Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


2019 | 180-190

Article title

Cyanobacteria and cyanometabolites used in the pharmaceutical and medical industry

Content

Title variants

Languages of publication

EN

Abstracts

EN
Związki bioaktywne sinic wykazują różnorodne właściwości, które potencjalnie mogą być wykorzystane w wielu sektorach przemysłu. W artykule tym szczególny nacisk położono na wykorzystanie sinic i ich cyjanometabolitów, zarówno w przemyśle farmaceutycznym, jak i medycznym. Scharakteryzowano związki wyizolowane ze szczepów sinic, które można stosować do wytwarzania leków o działaniu przeciwwirusowym, przeciwgrzybiczym, przeciwnowotworowym, przeciwdrobnoustrojowym oraz przeciwbakteryjnym. Pokazano również pozytywne aspekty hodowli sinic i możliwości ich komercyjnego wykorzystania.

Year

Pages

180-190

Physical description

Dates

published
2019-12-31

Contributors

  • Institute of Oceanography, University of Gdansk, Av. Piłsudskiego 46, 81-378 Gdynia, Poland

References

  • AlgaeBase https://www.algaebase.org/. 1996–2019 M.D. Guiry.
  • Almeida, J., Freitas, M., Cruz, S., Leão, P., Vasconcelos, V., Cunha, I. (2015). Acetylcholinesterase in biofouling species: characterization and mode of action of cyanobacteria-derived antifouling agents. Toxins, 7, 2739–2756. https://doi.org/10.3390/toxins7082739
  • Berry, J.P., Gantar, M., Perez, M.H., Berry, G., Noriega, F.G. (2008). Cyanobacterial toxins as allelochemicals with potential applications as algaecides, herbicides and insecticides. Marine Drugs, 15, 117–146. https://doi.org/10.3390/md20080007
  • Blom, J.F., Brütsch, T., Barbaras, D., Bethuel, Y., Locher, H.H., Hubschwerlen, C., Gademann, K. (2006). Potent algicides based on the cyanobacterial alkaloid nostocarboline. Organic Letters, 8(4), 737–740. https://doi.org/10.1021/ol052968b
  • Bokesch, H.R., O'Keefe, B.R., McKee, T.C., Pannell, L.K., Patterson, G.M., Gardella, R.S., Boyd, M.R. (2003). A potent novel anti-HIV protein from the cultured cyanobacterium Scytonema varium. Biochemistry, 42(9), 2578–2584. https://doi.org/10.1021/bi0205698
  • Burja, A.M., Banaigs, B., Abou-Mansour, E., Burgess, J.G., Wright, P.C. (2001). Marine cyanobacteria – a prolific source of natural products. Tetrahedron, 57(46), 9347–9377. https://doi.org/10.1016/S0040-4020(01)00931-0
  • Costa, M., Costa-Rodrigues, J., Fernandes, M.H., Barros, P., Vasconcelos, V., Martins, R. (2012). Marine cyanobacteria compounds with anticancer properties: A review on the implication of apoptosis. Marine Drugs, 10(10), 2181–2207. https://doi.org/10.3390/md10102181
  • Costa, M., Garcia, M., Costa-Rodrigues, J., Costa, M.S., Ribeiro, M.J., Fernandes, M.H., Martins, R. (2014). Exploring bioactive properties of marine cyanobacteria isolated from the Portuguese Coast: High potential as a source of anticancer compounds. Marine Drugs, 12, 98–114. https://doi.org/10.3390/md12010098
  • El-Baky, H.H.A. (2003). Over production of phycocyanin pigment in blue green alga Spirulina sp. and it’s inhibitory effect on growth of Ehrlich ascites carcinoma cells. Journal of Medical Science, 3(4), 314–324. https://doi.org/10.3923/jms.2003.314.324
