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ABSTRACT 

The coronavirus (COVID-19) pandemic affected every country worldwide. In particular, 
outbreaks in Belgium, the Czech Republic, Poland and Switzerland entered the second wave 
and was exponentially increasing between July and November, 2020. The aims of the study 
are: to estimate the compound growth rate, to develop a modified exponential time-series 
model compared with the hyperbolic time-series model, and to estimate the optimal 
parameters for the models based on the exponential least-squares, three selected points, 
partial-sums methods, and the hyperbolic least-squares for the daily COVID-19 cases 
in Belgium, the Czech Republic, Poland and Switzerland. The speed and spreading power of 
COVID-19 infections were obtained by using derivative and root-mean-squared methods, 
respectively. The results show that the exponential least-squares method was the most 
suitable for the parameter estimation. The compound growth rate of COVID-19 infection 
was the highest in Switzerland, and the speed and spreading power of COVID-19 infection 
were the highest in Poland between July and November, 2020. 

Key words: COVID-19, modified exponential time-series model, method of parameter 
estimation, compound growth rate. 

1. Introduction

Since the end of 2019, the coronavirus disease 2019 (COVID-19) outbreak caused
by the SARS-Cov-2 virus, which started in Wuhan of Hubei Province, China, has spread 
throughout the world. The outbreak in Europe has entered the second wave with 
increasing numbers of COVID-19 cases in many countries. As of November 12, 2020, 
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there were 12,914,903 cases and 306,504 deaths in Europe (Worldometer, 2020). 
Especially, the second-wave COVID-19 outbreaks in Belgium, the Czech Republic, 
Poland, and Switzerland rapidly spread with what looks like an exponential function; 
at the same time point, there were 507,475 cases and 13,561 deaths in Belgium, 438,805 
cases and 5,570 deaths in the Czech Republic, 641,496 cases and 9,080 deaths in Poland, 
and 243,472 cases and 3,113 deaths in Switzerland. Measures imposed by the 
governments of these countries, such as lockdown policies, face mask-wearing in public 
areas, encouraging hand washing, avoiding public areas, and prohibiting people from 
assembling were launched to control and protect the population from the spread of 
COVID-19. In addition, physical and social distancing have remained in practice in 
many areas, while learning from home for students and working from home have 
become necessary policies. Thus, the spread of COVID-19 has gone mainly 
unchallenged due to a lack of medical equipment and personnel to fight the pandemic. 

Forecasting the number of COVID-19 cases (the number of people contracting the 
disease) is essential for planning the necessary provisions for medical treatment 
(hospital beds, ventilators, personal protective equipment, etc.). Many models for 
forecasting COVID-19 cases comprising time-series data have been studied. For 
example, linear regression analysis, machine learning, vector support regression 
machine, and autoregressive integrated moving average (ARIMA) models based on the 
linear relationship between the time variable and dependent variables have been 
popular for establishing models for forecasting COVID-19 cases. Forecasting new cases 
and new deaths from COVID-19 in Ethiopia was investigated by Argaru (2020). Linear 
regression analysis of COVID-19 data comprising new cases, deaths, the number of 
days, and recoveries in May and June to estimate the parameters for a forecasting model 
has been reported. The relationship between COVID-19 data and time has been analysed 
by using Pearson’s correlation analysis. The results show that there is a correlation 
between new COVID-19 cases and deaths, while the number of days and new recoveries 
were significant to the new deaths. For the COVID-19 outbreak in Henan province, 
China, linear regression analysis was adopted to estimate parameters for constructing 
a forecasting model and to study the relationship between the number of people from 
Wuhan who had travelled and the number of cases in 18 cities in Henan province. 
The results show a statistically significant linear correlation between the number of 
people traveling from Wuhan and the number of cases (Cheng, 2020).  

