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ABSTRACT 

In this paper, a new Poisson area-biased Ailamujia distribution has been formulated to 
analyse count data. It was created by combining two distributions: the Poisson and area-
biased Ailamujia distributions, using the compounding technique. Several distributional 
properties of the formulated distribution were studied. Its ageing characteristics were 
determined and expressed explicitly. A variety of diagrams were used to demonstrate the 
characteristics of the probability mass function (pmf) and the cumulative distribution 
function (cdf). The parameter of the developed model was estimated by employing the 
maximum likelihood estimation approach. Finally, two data sets were used to demonstrate 
the effectiveness of the investigated distribution. 

Key words: compound technique, Poisson distribution, area-biased Ailamujia distribution, 
reliability analysis, order statistics, maximum likelihood estimator. 
Mathematics subject classification: 60E05, 62E15. 

1. Introduction

In probability distributions, discrete distributions are very essential. Researches are
focused extensively in past years to build new discrete models for assessing count data. 
There are a variety of procedures for developing new distributions in the statistics 
literature. Extensions to classical distributions can be made by adding additional 
parameters to them. Transmutation, discretization of continuous distributions, 
Marshall-Olkin method, compounding, and other approaches were examples. Classical 
distributions frequently fail to offer an acceptable fit to observable data. This became 
imperative for researchers to investigate new probability models in order to overcome 
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the drawbacks of classical distributions. The compounding of distributions has 
attracted the attention of researchers over the last decade. The compounding approach 
is most commonly used when the parameter of one distribution is a random variable 
that follows another distribution, as in the case of count data. The compounding of 
distributions occurs when two separate distributions are combined. It makes no odds 
whether they are discrete or continuous in character. Based upon parent distribution, 
the resultant distribution from compounding may be continuous or discrete. 

The concept of weighted models can be traced back from Fisher (1935). Later on 
weighted models were briefly discussed by C.R. Rao (1964), when sample observations 
have an unequal probability of choosing. Thus, in such situation we add weights to the 
distribution to model bias.  

Suppose Y denotes random variable with pmf  yp , then pmf of weighted 
variable wY  is defined by 

     
   0;;  y
ywE

yfyw
yP   

where   kyyw  is a non–negative weight function. For 2k  we get area-biased 
distributions. 

In this study, we have used compounding approach to create a new distribution by 
combining Poisson and area-biased Ailamujia distribution. The newly established 
distribution is called “Poisson area-biased Ailamujia distribution”. Compounding 
distributions have extensive applications in several sectors of research such as 
biomedicine, insurance, engineering, and communications, among others. Researchers 
in this field have worked extensively, and they have made significant contributions to 
compounding research that has been tracked back to 1920. The inception of 
compounding models has been traced from Greenwood and Yule (1920). Sankaran 
(1970), Gerstenkorn (1993,1996), Mahmodi et al. (2010), Zamani and Ismail (2010), 
Gupta and Ong (2004), Shanker (2017), Shi(2012), Subhradev sen (2018), Giovani 
Carrara Rodrigues et al. (2018), Shanker et al. (2019), This study proposes a novel 
probability model known as the Poisson area-biased Ailamujia distribution, which is 
derived via the compounding process, and discusses its many mathematical aspects. 

2.   Definition of Poisson Area-Biased Ailamujia Distribution           

Consider a random variableY follows Poisson distribution i:e Y ~  P  and 
assume that the parameter of  P  follows area-biased Ailamujia distribution with 
parameter  . The distribution obtained by compounding Poisson with area-biased 
Ailamujia distribution follows a discrete distribution whose probability mass function 
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is denoted as PABAD  ,Y . The probability function of the obtained model PABAD
   is given by the following theorem. 