  • Falch, B.S., König, G.M., Wright, A.D., Sticher, O., Angerhofer, C.K., Pezzuto, J.M., Bachmann, H. (1995). Biological activities of cyanobacteria: evaluation of extracts and pure compounds. Planta Medica, 61(04), 321–328. https://doi.org/10.1055/s-2006-958092
  • Garima, A.C., Goyal, P., Kaushik, P. (2013). Antibacterial and anticandidal screening of extracellular and intracellular extracts of Phormedium, a Cyanobacterium. International Journal of Chemical and Life Sciences, 2, 1107–1111.
  • Głowacka, J., Waleron, M., Szefel-Markowska, M., Łojkowska, E., Waleron, K. (2007). Cyanobacteria – source of biologically active compounds. Biotechnologia, 4(79), 95–112. [In Polish]
  • Gupta, V., Ratha, S.K., Sood, A., Chaudhary, V., Prasanna, R. (2013). New insights into the biodiversity and applications of cyanobacteria (blue-green algae) – prospects and challenges. Algal Research, 2(2), 79–97. https://doi.org/10.1016/j.algal.2013.01.006
  • Gustafson, K.R., Cardellina, J.H., Fuller, R.W., Weislow, O.S., Kiser, R.F., Snader, K.M., Patterson, G.M.L., Boyd, M.R. (1989). AIDS-antiviral sulfolipids from cyanobacteria (blue-green algae). JNCI: Journal of the National Cancer Institute, 81(16), 1254–1258.
  • Gutiérrez, M., Suyama, T.L., Engene, N., Wingerd, J.S., Matainaho, T., Gerwick, W.H. (2008). Apratoxin D, a potent cytotoxic cyclodepsipeptide from Papua New Guinea collections of the marine cyanobacteria Lyngbya majuscula and Lyngbya sordida. Journal of Natural Products, 71(6), 1099–1103. https://doi.org/10.1021/np800121a
  • Hagmann, L., Jüttner, F. (1996). Fischerellin A, a novel photosystem-II-inhibiting allelochemical of the cyanobacterium Fischerella muscicola with antifungal and herbicidal activity. Tetrahedron Letters, 37(36), 6539–6542. https://doi.org/10.1016/0040-4039(96)01445-1
  • Harada, K.I., Suomalainen, M., Uchida, H., Masui, H., Ohmura, K., Kiviranta, J., Niku-Paavola, M.L., Ikemoto, T. (2000). Insecticidal compounds against mosquito larvae from Oscillatoria agardhii strain 27. Environmental Toxicology: An International Journal, 15(2), 114–119. https://doi.org/10.1002(SICI)1522-7278(2000)15:23.0.CO;2-P
  • Imhoff, J.F., Labes A., Wiese, J. (2011). Bio-mining the microbial treasures of the ocean: new natural products. Biotechnology Advances, 29, 468–482. https://doi.org/10.1016/j.biotechadv.2011.03.001
  • Ishida, K., Nakagawa, H., Murakami, M. (2000). Microcyclamide, a cytotoxic cyclic hexapeptide from the cyanobacterium Microcystis aeruginosa. Journal of Natural Products, 63(9), 1315–1317. https://doi.org/10.1021/np000159p
  • Ishimi, Y., Sugiyama, F., Ezaki, J., Fujioka, M., Wu, J. (2006). Effects of Spirulina, a blue-green alga, on bone metabolism in ovariectomized rats and hindlimb-unloaded mice. Bioscience, Biotechnology, and Biochemistry, 70(2), 363–368. https://doi.org/10.1271/bbb.70.363
  • Kalemkerian, G.P., Ou, X., Adil, M.R., Rosati, R., Khoulani, M.M., Madan, S.K., Pettit, G.R. (1999). Activity of dolastatin 10 against small-cell lung cancer in vitro and in vivo: induction of apoptosis and bcl-2 modification. Cancer Chemotherapy and Pharmacology, 43(6), 507–515. https://doi.org/10.1007/s002800050931
  • Kim, J.D. (2006). Screening of cyanobacteria (blue-green algae) from rice paddy soil for antifungal activity against plant pathogenic fungi. Mycobiology, 34(3), 138–142. https://doi.org/10.4489/MYCO.2006.34.3.138