The COVID-19 outbreak in India has caused socioeconomic recession and 
mounting deaths. Both multiple and linear regression analyses have been adopted to 
predict the number of deaths and to study correlations in the COVID-19 data from 
India, with the ability of the developed predictive model being based on autoregression 
(Ghosal et al., 2020). The dependent variable (the number of active cases) in the 
forecasting model was correlated with the independent variables (the number of cases, 
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deceased, and recovered). In a study of public health responses in various countries by 
Rath, Tripathy and Tripathy (2020), the performances of forecasting models were 
compared based on the coefficient of determination and correlation. Correlations 
between intervention scores, daily new cases, and doubling time were significant for 
identifying epidemiological changes in the spread of COVID-19. In research involving 
linear and polynomial regression analysis for predicting the COVID-19 fatality rate 
in Nigeria by Suleiman et al. (2020), the results reveal that the polynomial regression 
model is suitable for predicting the COVID-19 fatality rate in this particular country.  

In other studies, linear regression analysis was employed by Melik-Huseynov et al. 
(2020) to estimate new cases of COVID-19. Simple regression analysis was applied by 
Losif et al. (2020) to study the incidence of correlation between the COVID-19 peak or 
plateau and air traffic volume. Forecasting models based on polynomial regression were 
investigated by Ekum and Ogunsanya (2020) to forecast new cases of COVID-19; their 
results show that the cubic polynomial regression model performed better than other 
polynomial regressions. Calculating the fatality rate based on linear regression analysis 
and comparing its efficacy among countries affected by the COVID-19 pandemic was 
conducted by Hoseinpour et al. (2020). Support vector regression as a predictive model 
for the duration of spread and analysis of growth and transmission rates was used to 
evaluate the correlation between COVID-19 outbreaks and weather conditions by 
Yadav, Perumal and Srinivas (2020). Machine learning was applied as a forecasting 
model based on linear regression, least absolute shrinkage and selection operator, 
support vector machine, and exponential smoothing for the number of COVID-19 
patients, new infection cases, deaths, and recoveries by Rustam et al. (2020); their 
results proved that exponential smoothing offered the best performance. Linear 
regression and support vector machine analyses have been used for predicting the 
number of COVID-19 cases to aid decision-making by the government in India 
(Likhesh et al., 2020). Prediction models and comparison between the susceptible-
exposed/infectious-recovered model and regression analysis were used to predict the 
number of COVID-19 cases in India by Pandey et al. (2020). 

ARIMA models have often been applied to COVID-19 time-series data. 
An ARIMA model and regression analysis were used to estimate the mortality rate of 
COVID-19 by Chaurasia and Pal (2020). Forecasting COVID-19 time-series data based 
on an ARIMA model in the US, Brazil, India, Russia, and Spain was investigated by 
Sahai et al. (2020). An ARIMA model was created to forecast new cases and deaths from 
COVID-19 time-series data by Yang et al. (2020). An ARIMA model for short-term 
prediction was developed by Fang, Wang and Pan (2020) to predict COVID-19 cases, 
deaths, and recoveries in Russia. An ARIMA model was applied by Benvenuto et al. 
(2020) to a COVID-19 time-series dataset from the Johns Hopkins database for 
forecasting the trend and incidence of COVID-19 outbreak. Singh et al. (2020) 
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developed an ARIMA model for predicting confirmed cases, deaths, and recoveries 
with a spatial map showing the intensity of each criterion. Moreover, they used the 
Akaike information criterion to validate the ARIMA model. 

Because linear regression analysis, linear machine learning, linear support vector 
regression, and ARIMA model are dependent on the linear combination of time as the 
independent variable to predict dependent variables, our aim was to develop a modified 
exponential time-series model compared with hyperbolic time-series model that is 
nonlinear and uses the exponential growth rate to forecast the number of COVID-19 
cases increasing rapidly each day in Belgium, the Czech Republic, Poland, and 
Switzerland. Herein, the accuracy and validation of the developed model are reported, 
while its ability to predict the speed and spreading power of the daily COVID-19 cases 
are illustrated. 

