Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


2018 |

Article title

A brief review of microbial induced corrosion research

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
Korozja to ogół procesów prowadzących do niszczenia materiałów. Jednym z typów korozji jest korozja powodowana działaniem mikroorganizmów. Tak zwana Biokorozja w znacznym stopniu przyczynia się do degradacji konstrukcji metalowych i betonowych. Niektóre elementy tych konstrukcji, w szczególności te wystawione na działanie wody słodkiej, słonej, ścieków albo ziemi są szczególnie narażone na destrukcyjny wpływ mikrobów. Korozja mikrobiologiczna w największym stopniu dotyka przemysłu naftowo-gazowego, transportu wodnego i instalacji sanitarnych. Niebagatelny problem stanowi także, powodowana przez bakterie znajdujące się w jamie ustnej, korozja implantów dentystycznych. Mimo, że mechanizmy powodujące biokorozję nie są dobrze znane, walka z tym zjawiskiem jest przedmiotem badań instytutów na całym świecie. Ważnym zagadnieniem jest również projektowanie materiałów o zwiększonej odporności na biokorozję. Celem tego artykułu jest podsumowanie dotychczasowego stanu wiedzy o zjawisku biokorozji, przybliżenie obecnie stosowanych metod jej zapobiegania, oraz omówienie procesów chemicznych i biologicznych stojących za korozją indukowaną przez mikroorganizmy.

Contributors

  • Institute of Biology, Pedagogical University of Krakow, Podchorążych 2, 30-084 Kraków, Poland

