Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


2017 |

Article title

Allelopathic activity of the Baltic picocyanobacterium Synechocystis sp.

Content

Title variants

Languages of publication

EN

Abstracts

EN
Allelopathic compounds produced by picocyanobacteria could affect the growth and development of biological systems. The main aim of this study was to investigate the influence of unknown allelochemicals obtained from picocyanobacterium Synechocystis sp. BA-153 in monocultures and in mixed cultures. In this study, we demonstrated that Synechocystis sp. BA-153 caused allelopathic effects against other strains of picocyanobacteria. It was found that Synechocystis sp. BA-121 was strongly inhibited by Synechocystis sp. BA-153 in both the mixed culture and cell-free filtrates. On the other hand, the addition of live picocyanobacterial culture of Synechocystis sp. BA-153 stimulated the growth of Synechocystis sp. BA-122. These results showed the allelopathic activity of Synechocystis sp. BA-153, which can cause either the inhibition or stimulation of growth of selected picoplanktonic cyanobacteria.

Contributors

  • Institute of Oceanography, University of Gdansk, Av. Piłsudskiego 46, 81-378 Gdynia, Poland
  • Institute of Oceanography, University of Gdansk, Av. Piłsudskiego 46, 81-378 Gdynia, Poland
author
  • Institute of Oceanography, University of Gdansk, Av. Piłsudskiego 46, 81-378 Gdynia, Poland
author
  • Institute of Oceanography, University of Gdansk, Av. Piłsudskiego 46, 81-378 Gdynia, Poland