2.  Methods 

2.1.  Derivation of the modified exponential time-series model 

A time series is a sequence of observations taken sequentially in time (George et al., 
2015). The number of COVID-19 cases per day is an example of a time series. It can be 
represented by modelling its curve as the solution of a differential equation with time 
as the independent variable. In this research, a modified exponential curve is adopted 
to analyse and forecast the daily COVID-19 cases as follows. 

Let ( )y t be the number of total daily COVID-19 cases at time t . Differential 
equation which represents the speed of COVID-19 cases and is solved into the modified 
exponential curve ( )y t can be derived as follows: 

ln( ) ; (0) ; , ,   tdy
b c c y a b a b c

dt
                              (1)  

Taking integral both sides of Equation (1), the result becomes 

ln( )
  tdy
c dt

b c
 

( ) ln( ) ty t bc Kb c  where K is an arbitrary constant. 

With initial condition (0)  y a b , the K value can be carried out as 

ln( )


a
K

b c
 

Therefore, a modified exponential curve is 
( )   ty t a bc                                                          (2) 

where , ,a b c are the parameters. 
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2.2.  Compound growth rate and parameter estimations with the algorithm 

Let   1
( )



n

t
y t be a time series of the number of COVID-19 cases. The dependent 

variable y , which is related to independent variable t  has the modified exponential 
relationship to t  as in Equation (2). In this research, the exponential least-squares 
method, three selected points, partial-sums method, and the hyperbolic least-squares 
method were employed for the estimation of parameters as follows. 

2.2.1.  The exponential least-squares method 

The exponential least-squares method is to seek an approximating function that 
best fits the data points (Kharab and Guenther, 2012). It is based on the sum of squares 
error (SSE ) defined by 

2ˆ( ) SSE y y                                                             (3) 
where y  is an actual value of time series and ŷ is a forecasted value of time series. 

The partial derivative is taken into both sides of Equation (3). Then, it is determined 
to be zero for evaluating the parameters , ,a b c  based on the minimum of the sum of 
squares error. 

2

2

2

ˆ( ) 0,

ˆ( ) 0,

ˆ( ) 0.

 
  

 
 

  
 
 

  
 

SSE y y
a a

SSE y y
b b

SSE y y
c c

 

In addition, the compound growth rate of the time series with initial value 0y  is 
defined as 

0( ) (1 )  ty t y r                                                      (4) 

Rewriting Equation (2), the result becomes 
( )  Y t A Bt  

where ln( ) ln( ) ln( ), ln( ), ln( ).    A a b ab B c Y y   

An estimate of the compound growth rate r  based on the least squares estimation 
for estimation of parameters A andB is given by 

2

1 1 1

2

12

1

( ) ( )

ˆ
  








 
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

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t t t

n

n
t

t

t y t ty t t

n nB

t

t
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  and ˆ ˆ A Y Bt  
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The estimator of parameter b is given by 
ˆˆ ˆexp( ) 1  c B r  

where  r̂  is the estimator of the compound growth rate. 
Therefore, an estimate of the compound growth rate is given by  

ˆ ˆ 1 r c                                                                (5) 
Also, Student's T-test is a statistic for significant test of the compound growth rate 

given by 
ˆ

; 2.
ˆ( )

  
B

T df n
SE B

                                                (6) 
The decision of the significance of the compound growth rate is dependent on the 

comparison between the calculated value of |T with the critical value of T  or on the 
consideration of p-value. 