References

  • Alexander, M., Bertron, A., De Belie, N. (2013). Performance of cement-based materials in aggressive aqueous environments. 1st ed. Ghent: Springer. https://doi.org/10.1007/978-94-007-5413-3
  • Aribo, S., Olusegun, S.J., Ibhadiyi, L.J., Oyetunji, A., Folorunso, D.O. (2017). Green inhibitors for corrosion protection in acidizing oilfield environment. Journal of the Association of Arab Universities for Basic and Applied Sciences, 24, 34–38. https://doi.org/10.1016/j.jaubas.2016.08.001
  • Bellige, S., Elias, L., Hegde, A.C (2015). Electrodeposition of Cu-Ni coatings for marine protection of mild steel. Innovations in Corrosion and Materials Science, 5(2), 127–131. https://doi.org/10.2174/235209490502151106195950
  • Błaszczyk, M.K. (2010). Mikrobiologia środowisk. Warszawa: Wydawnictwo PWN, pp. 93–134. [In Polish]
  • Bondarenko, O., Juganson, K., Ivask, A., Kasemets, K., Mortimer, M., Kahru, A. (2013). Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Archives of Toxicology, 87(7), 1181–1200. https://doi.org/10.1007/s00204-013-1079-4
  • Cayford, B.I., Jiang, G., Keller, J., Tyson, G., Bond, P.L. (2017). Comparison of microbial communities across sections of a corroding sewer pipe and the effects of wastewater flooding. Biofouling, 33(9), 780–792. https://doi.org/10.1080/08927014.2017.1369050
  • Dec, W., Mosiałek, M., Socha, R.P., Jaworska-Kik, M., Simka, W., Michalska, J. (2016). The effect of sulphate-reducing bacteria biofilm on passivity and development of pitting on 2205 duplex stainless steel. Electrochimica Acta, 212, 225–236. https://doi.org/10.1016/j.electacta.2016.07.043
  • Diaz, I., Pacha-Olivenza, M.Á., Tejero, R., Aniuta, E., González-Martín, M.L., Escudero, M.L., Garcia-Alonso, M.C. (2018). Corrosion behavior of surface modifications on titanium dental implant. In situ bacteria monitoring by electrochemical techniques. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 106(3), 997–1009. https://doi.org/10.1002/jbm.b.33906
  • Goyns, A.M., Alexander, M. (2014). Performance of various concretes in the Virginia experimental sewer over 20 years. Calcium Aluminates, Balkema, 573–584.
  • Grengg, C., Mittermayr, F., Ukrainczyk, N., Koraimann, G., Kienesberger, S., Dietzel, M. (2018). Advances in concrete materials for sewer systems affected by microbial induced concrete corrosion: A review. Water Research, 134(1), 341–352. https://doi.org/10.1016/j.watres.2018.01.043
  • Gu, J.D. (2003). Microbiological deterioration and degradation of synthetic polymeric materials: recent research advances. International Biodeterioration & Biodegradation, 52(2), 69–91. https://doi.org/10.1016/S0964-8305(02)00177-4
  • Gu, J.D., Ford, T.E., Mitchellm, R. (2011). Microbiological corrosion of concrete. Uhlig’s Corrosion Handbook, John Wiley & Sons, 451–460.
  • Gu, T. (2012). Can acid producing bacteria be responsible for very fast MIC pitting. Corrosion 2012, p. C2012-0001214, Salt Lake City: UT.
  • Gu, T., Zhao, K., Nešic, S. (2009). A practical mechanistic model for MIC based on a Biocatalytic Cathodic Sulfate Reduction (BCSR) theory. Corrosion 2009, p. 09390, Atlanta: GA.
  • Gutierrez, O., Sudarjanto, G., Ren, G., Ganigué, R., Jiang, G., Yuan, Z. (2014). Assessment of pH shock as a method for controlling sulfide and methane formation in pressure main sewer systems. Water Research, 48, 569–578. https://doi.org/10.1016/j.watres.2013.10.021
  • Hajipour, M.J., Fromm, K.M., Ashkarran, A.A., Jimenez de Aberasturi, D., de Larramendi, I.R., Rojo, T., Serpooshan, V., Parak, W.J., Mahmoudi, M. (2012). Antibacterial properties of nanoparticles. Trends in Biotechnology, 30(10), 499–511. https://doi.org/10.1016/j.tibtech.2012.06.004
  • Hamilton, W.A. (1985). Sulphate-reducing bacteria and anaerobic corrosion. Annual Review of Microbiology, 39, 195–217. https://doi.org/10.1146/annurev.mi.39.100185.001211
  • Herisson, J., Gueguen-Minerbe, M., Van Hullebusch, E.D., Chaussadent, T. (2014). Biogenic corrosion mechanism: Study of parameters explaining calcium aluminate cement durability. Calcium Aluminates, Balkema, 645–58.
  • Herisson, J., Guéguen-Minerbe, M., van Hullebusch, E.D., Chaussadent, T. (2017). Influence of the binder on the behaviour of mortars exposed to H2S in sewer networks: a long-term durability study. Materials and Structures, 50(1), 8. https://doi.org/10.1617/s11527-016-0919-0
  • Hunsucker, K.Z., Vora, G.J., Hunsucker, J.T., Gardner, H., Leary, D.H., Kim, S., Lin, B., Swain, G. (2018). Biofilm community structure and the associated drag penalties of a groomed fouling release ship hull coating. Biofouling, 34(2), 162–172. https://doi.org/10.1080/08927014.2017.1417395
  • Javed, M.A., Stoddart, P.R., Wade, S.A. (2015). Corrosion of carbon steel by sulphate reducing bacteria: initial attachment and the role of ferrous ions. Corrosion Science, 93, 48–57. https://doi.org/10.1016/j.corsci.2015.01.006