Theorem 2.1. The probability mass function of a discrete Poisson area-biased 
Ailamujia distribution PABAD  ,Y  is given as 

     
 yy
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Proof: The probability mass function of the discrete Poisson area-biased Ailamujia 
distribution PABAD  ,Y  may be obtained as 

IfY ~  P , the probability mass function (pmf) of the Poisson distribution is 
given by 
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As the parameter follows area-biased Ailamujia distribution with probability 
density function (pdf) 
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The following six graphs illustrate the behaviour of pmf of the Poisson area-biased 
Ailamujia distribution for different values of parameter 

 
 

The corresponding cumulative distribution function (cdf) of the discrete Poisson 
area-biased Ailamujia distribution is given as 
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The following six graphs illustrate the behaviour of cdf of the Poisson area-biased 
Ailamujia distribution for different values of parameter 

 

 

3.  Statistical Measures of Poisson Area-Biased Ailamujia Distribution 

In this section several statistical measures of the Poisson area-biased Ailamujia 
distribution has been studied. They include are moments, moment generating function 
(mgf) and probability generation function (pgf). 

3.1.  Moments of Poisson Area-Biased Ailamujia Distribution. 

The thr factorial moment of the Poisson area-biased Ailamujia distribution is 

denoted as  

r and can be obtained by 
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Substituting 𝑟 ൌ 1,2,3,4 in (3.1), the first four factorial moments can be obtained, 
and using the relationship between factorial moments and moments about origin, the 
first four moments about origin of the PABAD (2.1) are obtained as 
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The moments about mean of the Poisson area-biased Ailamujia distribution are 
obtained by using the relationship between moments about mean and moments about 
origin 
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Table1.  The numerical values of the mean, variance, skewness, kurtosis, coefficient of variation and 
index of dispersion for some values of parameter   

 

3.2.  Generating Functions (pgf, mgf, ch.f) of Poisson Area-Biased Ailamujia   
 Distribution 

In this section we study pgf, mgf and characteristics function (ch.f ) of the Poisson 
area-biased Ailamujia distribution. 

Theorem.3.2.1. If Y ~  PABAD then the probability generating function  tPY  is 
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Proof: The probability generating function (pgf) of the Poisson area-biased Ailamujia 
distribution is defined as  
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  2 1 2 C.V 

0.5 4.00 8.000 0.012 0.569 0.707 2.000 

0.6 3.333 6.111 0.013 0.647 0.741 1.833 

0.7 2.857 4.897 0.014 0.718 0.774 1.714 

0.8 2.500 4.062 0.015 0.783 0.806 1.625 

0.9 2.222 3.456 0.016 0.840 0.689 1.555 

1 2.00 3.000 0.017 0.887 0.836 1.500 

2 1.00 1.250 0.031 0.845 0.866 1.250 

3 0.666 0.777 0.048 -0.037 1.118 1.166 

4 0.500 0.562 0.064 -1.535 1.322 1.125 

5 0.400 0.440 0.078 -3.468 1.658 1.100 
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Theorem 3.2.2. If Y ~  PABAD  then the moment generating function  tMY  is  
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Proof: Since the moment generating function is a generalization of the probability 
generating function with the relationship given as 
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Similarly, the relationship between mgf and ch.f is defined as 
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4.  Reliability Measures of Poisson Area-Biased Ailamujia Distribution 

The reliability of the majority of the system decreases with time. So, the chance that 
a device that is operating until period "t" would fail after that period is referred to as the 
device's reliability. Suppose Y is a continuous random variable with cdf  yF ; 0y . 
Then its reliability function, which is also called survival function, is defined as 
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The survival function of the discrete Poisson area-biased Ailamujia distribution is 
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The following six graphs show the behaviour of the survival function of the Poisson 
area-biased Ailamujia distribution for different values of parameter. 

 
The hazard rate function is described as an indicator of the system's proclivity to 
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Substituting (2.2) and (4.1) into (4.2), we get 
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The following six graphs show the behaviour of the hazard function of the Poisson 
area-biased Ailamujia distribution for different values of parameter. 