2.2.2.  The three selected points method 

The estimation of parameters of the modified exponential curve is represented by 
the three selected points method (Das and Chakrabarty, 2017). Three points of the time 
series coordinates * * * * * *

1 1 2 2 3 3( , ), ( , ), ( , )t y t y t y  along the time series   1
( )



n

t
y t are selected to 

estimate parameters , ,a b c . 
*
1*

1   ty a bc                                                                  (7) 
*
2*

2   ty a bc                                                                  (8) 
*
3*

3   ty a bc                                                                  (9) 
where * * * *

2 1 3 2   h t t t t . 
By the algebraic way, the system of Equations (7)-(9) is solved for the estimation of 

parameters ˆˆ ˆ, ,a b c as 1
* *
3 2
* *
2 1

ˆ
 

   

hy y
c

y y
 

* *
2 1

* * * *
3 2 2 1ˆ

ˆ ˆ ˆ ˆ( 1) ( 1)

 
 

 t th h

y y y y
b

c c c c
 

* * *
3 2 1* * *

3 2 1
ˆ ˆ ˆˆ ˆ ˆ ˆ     t t ta y bc y bc y bc  

2.2.3. The partial sums method 

The partial sums method (Ikaya et al., 2005) is based on the partition of the time 
series data into three categories with equal length n  points. The dependent variable is 

 1 2 3 1 2 3 2 2 1 2 2 2 3 3, , ,..., ; , , ,..., ; , , ,...,      n n n n n n n n ny y y y y y y y y y y y y  and the time 
independent variable is  

 1,2,3,..., ; 1, 2, 3,...,2 ; 2 1,2 2,2 3,...,3      t n n n n n n n n n . 
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Let 1 2 3, ,S S S  be the partial sums of the partitions of the dependent variable .y  
Thus, 

1
1

( 1)

1


  


nn

t
t

bc c
S y an

c
                                                (10) 

12

2
1

( 1)

1



 


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
n nn

t
t n

bc c
S y an

c
                                         (11) 

2 13

3
2 1

( 1)

1



 


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
n nn

t
t n

bc c
S y an

c
                                       (12) 

The algebraic way is adopted to carry out Equations (10)-(12) for the estimation of  
parameters ˆˆ ˆ, ,a b c as 

1

3 2

2 1

ˆ
 

   

nS S
c

S S
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2.2.4.  The hyperbolic least-squares method 

The hyperbolic least-squares method (Kharab and Guenther, 2012) is a nonlinear 
model estimation. It is the fitting given observations with hyperbolic time-series model, 
which is given as 

( )  
b

y t a
t

 

Setting ( ) ( ), , ,   Y t y t a b  and 1
T
t

,  the hyperbolic time-series model can 

be transformed as 
( )   Y T T  

Then, the least-squares method is applied to the estimation of parameters a  and b . 

2.2.5.  Statistics for the accuracy and validation of the time-series model and 
spreading power 

In this section, the accuracy and validation of the time series model are measured. 
The spreading power is also measured. The measurement of validation of the time 
series model is evaluated by the Root Mean Squared Percentage Error (RMSPE ) as 

2

1

ˆ1 ( ) ( )

( )

 
  

 

n

t

y t y t
RMSPE

n y t
                                           (13) 

where ( )y t  is an actual value of y  and ˆ( )y t  is a forecasted value of y . 
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For accuracy of the time series model, the coefficient of determination ( 2R ) is 
defined as  

 

2

2 1

2

1

ˆ( ) ( )
1 1

( )





  
   







n

t
n

t

y t y t
RSS

R
TSS

y t y

                                           (14) 

where RSS is the Sum of Squares of Residuals,  
    TSS is the Total Sum of Squares. 

The Root Mean Square (RMS ) (Jones, 2019) is measured as the spreading power 
of the COVID-19 cases time series. The RMS  can be defined as 

 2

1

1
( )



 
n

t

RMS y t
n

                                                    (15) 

2.2.6.  The algorithm for evaluating the parameters, estimating the derivative, 
  root-mean-square (RMS), RMS percentage error (RMSPE), and estimating 
  the compound growth rate 

In this section, the algorithm for this research is demonstrated.  