  • Jia, R., Yang, D., Xu, D., Gu, T. (2017). Electron transfer mediators accelerated the microbiologically influence corrosion against carbon steel by nitrate reducing Pseudomonas aeruginosa biofilm. Bioelectrochemistry, 118, 38–46. https://doi.org/10.1016/j.bioelechem.2017.06.013
  • Jia, R., Yang, D., Xu, J., Xu, D., Gu, T. (2017). Microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing Pseudomonas aeruginosa biofilm under organic carbon starvation. Corrosion Science, 127, 1–9. https://doi.org/10.1016/j.corsci.2017.08.007
  • Kim, J.S., Kuk, E., Yu, K.N., Kim, J.H, Park, S.J., Lee, H.J., Kim, S.H., Park, Y.K., Park, Y.H., Hwang, C.Y., Kim, Y.K., Lee, Y.S., Jeong, D.H., Cho,M.H. (2007). Antimicrobial effects of silver nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine, 3(1), 95–101. https://doi.org/10.1016/j.nano.2006.12.001
  • Koch, J.H., Brongers, M.P.H., Thompson, N.G., Virmani, Y.P., Payer, J.H. (2002). Corrosion cost and preventive strategies in the United States. Federal Highway Administration, Washington, DC, Report No. FHWA-RD 01-156.
  • Lee, J.S., Ray, R.I., Little, B.J., Duncan, K.E., Oldham, A.L., Davidova, I.A., Suflita, J.M. (2012). Sulphide production and corrosion in seawaters during exposure to FAME diesel. Biofouling, 28(5), 465–478. https://doi.org/10.1080/08927014.2012.687723
  • Li, L., Li, S., Qu, Q., Zuo, L., He, Y., Zhu, B., Li, C. (2017). Streptococcus sanguis biofilm architecture and its influence on titanium corrosion in enriched artificial saliva. Materials, 10(3), 255. https://doi.org/10.3390/ma10030255
  • Li, Q., Wang, J., Xing, X., Hu, W. (2018). Corrosion behavior of X65 steel in seawater containing sulfate reducing bacteria under aerobic conditions. Bioelectrochemistry, 122, 40–50. https://doi.org/10.1016/j.bioelechem.2018.03.003
  • Li, X., Duan, J., Xiao, H., Li, Y., Liu, H., Guan, F., Zhai, X. (2017a). Analysis of bacterial community composition of corroded steel immersed in Sanya and Xiamen Seawaters in China via method of illumina MiSeq Sequencing. Frontiers in Microbiology, 8, 1737. https://doi.org/10.3389/fmicb.2017.01737
  • Li, X., Jiang, G., Kappler, U., Bond, P. (2017b). The ecology of acidophilic microorganisms in the corroding concrete sewer environment. Frontiers in Microbiology, 8, 683. https://doi.org/10.3389/fmicb.2017.00683
  • Li, Y., Xu, D., Chen, C., Li, X., Jia, R., Zhang, D., Sand, W., Wang, F., Gu, T. (2018). Anaerobic microbiologically influenced corrosion mechanisms interpreted using bioenergetics and bioelectrochemistry: A review. Journal of Materials Science & Technology, 34(10), 1713–1718. https://doi.org/10.1016/j.jmst.2018.02.023
  • Liang, R., Aydin, E., Le Borgne, S., Sunner, J., Duncan, K.E., Suflita, J.M. (2017). Anaerobic biodegradation of biofuels and their impact on the corrosion of a Cu-Ni alloy in marine environments. Chemosphere, 195, 427–436. https://doi.org/10.1016/j.chemosphere.2017.12.082
  • Liu, H., Gu, T., Zhang, G., Wang, W., Dong, S., Cheng, Y., Liu, H. (2016). Corrosion inhibition of carbon steel in CO 2 -containing oilfield produced water in the presence of iron-oxidizing bacteria and inhibitors. Corrosion Science, 105, 149–160. https://doi.org/10.1016/j.corsci.2016.01.012
  • Long, M., Rack, H.J. (1998). Titanium alloys in total joint replacement – A materials science perspective. Biomaterials, 19(18), 1621–1639. https://doi.org/10.1016/S0142-9612(97)00146-4
  • Lv, B., Cui, Y., Tian, W., Feng, D. (2017). Composition and influencing factors of bacterial communities in ballast tank sediments: Implications for ballast water and sediment management. Marine Environmental Research, 132, 14–22. https://doi.org/10.1016/j.marenvres.2017.10.005
  • Narenkumar, J., Parthipan, P., Madhavan, J., Murugan, K., Marpu, S.B., Suresh, A.K., Rajaskear, A. (2018). Bioengineered silver nanoparticles as potent anti-corrosive inhibitor for mild steel in cooling towers. Environmental science and pollution research international, 25(6), 5412–5420. https://doi.org/10.1007/s11356-017-0768-6
  • Narenkumar, J., Parthipan, P., Usha Raja Nanthini, A., Benelli, G., Murugan, K., Rajasekar, A. (2017). Ginger extract as green biocide to control microbial corrosion of mild steel. Three Biotech, 7(2), 133. https://doi.org/10.1007/s13205-017-0783-9
  • Narenkumar, J., Ramesh, N. & Rajasekar, A. (2018). Control of corrosive bacterial community by bronopol in industrial water system. Three Biotech, 8(1), 55. https://doi.org/10.1007/s13205-017-1071-4
  • Navarro, M., Michiardi, A., Casta~no, O., Planell, J.A. (2008). Biomaterials in orthopedics. Journal of the Royal Society Interface, 5(27), 1137–1158. https://doi.org/10.1098/rsif.2008.0151
  • Punniyakotti, P., Jayaraman, N., Punniyakotti, E., Parameswaran, S.P., Ayyakkannu, U.R.N., Akhil, A., Aruliah, R. (2017). Neem extract as a green inhibitor for microbiologically influenced corrosion of carbon steel API 5LX in a hypersaline environments. Journal of Molecular Liquids, 240, 121–127. https://doi.org/10.1016/j.molliq.2017.05.059
