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Missing data estimation based on the chaining technique  
in survey sampling 

Narendra Singh Thakur1, Diwakar Shukla2 

ABSTRACT 

Sample surveys are often affected by missing observations and non-response caused by the 
respondents’ refusal or unwillingness to provide the requested information or due to their 
memory failure. In order to substitute the missing data, a procedure called imputation is 
applied, which uses the available data as a tool for the replacement of the missing values. 
Two auxiliary variables create a chain which is used to substitute the missing part of the 
sample. The aim of the paper is to present the application of the Chain-type factor estimator 
as a means of source imputation for the non-response units in an incomplete sample. 
The proposed strategies were found to be more efficient and bias-controllable than similar 
estimation procedures described in the relevant literature. These techniques could also be 
made nearly unbiased in relation to other selected parametric values. The findings are 
supported by a numerical study involving the use of a dataset, proving that the proposed 
techniques outperform other similar ones. 

Key words: estimation, missing data, chaining, imputation, bias, mean squared error (MSE), 
factor type (F-T), chain type estimator, double sampling. 
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1. Introduction

In sample surveys, the auxiliary information is used to improve efficiency of the
estimate [see, Cochran (2005), Sukhatme et al. (1984)]. The use of a ratio estimator is 
preferred when the population mean of auxiliary variate is known. However, when it is 
unknown then it is not possible to apply the ratio estimator directly and the concept of 
two-phase sampling is applied to get a sample-based estimate of population mean. 
Sometimes information on one more auxiliary variable highly correlated to earlier 
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auxiliary variate is available and easy to access at a lesser cost. This additional 
information could be intelligently utilized for obtaining efficient estimates. Chaining is 
one such technique, used by Chand (1975), Sukhatme and Chand (1977), which has a 
mechanism of combining wisely two auxiliary variates. Kiregyera (1980, 1984) 
proposed some chain type ratio and regression estimators whereas Singh et al. (1994) 
developed a class of chain type estimators under a double sample scheme. Al-Jararha 
and Ahmed (2002) discussed the class of chain type estimators for population variance 
using double a sampling scheme. Some other useful contributions are Kumar and Bahl 
(2006), Pradhan (2005), Rao and Sitter (1995), Sharma and Tailor (2010), Shukla 
(2002), Singh and Espejo (2007), Singh et al. (2009), Singh et al. (1993), Srivastava and 
Jhajj (1980), etc. 

The use of auxiliary information in the estimation of population values of the study 
variate is a common phenomenon in sampling theory of surveys. Auxiliary information 
is successfully utilized either at the planning stage or at the design stage or at the 
information stage to arrive at improved estimator compared to those not utilizing 
auxiliary information. The use of ratio and product strategies in survey sampling solely 

depends upon the knowledge of population mean 
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character X. In many situations of practical importance, the population mean X  is 
unknown before the start of a survey.  In such a situation, the usual thing to do is to 
estimate it by the sample mean 
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auxiliary variate Z, closely related to auxiliary variate X  but compared to X  remotely 

related to study variate Y is known, it is advisable to estimate X  by 
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  [see, Choudhury and Singh (2012)]. The symbol XZ  is the 

coefficient of correlation between X and Z  and XC , ZC are the coefficient  of variation 
of X  and Z  respectively. Chand (1975) and Sukhatme and Chand (1977) proposed 
a technique of chaining of the available information on auxiliary characteristics with 
the main characteristic. Kiregyera (1980, 1984), Singh et al. (2006) also proposed some 
chain type ratio and regression estimators based on two auxiliary variables. Using prior 
information on parameters of auxiliary variate some useful contributions are Shukla et 
al. (1991), Bose (1943), Kadilar and Cingi (2003), Srivastava et al. (1990), 
Srivenkataramana (1980), etc.  
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According to Hietjan and Basu (1996), incompleteness in the form of missingness, 
censoring or grouping, is a troubling feature of several data sets. A key question is what 
one needs to assume to justify ignoring the incompleteness mechanism. Rubin (1976) 
addressed this question for Bayes/likelihood and frequentist inferences. Little and 
Rubin (1987) recognized for some time that failure to account for the stochastic nature 
of incompleteness can spoil inferences. 