    
The reverse hazard rate function denoted as rh is given by 
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The following six graphs shows the behaviour of reverse hazard function of the 

Poisson area-biased Ailamujia distribution for different values of parameter 
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5.  Recurrence Relation of Poisson Area-Biased Ailamujia Distribution. 

If  PABADY ~  then probability mass function of Y is  
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The recurrence relation of the Poisson area-biased Ailamujia distribution is given by 
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This represents the recurrence relation.  

6.  Method of Estimation 

6.1.  Method of Moments (MOM) 

Suppose nyyy ,...,, 21 denotes a random sample of size n from the Poisson area-
biased Ailamujia distribution. Now, to obtain sample moments, we replace population 
moments with sample moments.  
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Theorem 6.1.1. The MOM estimator̂  of   is positively biased. 

Proof: Let us suppose  y ˆ , where   0,
2

 u
u

u  so that   0
4

3
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u
u  

Then,  u  is strictly convex. Hence by Jensen’s inequality, we have 

                                             uEuE    
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Thus,   
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We obtain  
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Theorem 6.1.2. The MOM estimator ̂  of   is consistent and asymptotically normal  
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Proof:  Consistency: since  , then pY . Also, since    is a continuous 

function at u , then     Y ,   pˆ . 

Asymptotically normality: 

As 2 , then by applying central limit theorem we have 
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Finally, we have 
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The theorem follows, as a result of this asymptotic   0
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6.2.  Maximum Likelihood Estimation of Poisson Area-Biased Ailamujia   
  Distribution. 

Let nyyy ,...,, 21 denote a random sample of size n from the Poisson area-biased 
Ailamujia distribution. Then, its likelihood function is given by 
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The log likelihood function is obtained as 
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Differentiate w.r.t to  , we get 
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 , we get the required mle̂   
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7.  Application to real data sets 

In this section the goodness of fit of area-biased Poisson Ailamujia distribution 
(PABAD) has been proposed for two real count data sets. And we show that the 
established distribution perform better than size-biased Poisson Ailamujia distribution 
(PSBAD), Poisson Ailamujia distribution (PAD) and Poisson distribution (PD), 
Poisson Lindley distribution (PLD) and Poisson Shunkar distribution (PSD). 

Data set 1: The first data set represents the number of micronuclei after exposure at 
dose 4 Gy of  radiation, counted using the cytochalasim B method and available 
in reference (10).  

In order to compare the above distribution models, we consider the criteria like 
AIC (Akaike Information criterion), AICC (corrected Akaike information criterion), 
BIC (Bayesian information criterion). Among the above distributions, the better 
distribution is considered to have lesser values of AIC, AICC.  
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Table 7.1.  Number of micronuclei 

  
 

The following histogram represents the number of micronuclei for the proposed 
model when compared with other models. 
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Total 5002       5000.72       4999.76      4999.84      5001.12   4988.04   4975.2 

ML 
estimates 
(Standard 
Error) 

 
1.9739 
(0.031) 

1.4804 
(0.024) 

0.9869 
(0.0170) 

1.0131 
(0.014) 

1.3873 
(0.022) 

1.3197 
(0.018) 

Llog   6740.37 6752.8 6794.42 6767.91 6918.36 6931.20 
AIC  13482.3 13507.2 13590.2 13537.2 13836.72 13864.1 

AICC  13482.6 13507.8 13590.8 13537.82 13838.73 13864.41 
BIC  13489.5 13514.3 13597.4 13544.4 13845.25 13870.2 

2  
 11.25 32.98 105.07 92.73 281.35 273.89 

df  5 5 7 4 7 7 
p-value  0.1280 2.6*10-5 9.6*10-20 3.3*10-17 3.4*10-66 2.4*10-62 
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Data set 2: Data on the macroscopic fresh-water fauna in dredge samples from the 
bottom of water ber Lake is due to Juday (1942) and Thomas (1949). 