References

  • Anderson, D.M., Cembella, A.D., Hallegraeff, G.M. (2012). Progress in understanding harmful algal blooms: Paradigm shifts and new technologies for research, monitoring, and management. Annual Review of Marine Science, 4, 143–176. https://doi.org/10.1146/annurev-marine-120308-081121
  • Berry, J.P., Gantar, M., Perez, M.H., Berry, G., Noriega, F.G. (2008). Cyanobacterial toxins as allelochemicals with potential applications as algaecides, herbicides and insecticides. Marine Drugs, 6, 117–146. https://doi.org/10.3390/md20080007
  • Burja, A.M., Banaigs, B., Abou-Mansour, E., Burgess, J.G., Wright, P.C. (2001). Marine cyanobacteria - a prolific source of natural products. Tetrahedron, 57, 9347–9377. https://doi.org/10.1016/S0040-4020(01)00931-0
  • Costa, M.S., Costa, M., Ramos, V., Leão, P.N., Barreiro, A., Vasconcelos, V., Martins, R. (2015). Picocyanobacteria from a clade of marine cyanobium revealed bioactive potential against microalgae, bacteria, and marine invertebrates. Journal of Toxicology and Environmental Health, Part A, 78(7), 432–442. https://doi.org/10.1080/15287394.2014.991466
  • Fistarol, G.O., Legrand, C., Selander, E., Hummert, C., Stolte, W., Granéli, E. (2004). Allelopathy in Alexandrium spp.: effect on a natural plankton community and on algal monocultures. Aquatic Microbial Ecology, 35, 45–56. https://doi.org/10.3354/ame035045
  • Gross, E.M. (2003). Allelopathy of aquatic autotrophs. Critical Reviews in Plant Sciences, 22, 313–339. https://doi.org/10.1080/713610859
  • Guillard, R.R.L. (1975). Culture of phytoplankton for feeding marine invertebrates. In: W.L. Smith, M.H. Chanley (eds.), Culture of Marine Invertebrate Animals. New York, USA: Plenum Press, 26–60.
  • Hamilton, T.J., Paz-Yepes, J., Morrison, R., Palenik, A.B., Tresguerres, M. (2014). Exposure to bloom-like concentrations of two marine Synechococcus cyanobacteria (strains CC9311 and CC9902) differentially alters fish behaviour. Conservation Physiology, 2(1), cou020. https://doi.org/10.1093/conphys/cou020
  • Inderjit, K., Dakshini, M.M. (1994). Algal allelopathy. The Botanical Review, 60(2), 182–196. https://doi.org/10.1007/BF02856576
  • Issa, A.A. (1999). Antibiotic production by the cyanobacteria Oscillatoria angustissima and Calothrix parietina. Environmental Toxicology and Pharmacology, 8, 33–37. https://doi.org/10.1016/S1382-6689(99)00027-7
  • Ji, X.Q., Han, X.T., Zheng, L., Yu, Z.M., Yang, B.J., Zou, J.Z. (2011). Allelopathic interactions between Prorocentrum micans and Skeletonema costatum or Karenia mikimotoi in laboratory cultures. Chinese Journal of Oceanology and Limnology, 29(4), 840–848. https://doi.org/10.1007/s00343-011-0512-x
  • Latała, A., Jodłowska, S., Pniewski, F. (2006). Culture collection of Baltic Algae (CCBA) and characteristic of some strains by factorial experiment approach. Archiv für Hydrobiologie, 165, Algological Studies, 122, 137–154. https://doi.org/10.1127/1864-1318/2006/0122-0137
  • Leão, P.N., Engene, N., Antunes, A., Gerwick, W.H., Vasconcelos, V. (2012). The chemical ecology of cyanobacteria. Natural Product Reports, 29, 372–391. https://doi.org/10.1039/C2NP00075J
  • Legrand, C., Rengefors, K., Fistarol, G.O., Granéli, E. (2003). Allelopathy in phytoplankton – biochemical, ecological and evolutionary aspects. Phycologia, 42(4), 406–419. https://doi.org/10.2216/i0031-8884-42-4-406.1
  • Liu, J., Van Rijssel, M., Yang, W., Peng, X., Lü, S., Wang, Y., Chen, J., Wang, Z., Qi, Y. 2010. Negative effects of Phaeocystis globosa on microalgae. Chinese Journal of Oceanology and Limnology, 28(4), 911–916. https://doi.org/10.1007/s00343-010-9061-y
  • Marie, D., Simon, N., Vaulot, D. (2005). Phytoplankton cell counting by flow cytometry. Algal Culturing Techniques, 1, 253–267. https://doi.org/10.1016/B978-012088426-1/50018-4
  • Martins, R.F., Ramos, M.F. Herfindal, L. Sousa, J.A., Skærven, K., Vasconcelos V.M. (2008). Antimicrobial and cytotoxic assessment of marine cyanobacteria – Synechocystis and Synechococcus. Marine Drugs, 6(1), 1–11.
  • Mazur-Marzec, H., Błaszczyk, A., Felczykowska, A., Hohlfeld, N., Kobos, J., Toruńska-Sitarz, A., Devi, P., Montalvão, S., D’souza, L., Tammela, P., Mikosik, A., Bloch, S., Nejman-Faleńczyk, B., Węgrzyn, G. (2015). Baltic cyanobacteria – a source of biologically active compounds. European Journal of Phycology, 50, 343–360. https://doi.org/10.1080/09670262.2015.1062563
  • Molisch, H. (1937). Der einfluss einer pflanze auf die andere – Allelopathie. Jena: G. Fisher, Verlag, pp. 106. [In Polish]
  • Paz-Yepes, J., Brahamsha, B., Palenik, B. (2013). Role of a Microcin-C-like biosynthetic gene cluster in allelopathic interactions in marine Synechococcus. Proceedings of the National Academy of Sciences, 110, 12030–12035. https://doi.org/10.1073/pnas.1306260110
  • Poniedziałek, B., Rzymski, P., Kokociński, M., Karczewski, J. (2015). Toxic potencies of metabolite(s) of noncylindrospermopsin producing Cylindrospermopsis raciborskii isolated from temperate zone in human white cells. Chemosphere 120, 608-14. https://doi.org/10.1016/j.chemosphere.2014.09.067
  • Rice, E.L. (1979). Allelopathy - an update. Botanical Review, 45, 15–109. https://doi.org/10.1007/BF02869951
  • Rzymski, P., Poniedziałek, B., Kokociński, M., Jurczak, T., Lipski, D., Wiktorowicz, K. (2014). Interspecific allelopathy in cyanobacteria: Cylindrospermopsin and Cylindrospermopsis raciborskii effect on the growth and metabolism of Microcystis aeruginosa. Harmful. Algae, 35, 1–8. https://doi.org/10.1016/j.hal.2014.03.002
  • Schagerl, M., Unterrieder, I., Angeler, D.G. (2002). Allelopathy among Cyanoprokaryota and other algae originating from lake Neusiedlersee (Austria). International Review of Hydrobiology, 87, 365–374. https://doi.org/10.1002/1522-2632(200207)87:4<365::AID-IROH365>3.0.CO;2-B
  • Sorokin, Y.I., Zakuskina, O.Y. (2010). Features of the Comacchio ecosystem transformed during persistent bloom of picocyanobacteria. Journal of Oceanography, 66(3), 373–387. https://doi.org/10.1007/s10872-010-0033-9
  • Suikkanen, S., Fistarol, G.O., Granéli, E. (2004). Allelopathic effects of the Baltic cyanobacteria Nodularia spumigena, Aphanizomenon flos-aquae and Anabaena lemmermannii on algal monocultures. Journal of Experimental Marine Biology and Ecology, 308, 85–101. https://doi.org/10.1016/j.jembe.2004.02.012
  • Suikkanen, S., Fistarol, G.O., Granéli, E. (2005). Effects of cyanobacterial allelochemicals on a natural plankton community. Marine Ecology Progress Series, 287, 1–9. https://doi.org/10.3354/meps287001
  • Suikkanen, S., Engström-Öst, J., Jokela, J., Sivonen, K., Viitasalo, M. (2006). Allelopathy of Baltic Sea cyanobacteria: no evidence for the role of nodularin. Journal of Plankton Research, 28, 543–550. https://doi.org/10.1093/plankt/fbi139
  • Śliwińska, S., Jodłowska, S., Latała, A. (2011). Ekofizjologiczne i allelopatyczne właściwości pikoplanktonowej sinicy Synechococcus sp. Acta Geographica Silesiana, 1, 63–66. [In Polish]
  • Śliwińska-Wilczewska, S., Pniewski, F., Latała, A. (2016a). Allelopathic interactions between Synechococcus sp. and Nodularia spumigena under different light conditions. Allelopathy Journal, 37(2), 241–252.
  • Śliwińska-Wilczewska, S., Pniewski, F., Latała, A. (2016b). Allelopathic activity of the picocyanobacterium Synechococcus sp. under varied light, temperature and salinity conditions. International Review of Hydrobiology, 101, 1–9. https://doi.org/10.1002/iroh.201501819
  • Żak, A., Kosakowska, A. (2015). The influence of extracellular compounds produced by selected Baltic cyanobacteria, diatoms and dinoflagellates on growth of green algae Chlorella vulgaris. Estuarine, Coastal and Shelf Science, 167, 113–118. https://doi.org/10.1016/j.ecss.2015.07.038

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.ojs-doi-10_24917_25438832_2_10
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.