In brief, Rubin (1976) defined three key concepts: missing at random (MAR), 
observed at random (OAR) and Parameter Distinctness (PD). The data are MAR if the 
probability of the observed missingness pattern, given the observed and unobserved 
data, does not depend on the values of the unobserved data. The data are OAR if, for 
every possible value of the missing data, the probability of the observed missingness 
pattern, given the observed and unobserved data, does not depend on the values of the 
observed data. PD holds if there are no a priori ties between the parameters of the 
missingness model and those of the data model. For Bayesian inference this means that 
the parameters of the data model and missingness model are a priori independent. For 
direct likelihood inference it means that knowledge of one parameter's value does not 
place any constraints on the other parameter's value. Ignoring the missingness 
mechanism is justified for Bayes/likelihood inference if MAR and PD hold. 
The combination of MAR and OAR is called missing completely at random (MCAR). 
In what follows missing completely at random (MCAR) by Heitjan and Basu (1996) is 
used in this article. Some useful contributions available in the literature are Weeks 
(1999), Shukla et al. (2009), Seaman et al. (2013), Bhaskaran and Smeeth (2014), Pandey 
et al. (2015), Pandey et al. (2016), Doretti et al. (2018), etc. This manuscript presents 
the use of Chain-Type estimator as an imputation source for dealing with missing 
observations to estimate the population mean. 

1.1. Some existing imputation strategies 

A simple random sample S without replacement (SRSWOR), of size n is drawn 
from population  N,.......,2 ,1 with iY  as thi  unit of variable Y under study. Let 
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1   be the mean of a finite population under estimation. The sample S of n 
units contains r responding units (r < n) forming a sub-space R and (n – r) non-
responding with the sub-space (n – r) having symbol CR  in the space S. The sub-spaces 
R and CR are disjoint and .SRR C   The variable Y  is of main interest and X is 
auxiliary correlated with Y. For every unit Ri , the value iy  is observed available.  
For units CRi ,  the iy  values are missing and imputed values are to be derived.  
The thi   value ix  of X could be used as a source of imputation for C

i Riy   , . This is to 
assume for sample S, the data  Sixx is  :  is known and available completely. 
Responding units have missing data only for the study variable Y.  Under this two 
variable set-up, some well-known imputation methods available in the literature are: 
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1.1.1. Ratio method of imputation 

For iy  and ix , define iy   as 
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1.1.2. Mean method of imputation 

For iy  define iy   as 
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Using the above, the imputation-based estimator of population mean Y  is: 
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1.1.3. Compromised method of imputation 

Singh and Horn (2000) proposed a compromised imputation procedure:  
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Where  is a suitably chosen constant, such that the resultant variance of the 
estimator is minimum. The imputation-based estimator, for this case, is  
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1.1.4. Ahmed methods of imputation 

For the case where jiy denotes the ith available observation for the jth imputation 
method Ahmed et al. (2006) suggested: 
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Under this, the point estimator is: 
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The point estimator is under this set-up: 
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The point estimator is: 
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Terms 1, 2 and 3 are suitably chosen constants, so as to keep the variance of the 
resultant estimator minimum. As special cases, when  

  3 = 1, 
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    and   3 = -1, 
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The last one (1.14) is natural analogue of the ratio estimator called the product 
estimator used when an auxiliary variate X has negative correlation with Y. 

