets and was compared to existing 
distributions (Lindley, exponential, Zeghdoudi, Exponential Exponential and 
Xgamma). The comparison's findings support the 𝑁𝑃𝐸𝐷 distribution's quality 
adjustment. We anticipate that our new distribution family will entice many additional 
life data, reliability analysis, and actuarial science applications. 

We can employ a more general distribution with two parameters in future 
experiments, and  

𝑓ே௘௪ሺ𝑥,𝜃ሻ ൌ ℎሺ𝜃ሻ𝑝ሺ𝑥,𝜃ሻ𝑐𝑜𝑠𝜃exp ሺെ𝜃𝑥ሻ 

where ℎሺ𝜃ሻ is real-valued functions on ሾ0,∞ሿ, and where 𝑝ሺ𝑥,𝜃ሻ ൌ 𝑏ሺ𝜃ሻ ൅ 𝑥௞. 
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