  • Klasik, S., Zych, M., Kaczmarczyk-Sedlak, I. (2010). Cyanobacteria (Cyanophyta)–classification, structure of the cell and significance; Spirulina platensis and her therapeutic significance for the human’s body. Medycyna Rodzinna, 4, 120–123.
  • Kreitlow, S., Mundt, S., Lindequist, U. (1999). Cyanobacteria – a potential source of new biologically active substances. Journal of Biotechnology, 70(1–3), 61–63. https://doi.org/10.1016/S0168-1656(99)00058-9
  • Lam, K.S. (2007). New aspects of natural products in drug discovery. Trends in Microbiology, 15(6), 279–289. https://doi.org/10.1016/j.tim.2007.04.001
  • Larsen, L.K., Moore, R.E., Patterson, G.M. (1994). β-Carbolines from the blue-green alga Dichothrix baueriana. Journal of Natural Products, 57(3), 419–421. https://doi.org/10.1021/np50105a018
  • Lau, A.F., Siedlecki, J., Anleitner, J., Patterson, G.M., Caplan, F.R., Moore, R.E. (1993). Inhibition of reverse transcriptase activity by extracts of cultured blue-green algae (Cyanophyta). Planta Medica, 59(2), 148–151. https://doi.org/10.1055/s-2006-959631
  • Leão P.N., Engene, N., Antunes, A., Gerwick, W.H., Vasconcelos, V. (2012). The chemical ecology of cyanobacteria. Natural Product Reports, 29, 372–391. https://doi.org/10.1039/c2np00075j
  • Linington, R.G., Edwards, D.J., Shuman, C.F., McPhail, K.L., Matainaho, T., Gerwick, W.H. (2008). Symplocamide A, a potent cytotoxin and chymotrypsin inhibitor from the marine cyanobacterium Symploca sp. Journal of Natural Products, 71(1), 22–27. https://doi.org/10.1021/np070280x
  • Liu, Y., Law, B.K., Luesch, H. (2009). Apratoxin a reversibly inhibits the secretory pathway by preventing cotranslational translocation. Molecular Pharmacology, 76(1), 91–104. https://doi.org/10.1124/mol.109.056085
  • Łukomska, J., Kasprzykowski, F., Łankiewicz, L., Grzonka, Z. (2002). Peptide toxins from cyanobacteria. Wiadomości Chemiczne, 56(1–2), 57–82. [In Polish]
  • Mazur-Marzec, H., Błaszczyk, A., Felczykowska, A., Hohlfeld, N., Kobos, J., Toruńska-Sitarz, A., Devi, P., Montalvão, S., D’souza, L., Tammela, P., Mikosik, A., Bloch, S., Nejman-Faleńczyk, B., Węgrzyn, G. (2015). Baltic cyanobacteria–a source of biologically active compounds. European Journal of Phycology, 50, 343–360. https://doi.org/10.1080/09670262.2015.1062563
  • Nuhu, A.A. (2013). Spirulina (Arthrospira): An important source of nutritional and medicinal compounds. Journal of Marine Biology, ID 325636. https://doi.org/10.1155/2013/325636
  • Oufdou, K., Mezrioui, N., Oudra, B., Loudiki, M., Barakate, M., Sbiyyaa, B. (2001). Bioactive compounds from Pseudanabaena species (Cyanobacteria). Microbios, 106, 21–29.
  • Patterson, G.M.L., Bolis, C.M. (1995). Regulation of scytophycin accumulation in cultures of Scytonema ocellatum. II. Nutrient requirements. Applied Microbiology and Biotechnology, 43(4), 692–700. https://doi.org/10.1007/BF00164775
  • Rao, D.R., Thangavel, C., Kabilan, L., Suguna, S., Mani, T.R., Shanmugasundaram, S. (1999). Larvicidal properties of the cyanobacterium Westiellopsis sp. (blue-green algae) against mosquito vectors. Transactions of the Royal Society of Tropical Medicine and Hygiene, 93(3), 232–232. https://doi.org/10.1016/S0035-9203(99)90002-0