1.1.5. Factor type methods of imputation 
Shukla and Thakur (2008) suggested factor-type imputation procedures as: 
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Under (1.15), (1.16) and (1.17) point estimators are:  
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As special cases, when lFTll tTk       then1,1      when lFTll tTk       then1,2   
when   3,2,1         ;     then0,4  lytTk rlFTll  

2. Proposed imputation strategies 

Consider a double sampling set-up with three variables Y,  X and Z  where Y  is the 
main variable and  X, Z are auxiliary variates. The correlation between X  and Z is higher 
than other two. A specific way of combining X and Z is “chaining”, which generates 
chain-type estimators in double sampling, and several authors have used this [see Singh 
and Singh (1991), Singh et al. (1994)] to get a series of alternative estimators for 
estimating population mean. Singh and Shukla (1987) discussed a family of factor-type 
ratio estimator for estimating population mean. In one more contribution, Singh and 
Shukla (1993) derived efficient factor-type estimator for estimating the same 
population parameter. Using the above contributions Singh et al. (1994) developed 
a factor-type-chain estimator, whose application as an imputation tool is the main 
source of motivation in this article.  

2.1. Preliminaries 

Typically, in double sampling, the population mean X  of variable X  is unknown. 
Hence, let '  S  be the preliminary sample drawn from  N,....,2 ,1  by SRSWOR 
containing m units with mean mm zx   ,  of X and Z. This implies  ''

' : Sjxx js  , 
 ''

' : Sjzz js   are known data and at this stage data linked with variable Y are not 
known. A sub-sample S of n units  mn   is drawn from 'S  by SRSWOR having r 
responding units  nr   forming subspace R, having  rn  non-responding units with 
the sub-space CR . Also, in S,  Riyy iR  , ,  Sixx is  , ,  Sizz is  ,  are available,  
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whereas  CiCR
Riyy  ,  is missing and needs to be estimated by an appropriate 

imputation technique. As discussed in previous section the sub-spaces R and CR are 
disjoint and SRR C  .  

Let us consider Ahmed et al. (2006) point estimator from equation (1.10) 2t  with 
12   : 
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The term nx  could be improved by Chaining Technique as suggested by Chand 
(1975), Sukhatme and Chand (1977), Singh and Singh (1991) as: 
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Motivated from the above discussion, some proposed imputation strategies using 
Singh et al. (1994) are: 
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Under strategies (2.1), (2.2) and (2.3) the point estimators of population mean of 
study variable Y  are like (2.4), (2.5) and (2.6) respectively. 

2.2. Special Cases: 

(i)   At  k =1 ; A = 0, B = 0, C = - 6  
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(ii)  At k = 2; A = 0, B= -2, C = 0 
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(iii) At k = 3; A= 2, B = -2, C = 0 
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(iv) At k = 4; A= 6, B = 0, C = 0  
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3. Properties of the estimators under proposed strategies 

Let B(.) and M(.) be the bias and mean squared error (MSE) of the estimators under 
a given sampling design respectively. Let the large sample approximations as Nn
be:  11  Yyr ;  21  Xx r ;  31  Xx m ;  41  Zz r  and  51  Zz m   

Here, 5,4,3,2,1   ;1  ii . 

Using the concept of two-phase sampling, following Rao and Sitter (1995) and 
using the mechanism of MCAR [Heitjan and Basu (1996)], for given r, n and m, 
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Theorem 3.1: 

[a1]  The estimator  k1  in terms of  5,4,3,2,1   ; ii  up to the first order of 
approximation is: 
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525352515
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Theorem 3.2: 

[a5]  The estimator  k2  in terms of  5,4,3,2,1   ; ii  up to the first order of 
 approximation is: 
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[a8] To obtain minimum MSE, let 
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Theorem 3.3: 
[a9] The estimator  k3  in terms of  5,4,3,2,1   ; ii   up to the first order of 
approximation could be expressed as: 
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4.  Comparison of the estimators under proposed imputation strategies 
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5.  Empirical study 

For numerical study consider the data as attached in Appendix A, which is 
a generated artificial population of size N = 200 containing values of main variable Y 
and auxiliary variables X, Z. Parameters of this population are given below:  

485.42Y ; 515.18X ; 52.20Z ; 0598.1992 YS ; 5375.482 XS ; 45.76842 ZS ;
8734.0YX ; 8667.0YZ ; 9943.0XZ ; 0.3287;YC 0.3755XC ; 0.3296ZC ;