Algorithm 

Input: total COVID-19 cases 

y  total COVID-19 cases 

n length(y) 

1 :t n  
2, , ExpoLeast ExpoLeast ExpoLeastPara RMSPE R Expoleastsquare(modifiedexpo, ,t y ) 

2, , Three Three ThreePara RMSPE R Threepoints(modifiedexpo, ,t y ) 
2, , Partial Partial PartialPara RMSPE R Partialsums(modifiedexpo, ,t y ) 

2, , HyperLeast HyperLeast HyperLeastPara RMSPE R Hyperleastsquare(hypebolic, ,t y ) 

The optimal estimate parameter is based on the minimum of RMSPE and the 
maximum of 2R  

1del  
For 2 : 1 t n  

( ) ( ( 1) ( 1)) / 2 /   dy t y t y t del  
End 

1 2 3 4, , , , 0SS SS SS SS SS  
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For 1 :i n  
2( ( )) SS SS y i  

2
1 1 ( ) SS SS t y t  

2 2 ( ) SS SS ty t  

3 3 SS SS t  
2

4 4 SS SS t  

End 
1

( )RMS sqrt SS
n

 

  

 

2 31

2

3
4

ˆ






SS SSSS

n nB
SS

SS
n

 

ˆˆ exp( )c B  

ˆ ˆ 1 r c  
Output: estimate parameters, estimate derivative, RMS, RMSPE, r̂  

2.3.  Data collection 

The sampled countries, Belgium, the Czech Republic, Poland, and Switzerland, 
are selected for investigation because the spreading of COVID-19 in these countries is 
severe outbreak at the second wave in the manner of exponential outbreak. The total 
COVID-19 cases were only collected to model in the first stage of COVID-19 outbreak 
because the first stage is exponentially increasing. Then, the total COVID cases will pass 
the inflation point and will be converged to the carrying capacity (Areepong and 
Sunthornwat, 2021). For selected four countries, the outbreak in the first stage of the 
second wave started in the second wave between July and November, 2020. The data 
for this research are the number of daily total COVID-19 cases in Belgium, the Czech 
Republic, Poland, and Switzerland. The data is collected at the Worldometers website 
(Worldometer, 2020). This website reveals the real time data about world population, 
government and economics, society and media, environment, food, water, energy, 
health, as well as COVID-19 statistics. The duration of time for collecting data for 
making the forecasting model is dependent on the severity in each country. The time 
range for collection of data in Belgium is from July 15, 2020 ( 0t ) to November 3, 
2020 ( 111t ). The time range for collection of da ta in Czech Republic is from August 
23, 2020 ( 0t ) to November 3, 2020 ( 72).t  The time range for collection of data 
in Poland is from September 1, 2020 ( 0t ) to November 3, 2020 ( 63t ). The time 
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range for collection of data in Switzerland is from September 2, 2020 ( 0t ) to 
November 3, 2020 ( 62t ). For the out of sample data, the time range is extended to 
5 days from the last day of the data for making the forecasting model.  

3.  Results 

The results of this research concern estimating the parameters and forecasting 
using the models, as well as the compound growth rate and spreading power of 
COVID-19 in Belgium, the Czech Republic, Poland, and Switzerland. 

3.1.  The parameters and forecasting models for the number of daily COVID-19  
 cases in Belgium 

Here, we present the estimated parameters and forecasting models for the daily 
COVID-19 cases in Belgium. The estimated parameters evaluated by each method are 
as follows: ˆˆ 72207.129, 316.821, a b and ˆ 1.066c  by using the exponential least-
squares method; ˆˆ 62757.544, 114.456, a b and ˆ 1.086c  by using the three selected 
points method; ˆˆ 67327.213, 754.656, a b and ˆ 1.058c  by using the partial-sums 
method; and ˆ 138260.53a and ˆ -188328.83b  by using the hyperbolic least-squares 
method. The forecasting models based on the three methods and estimating the 
parameters of the daily COVID-19 cases in Belgium are shown in Figure 1.   