  • Rickards, R.W., Rothschild, J.M., Willis, A.C., de Chazal, N.M., Kirk, J., Kirk, K., Smith, G.D. (1999). Calothrixins A and B, novel pentacyclic metabolites from Calothrix cyanobacteria with potent activity against malaria parasites and human cancer cells. Tetrahedron, 55(47), 13513–13520. https://doi.org/10.1016/S0040-4020(99)00833-9
  • Rubio, B.K., Parrish, S.M., Yoshida, W., Schupp, P.J., Schils, T., Williams, P.G. (2010). Depsipeptides from a Guamanian marine cyanobacterium, Lyngbya bouillonii, with selective inhibition of serine proteases. Tetrahedron Letters, 51(51), 6718–6721.
  • Sheih, I.C., Fang, T.J., Wu, T.K., Lin, P.H. (2009). Anticancer and antioxidant activities of the peptide fraction from algae protein waste. Journal of Agricultural and Food Chemistry, 58(2), 1202–1207. https://doi.org/10.1021/jf903089m
  • Shih, C., Teicher, B.A. (2001). Cryptophycins: a novel class of potent antimitotic antitumor depsipeptides. Current Pharmaceutical Design, 7(13), 1259–1276. https://doi.org/10.2174/1381612013397474
  • Simmons, T.L., Andrianasolo, E., McPhail, K., Flatt, P., Gerwick, W.H. (2005). Marine natural products as anticancer drugs. Molecular Cancer Therapeutics, 4(2), 333–342.
  • Simmons, T.L., Engene, N., Ureña, L.D., Romero, L.I., Ortega-Barría, E., Gerwick, L., Gerwick, W.H. (2008). Viridamides A and B, lipodepsipeptides with antiprotozoal activity from the marine cyanobacterium Oscillatoria nigro-viridis. Journal of Natural Products, 71(9), 1544–1550. https://doi.org/10.1021/np800110e
  • Singh, R.K., Tiwari, S.P., Rai, A.K., Mohapatra, T.M. (2011). Cyanobacteria: an emerging source for drug discovery. The Journal of Antibiotics, 64(6), 401. https://doi.org/10.1038/ja.2011.21
  • Srivastava, A., Jüttner, F., Strasser, R.J. (1998). Action of the allelochemical, fischerellin A, on photosystem II. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1364(3), 326–336. https://doi.org/10.1016/S0005-2728(98)00014-0
  • Vijayakumar, S., Menakha, M. (2015). Pharmaceutical applications of cyanobacteria – A review. Journal of Acute Medicine, 5(1), 15–23. https://doi.org/10.1016/j.jacme.2015.02.004
  • Wall, N.R., Mohammad, R.M., Al-Katib, A.M. (1999). Bax: Bcl-2 ratio modulation by bryostatin 1 and novel antitubulin agents is important for susceptibility to drug induced apoptosis in the human early pre-B acute lymphoblastic leukemia cell line, Reh. Leukemia Research, 23(10), 881–888. https://doi.org/10.1016/s0145-2126(99)00108-3
  • Wright, A.D., Papendorf, O., König, G.M. (2005). Ambigol C and 2, 4-Dichlorobenzoic Acid, Natural Products Produced by the Terrestrial Cyanobacterium Fischerella ambigua. Journal of Natural Products, 68(3), 459–461. https://doi.org/10.1021/np049640w
  • Yasuhara-Bell, J., Lu, Y. (2010). Marine compounds and their antiviral activities. Antiviral Research, 86(3), 231–240. https://doi.org/10.1016/j.antiviral.2010.03.009
  • Zainuddin, E., Mundt, S., Wegner, U., Mentel, R. (2002). Cyanobacteria a potential source of antiviral substances against influenza virus. Medical Microbiology and Immunology, 191(3–4), 181–182. https://doi.org/10.1007/s00430-002-0142-1

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.ojs-doi-10_24917_25438832_4_12
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.