;8643.0YZK ;1326.1XZK 7645.0YXK  
Reddy (1978) proved that YXK , YZK , XZK  are ratio values and bear very small 

change over a span of time. It could be easily guessed or assumed to be known a priori. 
Using preliminary large sample of size m = 80 and sub-random sample of size n = 30 
with the number of responding units r = 22 and  f = 0.15 by SRSWOR. The optimum 
values of constants of different estimators at their optimal condition are 2354.0 ,

7646.0321   , '
1k = 1.5206, '

2k = 2.4505, '
3k = 8.9456  for compromised, Ahmed’s 

methods and Factor Type F-T Estimators of imputation respectively. By simplifying 
optimum conditions of proposed estimators for minimum MSE, the cubic equations 
provide the values of constants k as shown in Table 5.1. 
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Table 5.1. Optimum k-values for minimum MSE of proposed estimators 

Estimators 
Condition 

for Optimum MSE 
Three optimum Values of k on one condition 

 k1  YZK  1k = 1.3137 2k = 2.5180 3k = 13.5979 

 k2  YZXZ KK   4k = 1.9321 5k = ----- 6k = ----- 

 k3   YZXZ KMKMM 13
1

1    7k = 1.8759 8k = 3.2154 9k = 4.0919 

Note: k5, k6 do not exist because the solution of cubic equations provided no real roots.   

The formula for efficiency measurement is    
 TMSE

yMSE
Te r

ˆ
ˆ 

 
, where T̂ is any 

estimator under consideration. The steps followed for the simulation procedure are: 
Step 1: Draw a preliminary random sample S’ of size m = 80 from the population of 
size 200. 
Step 2: Again draw a random sub-sample of size n = 30 from S’  drawn in step 1. 
Step 3: Drop away 8 units randomly from each sample corresponding to variable Y. 
Step 4: Compute and impute the dropped units of Y with the help of existing and 
proposed imputation methods. 
Step 5: Obtain the estimates of the population mean for existing and proposed 
imputation methods.  
Step 6: Repeat the above steps (1 to 5) 50,000 times, which provides multiple sample 
based estimates 000,50321

ˆ,........,ˆ,ˆ,ˆ TTTT  .  

Step 7: The bias of T̂  is obtained by    



50000

1

ˆ
50000

1ˆ
i

i YTTB  .  

Step 8: The MSE of T̂  is obtained by    
250000

1

ˆ
50000

1ˆ 



i

i YTTMSE . 

Following the above procedure bias and MSE of the existing and proposed 
estimators are computed based on 50,000 repeated samples drawn by SRSWOR from 
population of N = 200. These computations and efficiencies with respect to 

ry  are 
given in Tables 5.2 and 5.3 respectively. 

Table 5.2. Bias and MSE of existing estimators 

Estimators Optimum Value Bias MSE Efficiency 

ry  ----- -0.3123 9.7252 1 

RATy  ----- -0.0996 7.8457 1.2395 

COMPy  2354.0 -0.0809 6.9649 1.3963 

1t  7646.01   -0.3983 5.8967 1.6492 
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Table 5.2. Bias and MSE of existing estimators  (cont.) 

Estimators Optimum Value Bias MSE Efficiency 
2t  7646.02   -0.1871 7.6655 1.2686 

3t  7646.03   -0.2151 3.2967 2.9499 

1FTT  

'
1k = 1.5206 -0.3878 4.8327 2.0123 
'
2k = 2.4505 -0.3736 5.1655 1.8827 
'
3k = 8.9456 -0.3961 4.9454 1.9665 

2FTT  

'
1k = 1.5206 -0.1071 6.3071 1.5419 
'
2k = 2.4505 -0.0329 6.1072 1.5924 
'
3k = 8.9456 -0.0980 6.0561 1.6058 

3FTT  

'
1k = 1.5206 -0.1826 1.8399 5.2857 
'
2k = 2.4505 -0.1944 2.2685 4.2870 
'
3k = 8.9456 -0.1818 1.9894 4.8885 

