Full-text resources of CEJSH and other databases are now available in the new Library of Science.

Visit https://bibliotekanauki.pl

Visit https://bibliotekanauki.pl

Full texts:

37-58

published

2022

author

- Cairo University, Department of Mathematical Statistics, Faculty of Graduate Studies for Statistical Research, Egypt

author

author

- Abu-Dayyeh, W., Assrhani, A., Ibrahim, K., (2013). Estimation of the shape and scale parameters of Pareto distribution using ranked set sampling. Statistical Papers, 54(1), pp. 207–225.
- Abu-Youssef, S. E., Mohammed, B. I., Sief, M. G., (2015). An extended exponentiated exponential distribution and its properties. International Journal of Computer Applications, 121(5), pp. 1–6.
- Al-Odat, M. T., Al-Saleh, M. F., (2001). A variation of ranked set sampling. Journal of Applied Statistical Science, 10(2), pp. 137–146.
- Al-Omari, A. I., Almanjahie, I. M., Hassan, A. S., Nagy, H. F., (2020). Estimation of the stress-strength reliability for exponentiated Pareto distribution using median and ranked set sampling methods. CMC-Computers, Materials & Continua, 64(2), pp. 835–857.
- Almarashi, A. M., Algarni, A., Hassan, A. S., Elgarhy, M., Jamal, F., Chesneau, C., Alrashidi, K., Mashwani, W. K., Nagy, H. F., (2021). A new estimation study of the stress-strength reliability for the Topp–Leone distribution using advanced sampling methods. Scientific Programming, pp. 1–13, https://doi.org/10.1155/2021/2404997.
- Bantan, R., Hassan, A. S., Elsehetry, M., (2020). Zubair Lomax distribution: properties and estimation based on ranked set sampling. CMC-Computers, Materials & Continua, 65(3), pp. 2169–2187.
- Bhoj, D. S., Ahsanullah, M., (1996). Estimation of parameters of the generalized geometric distribution using ranked set sampling. Biometrics, pp. 685–694.
- Bjerkedal, T., (1960). Acquisition of resistance in Guinea pigs infected with different doses of virulent tubercle bacilli. American Journal of Hygiene, 72(1), pp. 130–148.
- Chesneau, C., Kumar, V., Khetan, M., Arshad, M., (2022). On a modified weighted exponential distribution with applications. Mathematical and Computational Applications, 27(1), https://doi.org/10.3390/mca27010017.
- De Andrade, T. A., Bourguignon, M., Cordeiro, G. M., (2016). The exponentiated generalized extended exponential distribution. Journal of Data Science, 14(3), pp. 393–413.
- Gupta, R. D., Kundu, D., (1999). Generalized exponential distributions. Australian & New Zealand Journal of Statistics, 41(2), pp. 173–188.
- Gupta, R. D., Kundu, D., (2007). Generalized exponential distribution: Existing results and some recent developments. Journal of Statistical Planning and Inference, 137(11), pp. 3537–3547.
- Haq, A., Brown, J., Moltchanova, E., Al-Omari, A. I., (2013). Partial ranked set sampling design. Environmetrics, 24(3), pp. 201–207.
- Hassan, A. S., (2012). Modified goodness of fit tests for exponentiated Pareto distribution under selective ranked set sampling. Australian Journal of Basic and Applied Sciences, 6(1), pp. 173–189.
- Hassan, A. S., (2013). Maximum likelihood and Bayes estimators of the unknown parameters for exponentiated exponential distribution using ranked set sampling. International Journal of Engineering Research and Applications, 3(1), pp. 720–725.
- Hassan, A. S., Assar, S., Yahya, M., (2014). Estimation of R= P [Y< X] for Burr type XII distribution based on ranked set sampling. International Journal of Basic and Applied Sciences, 3(3), pp. 274–280.
- Hassan, A. S., Assar, S., Yahya, M., (2015). Estimation of P (Y< X) for Burr distribution under several modifications for ranked set sampling. Australian Journal of Basic and Applied Sciences, 9(1), pp. 124–140.
- Hassan, A. S., Elbagouri, R., Onyango, R., Nagy, H. F., (2022). Estimating system reliability using neoteric and median RSS data for generalized exponential distribution. International Journal of Mathematics and Mathematical Sciences, 2608656, https://doi.org/10.1155/2022/2608656.
- Koyuncu, N., Karagöz, D., (2018). New mean charts for bivariate asymmetric distributions using different ranked set sampling designs. Quality Technology & Quantitative Management, 15(5), pp. 602–621.
- Mahdizadeh, M., Arghami, N. R., (2010). Efficiency of ranked set sampling in entropy estimation and goodness-of-fit testing for the inverse Gaussian law. Journal of Statistical Computation and Simulation, 80(7), pp. 761–774.
- Mcintyre, G., (1952). A method for unbiased selective sampling, using ranked sets. Australian Journal of Agricultural Research, 3(4), pp. 385–390.
- Nadarajah, S., (2011). The exponentiated exponential distribution: a survey. AStA Advances in Statistical Analysis, 95, pp. 219–251.
- Raqab, M. M., Ahsanullah, M., (2001). Estimation of the location and scale parameters of generalized exponential distribution based on order statistics. Journal of Statistical Computation and Simulation, 69(2), pp. 109–123.
- Ristić, M. M., Balakrishnan, N., (2012). The gamma-exponentiated exponential distribution. Journal of Statistical Computation and Simulation, 82(8), pp. 1191– 1206.
- Sabry, M. A., Shaaban, M., (2020). Dependent ranked set sampling designs for parametric estimation with applications. Annals of Data Science, 7(2), pp. 357–371, https://doi.org/10.1007/s40745-020-00247-3.
- Samawi, H. M., Ahmed, M. S., Abu-Dayyeh, W., (1996). Estimating the population mean using extreme ranked set sampling. Biometrical Journal, 38(5), pp. 577–586.
- Samuh, M. H., Qtait, A., (2015). Estimation for the parameters of the exponentiated exponential distribution using a median ranked set sampling. Journal of Modern Applied Statistical Methods, 14(1), pp. 215–237.
- Tahmasebi, S., Hosseini, E. H., Jafari, A. A., (2017). Bayesian estimation for Rayleigh distribution based on ranked set sampling. New Trends in Mathematical Sciences, 5(4), pp. 97–106.
- Wolfe, D. A., (2010). Ranked set sampling. Wiley Interdisciplinary Reviews: Computational Statistics, 2(4), pp. 460–466.
- Zamanzade, E., Al-Omari, A. I., (2016). New ranked set sampling for estimating the population mean and variance. Hacettepe Journal of Mathematics and Statistics, 45(6), pp. 1891–1905.

Biblioteka Nauki

2156898

bwmeta1.element.ojs-doi-10_2478_stattrans-2022-0041