Table 7.2.  Microcalanus Nauplii 

Microcalnus 
Nauplii 

Observed   
frequency 

Expected frequency 

PABAD PSBAD PAD PD PLD     PSD 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

0 
2 
4 
3 
5 
8 

16 
13 
12 
13 
15 
15 
9 
9 
7 
4 
4 
6 
2 
0 
2 
1 
0 

1.13 
3.17 
5.60 
7.81 
9.76 

11.07 
11.67 
11.76 
11.42 
10.75 

9.86 
8.86 
7.82 
6.71 
5.82 
4.93 
4.13 
3.43 
2.83 
2.31 
1.88 
1.51 
1.21 

2.03 
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10.86 
10.35 
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6.20 
5.40 
4.66  
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3.40 
2.88 
2.42 
2.03 
1.70 
1.40 

4.46 
7.38 
9.16 
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10.46 
10.39 
10.03 
9.49 
8.83 
8.12 
7.40 
6.68 
5.99 
5.34 
4.79 
4.18 
3.68 
3.22 
2.81 
2.45 
2.13 
1.85 
1.60 

0.02 
0.10 
0.47 
1.50 
3.60 
6.10 

11.05 
15.15 
18.18 
19.39 
18.62 
16.24 
12.99 
9.60 
6.59 
4.21 
2.53 
1.43 
0.77 
0.39 
0.19 
0.09 
0.04 

7.09 
8.67 
9.56 
9.94 
9.97 
9.71 
9.29 
8.75 
8.15 
7.57 
6.88 
6.25 
5.65 
5.07 
4.54 
4.05 
3.60 
3.19 
2.82 
2.48 
2.18 
1.9 
1.68 

 

   7.79 
   9.4 
10.30 
10.58 
10.49 
10.13 
9.60 
8.96 
8.26 
7.54 
6.83 
6.14 
5.50 
4.90 
4.34 
3.83 
3.37 
2.96 
2.59 
2.26 
1.97 
1.70 

   1.48 

Total  150    145.52      143.63 140.41 149.98 138.93    140.89 

ML 
estimates 
(Standar
d Error) 

 

0.2083 
(0.0101) 

0.1562 
(0.008) 

0.1041 
(0.006) 

9.6000 
(0.2529) 

0.1907 
(0.0120) 

0.2024 
(0.0125) 

Llog  435.85 443.80 459.20 441.62 467.25 461.16 
AIC 873.71 889.60 920.41 885.24 936.51 924.33 

AICC 873.74 889.63 920.44 885.27 936.53 924.36 
BIC 876.72 892.61 923.42 888.25 939.52 927.34 

2  
23.38 32.45 57.54 109.12 75.22 71.37 

df 11          12 11 9   13  12 
p-value 0.31875 0.03275 3.0*10-5 1.3*10-15  9.5*10-8 4.0*10-7 
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The following histogram represents the number of micronuclei for the proposed model 
when compared with other models. 

           
 
 

From Table 1 and 2, it has been observed that the discrete Poisson area-biased 

Ailamujia distribution have the lesser AIC, AICC, llog2 , BIC and 
2  values along 

with higher p-values as compared to size-biased Poisson Ailamujia distribution 
(PSBAD), Poisson Ailamujia distribution (PAD), Poisson distribution (PD), Poisson 
Lindley distribution (PLD) and Poisson Shanker distribution (PSD). It is evident from 
the above arguments that the proposed distribution provides better fit than the 
compared ones. 

8.  Concluding Remarks  

The aim of this study is to use compounding to develop a new distribution for count 
data termed the “Poisson area-biased Ailamujia distribution”. Different distributional 
features of the newly formed distribution have been obtained and analysed. The 
parameter of the proposed distribution has been estimated by the known method of 
maximum likelihood estimation. Eventually, the model's efficiency was assessed using 
two count data sets, and it was revealed that the Poisson area-biased Ailamujia 
distribution provides an appropriate fit for the two count data sets. 
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