5.1. Numerical computation of proposed estimators  

From Section 4.0 we get computational values of conditions on the population 

given in Appendix A. 
YZ

XZYZ

K

KK
F


1 =  - 0.3104;  

3

2
2 M

M
F   =  0.4774; 

YZ

XZ

K

K
F 3 = 

1.3104; 
3

211
4 M

MMM
F




  
=  1.7570  and  

313

311
5

MMM

MMM
F




 = 1.1082    

Since 21 FF   holds,  k1  is better than  k2  for this data set. 
Again, 43 FF  , which implies  k1  is better than   3 k for the data set, and 53 FF  , 
which implies   3 k is better than  k2 for this data set.  Overall  k1 is the best 
estimator. 

Table 5.3. Bias and MSE of proposed chain type estimators 

Estimator k-optimum Bias MSE Efficiency 

 k1  

1k =1.3137 -0.0030 1.9169 5.0734 

2k =2.5180 0.0215 1.9328 5.0317 

3k =13.5979 -0.0038 1.9409 5.0106 

 k2  

4k =1.9321 0.3534 9.0303 1.0769 

5k = ----- ----- ----- ----- 

6k = ----- ----- ----- ----- 

 k3  

7k =1.8759 0.6036 8.6779 1.1206 

8k =3.2154 0.6215 8.6360 1.1261 

9k = 4.0919 0.5992 8.6621 1.1227 
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6. Almost unbiased imputation based chain type estimator 

By expression (3.2), (3.6) and (3.10), bias of  ki  ; i = 1, 2, 3 could be made zero 
up to the first order of approximation. This provides three equations: 

    01 2
2

2
2

3  YZZYXX KCMKCM                  (6.1) 
    01 2

22  XZYZZYXX KKCKC                  (6.2) 
and        01 2131

22
3   MKMKMCKCM XZYZZYXX               (6.3) 

These equations are cubic or more function of k-values to provide multiple values 
of k on which bias is zero. The best choice is to have lowest mean squared error. So, the 
proposed estimators bear property of reducing MSE along with being almost unbiased 
also. Many similar estimators existing in the literature do not control both bias and 
MSE at their optimal level but the proposed estimators have this property. For equation 
(6.1), we get two real values ''

1k = 0.3829 and ''
2k =6.5038 and from (6.2) and (6.3) all 

values are imaginary, viz. there are no real roots. These results are obtained using the 
data set on which the empirical study was performed. The term almost unbiased is used 
because biases of proposed estimates  ki  are obtained only up to the first order of 
approximation. The bias    02 kB  holds approximately not completely, therefore 
mentioned almost unbiased. 

Table 6.1. Almost unbiased comparison of chain type estimators 

k-values 
 k1   k2   k3  

Bias MSE Bias MSE Bias MSE 
''

1k = 0.3829 0.0005 4.4522 0.0002 15.4062 0.0002 14.4033 
''

2k =6.5038 0.0004 2.4831 0.0001 7.4559 0.0011 6.4898 

7. Discussion and conclusions 

In the present article some imputation procedures and their estimators of 
population mean are suggested and the expression of their bias, mean squared error 
and minimum mean squared error have been derived under large sample 
approximations up to the first order. An empirical study has been done over a data set 
and the bias and mean squared error have been calculated. Among the existing and 
proposed estimators, under Chain-based imputation strategies, i.e.  ki ; (i = 1, 2, 3), 
the estimator  k1 is found best. The general perception regarding imputation of 
missing data is that it increases the bias of the estimate when MSE is optimized. 
In contrary, a key feature of  ki ; (i = 1, 2, 3) is that there are many values of the 
parameter k on which MSE is optimal. One can choose the value with the lowest bias. 
Therefore, suggested strategies are bias-controlled at the optimum level of MSE. Apart 
from this, estimators are almost unbiased also over multiple choices of k-values. The 
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best selection is to have the lowest MSE by proposed strategies one can get almost 
unbiased estimator with lowest possible MSE. Thus, the suggested Chain-based 
imputation strategies  ki ; (i = 1, 2, 3) are useful and have advantage over other 
similar procedures. 
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Appendix  