  • Raja, P.B., Sethuraman, M.G. (2008). Inhibitive effect of black pepper extract on the sulphuric acid corrosion of mild steel. Materials Letters, 62(17–18), 2977–2979. https://doi.org/10.1016/j.matlet.2008.01.087
  • Schultz, M.P., Bendick, J.A., Holm, E.R., Hertel, W.M. (2011). Economic impact of biofouling on a naval surface ship. Biofouling, 27, 87–98. https://doi.org/10.1080/08927014.2010.542809
  • Schweitzer, P.A.P.E. (2010). Fundamentals of corrosion – Mechanisms, Causes and Preventative Methods. CRC Press, p. 25.
  • Sharma, M.A.D., Liu, T., Pinnock, T., Cheng, F., Voordouw, G. (2017). Biocide-mediated corrosion of coiled tubing. Public Library of Science one, 12(7), e0181934. https://doi.org/10.1371/journal.pone.0181934
  • Sherar, B.W.A., Power, I.M., Keech, P.G., Mitlin, S., Southam, G., Shoesmith, D.W. (2011). Characterizing the effect of carbon steel exposure in sulfide containing solutions to microbially induced corrosion. Corrosion Science, 53(3), 955–960. https://doi.org/doi.org/10.1016/j.corsci.2010.11.027
  • Shuler, M.L., Kargi, F. (2002). Bioprocess engineering. New York: Prentice Hall.
  • Sondi, I., Salopek-Sondi, B. (2004). Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. Journal of Colloid and Interface Science, 275(1), 177–182. https://doi.org/10.1016/j.jcis.2004.02.012
  • Souza, J.C.M., Mota, R.R.C., Sordi, M.B., Passoni, B.B., Benfatti, C.A.M., Magin, R.S. (2016). Biofilm formation on different materials used in oral rehabilitation. Brazilian Dental Journal, 27(2), 141–147. https://doi.org/10.1590/0103-6440201600625
  • Swain, G.W. (2010). The importance of ship hull coatings and maintenance as drivers for environmental sustainability. Proceedings of Ship Design and Operation for Environmental Sustainability, London: Royal Institute of Naval Architects – Ship Design and Operation for Environmental Sustainability – Papers, 55–62.
  • Thauer, R.K., Stackebrandt, E., Hamilton, W.A. (2007). Energy metabolism phylogeneticdiversity of sulphate-reducing bacteria, in: Sulphate-Reducing Bacteria: Environmental and Engineered Systems. Cambridge: Cambridge University Press, pp. 1–27. https://doi.org/10.1017/CBO9780511541490.002
  • Videla, H.A. (1986). Corrosion of mild steel induced by sulfate-reducing bacteria. A study of passivity breakdown by biogenic sulphides. Texas: NACE-8 International Corrosion Conference Series, NACE International, Houston, 162–171.
  • Videla, H.A., Herrera, L.K., Edyvean, R.G.J. (2005). An updated overview of SRB induced corrosion and protection of carbon steel. Corrosion, NACE International, Paper No.488, Texas: Houston.
  • Vincke, E., Wanseele, E. Van, Monteny, J., Beeldens, A., Belie, N. De, Taerwe, L., Gemert, D. Van, Verstraete, W. (2002). Influence of polymer addition on biogenic sulfuric acid attack of concrete. International Biodeterioration & Biodegradation, 49(4), 283–292. https://doi.org/10.1016/S0964-8305(02)00055-0
  • Wan, H., Song, D., Zhang, D., Du, C., Xu, D., Liu, Z., Ding, D., Li, X. (2018). Corrosion effect of Bacillus cereus on X80 pipeline steel in a Beijing soil environment. Bioelectrochemistry, 121, 18–26. https://doi.org/10.1016/j.bioelechem.2017.12.011
  • Wang, H., Ju, L.K., Castaneda, H., Cheng, G., Newby, B.M.Z. (2014). Corrosion of carbon steel C1010 in the presence of iron oxidizing bacteria Acidithiobacillus ferrooxidans. Corrosion Science, 89, 250–257. https://doi.org/10.1016/j.corsci.2014.09.005
  • World Health Organisation (2000). Hydrogen Sulfide, in: Air Quality Guidelines for Europe. Copenhagen, p. 7.
  • Xu, D., Gu, T. (2011). Bioenergetics Explains When and Why More Severe MIC Pitting by SRB Can Occur. Corrosion/2011, NACE International, PaperNo. 11426, Texas: Houston.
  • Xu, D., Li, Y., Gu, T. (2016). Mechanistic modeling of biocorrosion caused by biofilms of sulfate reducing bacteria and acid producing bacteria. Bioelectrochemistry, 110, 52–58. https://doi.org/10.1016/j.bioelechem.2016.03.003
  • Xu, D., Li, Y., Song, F., Gu, T. (2013). Laboratory investigation of microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing bacterium Bacillus licheniformis. Corrosion Science, 77, 385–390. https://doi.org/10.1016/j.corsci.2013.07.044
  • Yuan, L., Gao, T., He, H., Jiang, F.L., Liu, Y. (2017). Silver ion-induced mitochondrial dysfunction via a nonspecific pathway. Toxicology Research, 6(5), 621–630. https://doi.org/10.1039/C7TX00079K
  • Zhang, P., Xu, D., Li, Y., Yang, K., Gu, T. (2015). Electron mediators accelerate the microbiologically influenced corrosion of 304 stainless steel by the Desulfovibrio vulgaris biofilm. Bioelectrochemistry, 101, 14–21. https://doi.org/10.1016/j.bioelechem.2014.06.010

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.ojs-doi-10_24917_25438832_3_12
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.