 
Figure 1.  Estimation of the daily COVID-19 cases in Belgium 
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3.2.  The parameters and forecasting models for the daily COVID-19 cases  
  in the Czech Republic 

Here, we present the estimated parameters and forecasting models for the daily 
COVID-19 cases in the Czech Republic. The estimated parameters evaluated by each 
method are as follows: ˆˆ 9077.568, 9261.801, a b  and ˆ 1.053c  by using the least-squares 
method; ˆˆ 21701.501, 221.499, a b and ˆ 1.125c  by using the three selected points 
method; ˆˆ 3408.564, 13198.966, a b and ˆ 1.047c  by using the partial-sums method; 
and ˆ 125497.33a and ˆ -235555.95b  by using the hyperbolic least-squares method. 
The forecasting models based on the three methods and estimates of the parameters for 
the daily COVID-19 cases in the Czech Republic are shown in Figure 2. 

 
Figure 2.  Estimation of the daily COVID-19 cases in the Czech Republic 

3.3.  The parameters and forecasting models for the daily COVID-19 cases  
 in Poland 

Here, we present the estimated parameters and forecasting models for the daily 
COVID-19 cases in Poland. The estimate parameters evaluated by the three methods 
are as follows: ˆˆ 64655.708, 3192.084, a b and ˆ 1.078c  by using the least-squares 

method; ˆˆ 47097.000, 20825.000, a b and ˆ 1.029c  by using the three selected points 
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method; ˆˆ 67958.474, 1649.921, a b and ˆ 1.099c  by using the partial-sums method; 

and ˆ 157216.97a and ˆ -198139.63b  by using the hyperbolic least-squares method. 
The forecasting models based on the three methods and the estimated parameters for 
the daily COVID-19 cases in Poland are shown in Figure 3. 

 
Figure 3.  Estimation of the daily COVID-19 cases in Poland 

3.4.  Parameters and forecasting models for the daily COVID-19 cases  
 in Switzerland 

Here, we present the estimate parameters and forecasting models for the daily 
COVID-19 cases in Switzerland. The estimated parameters evaluated by each method 
are as follows: ˆˆ 44629.163, 699.939, a b and ˆ 1.089c  by using the least-squares 

method; ˆˆ 42258.5002, 504.499, a b and ˆ 1.119c  by using the three selected points 

method; ˆˆ 55456.458, 901.478, a b and ˆ 1.089c  by using the partial-sums method; 

and ˆ 77679.67a and ˆ -75580.83b  by using the hyperbolic least-squares method.. 
The forecasting models based on the three methods and the estimated parameters for 
the daily COVID-19 cases in Switzerland are shown in Figure 4. 
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Figure 4.  Estimation of the daily COVID-19 cases in Switzerland 

3.5.  Comparison of the spread of COVID-19 and appropriate parameters 

The derivatives of the speed and spreading power of the daily COVID-19 cases 
in Belgium, the Czech Republic, Poland, and Switzerland are shown in Figures 5 and 6, 
respectively. In addition, the compound growth rate and forecasting model validation 
based on RMSPE  and 2R values along with testing of the significance of the 
compound growth rate based on p-values are reported in Table 1. Moreover, 
forecasting of the daily COVID-19 cases for the out-of-sample data for November 4 –
8, 2020, and comparing the forecasted values with the actual values are summarized 
in Table 2. The results indicate that the increase in the speed and spreading power of 
the daily COVID-19 cases in Belgium was higher than for the other countries. 
Moreover, the compound growth rate for each country was statistically significant  
(p-value < 0.05). The exponential least-squares method provided the best fitting of the 
parameter estimations for the four countries, as indicated by the lowest RMSPE  and 
the highest 2R values. 
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Figure 5.  Estimated speed of the increase in daily COVID-19 cases 

 

 
Figure 6.  The spreading power for the daily COVID-19 cases 
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Table 1.  The compound growth rate and forecasting model validation for the daily COVID-19 cases. 