A. Population (N = 200) 

Yi 45 50 39 60 42 38 28 42 38 35 
Xi 15 20 23 35 18 12 8 15 17 13 
Zi 16 22 26 37 19 14 11 17 18 15 
Yi 40 55 45 36 40 58 56 62 58 46 
Xi 29 35 20 14 18 25 28 21 19 18 
Zi 30 37 23 15 19 27 30 22 21 21 
Yi 36 43 68 70 50 56 45 32 30 38 
Xi 15 20 38 42 23 25 18 11 09 17 
Zi 18 22 39 44 25 26 19 13 12 20 
Yi 35 41 45 65 30 28 32 38 61 58 
Xi 13 15 18 25 09 08 11 13 23 21 
Zi 16 17 19 27 12 10 13 14 24 23 
Yi 65 62 68 85 40 32 60 57 47 55 
Xi 27 25 30 45 15 12 22 19 17 21 
Zi 28 26 33 46 17 15 23 20 19 23 
Yi 67 70 60 40 35 30 25 38 23 55 
Xi 25 30 27 21 15 17 09 15 11 21 
Zi 26 32 30 23 17 18 12 18 14 24 
Yi 50 69 53 55 71 74 55 39 43 45 
Xi 15 23 29 30 33 31 17 14 17 19 
Zi 17 24 30 33 35 32 19 16 19 21 
Yi 61 72 65 39 43 57 37 71 71 70 
Xi 25 31 30 19 21 23 15 30 32 29 
Zi 27 33 32 21 23 25 17 32 33 32 
Yi 73 63 67 47 53 51 54 57 59 39 
Xi 28 23 23 17 19 17 18 21 23 20 
Zi 30 25 24 20 22 20 21 23 26 22 
Yi 23 25 35 30 38 60 60 40 47 30 
Xi 07 09 15 11 13 25 27 15 17 11 
Zi 10 11 18 14 14 26 29 18 20 14 
Yi 57 54 60 51 26 32 30 45 55 54 
Xi 31 23 25 17 09 11 13 19 25 27 
Zi 32 25 27 19 12 13 14 20 27 28 
Yi 33 33 20 25 28 40 33 38 41 33 
Xi 13 11 07 09 13 15 13 17 15 13 
Zi 16 14 9 10 14 17 14 20 17 15 
Yi 30 35 20 18 20 27 23 42 37 45 
Xi 11 15 08 07 09 13 12 25 21 22 
Zi 13 18 11 8 12 16 14 26 24 23 
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Yi 37 37 37 34 41 35 39 45 24 27 
Xi 15 16 17 13 20 15 21 25 11 13 
Zi 16 18 19 16 22 18 23 26 14 14 
Yi 23 20 26 26 40 56 41 47 43 33 
Xi 09 08 11 12 15 25 15 25 21 15 
Zi 11 10 14 15 17 26 17 27 22 17 
Yi 37 27 21 23 24 21 39 33 25 35 
Xi 17 13 11 11 09 08 15 17 11 19 
Zi 19 16 13 12 12 11 17 20 13 20 
Yi 45 40 31 20 40 50 45 35 30 35 
Xi 21 23 15 11 20 25 23 17 16 18 
Zi 22 25 18 13 21 27 26 19 17 19 
Yi 32 27 30 33 31 47 43 35 30 40 
Xi 15 13 14 17 15 25 23 17 16 19 
Zi 17 16 16 14 17 28 25 18 18 22 
Yi 35 35 46 39 35 30 31 53 63 41 
Xi 19 19 23 15 17 13 19 25 35 21 
Zi 22 21 24 17 20 15 22 26 36 23 
Yi 52 43 39 37 20 23 35 39 45 37 
Xi 25 19 18 17 11 09 15 17 19 19 
Zi 26 20 20 19 13 12 17 18 21 22 

 
 