Country Estimate 
B  

Compound 
Growth Rate 

Standard 
Error t-test p-value RMSPE 2R  

Belgium 0.064 0.066 0.001 22.879 1.267e-43 0.456 
0.064 
0.063* 

0.594 

0.982 
0.992 
0.995* 

0.051 
Czech 
Republic 

0.052 0.053 3.613e-07 23.266 6.066e-35 0.543 
0.091 
0.058* 

1.711 

0.867 
0.994 
0.996* 

0.101 
Poland 0.075 0.078 0.001 22.236 3.056e-31 0.248 

0.207 
0.020* 

0.641 

0.904 
0.989 
0.999* 

0.089 
Switzer 
land 

0.086 0.090 0.001 17.460 2.076e-25 0.735 
0.266 
0.034* 

0.406 

0.978 
0.993 
0.994* 

0.089 

Note: * the best value. For each country, the top, middle, and bottom rows are for the models using 
the three points, partial-sums, exponential least-squares methods, and hyperbolic least-squares 
methods, respectively. 
 

Table 2.  Forecasting COVID-19 cases for the out-of-sample data using the least-squares method. 

Country Time RMSPE 2R  
 Nov  

4, 2020 
Nov  
5, 2020 

Nov  
6, 2020 

Nov  
7, 2020 

Nov  
8, 2020 

  

Belgium 453310 
497600.183 

468213 
525854.870 

479341 
555986.239 

488044 
588118.939 

494168 
622385.899 

0.179 0.959 

Czech 
Republic 

378717 
406855.462 

391949 
427880.541 

403497 
450016.929 

411219 
473323.365 

414827 
497861.694 

0.134 0.943 

Poland 439536 
456977.627 

466679 
487608.675 

493765 
520631.283 

521640 
556232.174 

546425 
594612.651 

0.061 0.997 

Switzerland 192376 
199713.233 

202504 
213594.438 

211913 
228718.115 

211913 
245195.477 

211913 
263147.688 

0.137 0.735 

Note: For each country, the top line is the actual value and the bottom line is the forecasted value 
based on the exponential least-squares method. 



162                                W. Permpoonsinsup, R. Sunthornwat: Modified exponential time series model… 

 

 

4.  Conclusions 

In this research, we applied a modified exponential time series model to forecast 
daily COVID-19 cases. Belgium, the Czech Republic, Poland, and Switzerland were 
selected for this research because their curves for the daily COVID-19 cases in the 
second wave were exponentially increasing. Parameter estimation of the modified 
exponential time-series model was conducted by using the exponential least-squares 
method, the three selected points method, and the partial-sums methods. The 
hyperbolic least-squares time-series model, the other nonlinear model, which is 
a hyperbolic form, is applied to be compared with the previous models. The optimal 
forecasting model with the estimated parameters was selected based on having the 
lowest RMSPE  and the highest 2R . Moreover, the compound growth rate, speed, and 
spreading power of the daily COVID-19 cases were evaluated and compared. The 
findings show that the exponential least-squares method was the most appropriate 
method for parameter estimation for the modified exponential time-series model for 
the daily COVID-19 cases in all four countries. The compound growth rates were 
statistically significant for each country, with that of Switzerland being slightly higher 
than in the other countries. Moreover, the speed and spreading power of the daily 
COVID-19 cases in Belgium were higher than the other countries. When applying the 
optimal least-squares model to predict the daily COVID-19 cases from the out-of-
sample data, the forecasted daily COVID-19 cases were in good agreement with the 
actual values. Changing the parameters of the modified exponential time-series model 
made the forecasting model less accurate. Hence, the modified exponential time-series 
model is suitable for short-term forecasting, and parameter estimation should be 
evaluated again if the accuracy of the forecasting model is reduced. However, the 
limitation of this research is that the modified exponential time-series model is 
effectively used for the first stage of the outbreak because the total COVID-19 cases will 
exponentially increase in the first stage of the outbreak. Consequently, the total 
COVID-19 cases will pass the inflation point and converge to the carrying capacity. 
Future research will encompass other variables related to the COVID-19 situation, such 
as the number of active cases and the number of deaths, to enable the authorities 
effectively control a COVID-19 outbreak and protect the population from it. 
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