Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


2020 | 220-237

Article title

Baltic macroalgae as a potential source for commercial applications – review

Content

Title variants

Bałtyckie makroglony jako potencjalne źródło zastosowań komercyjnych

Languages of publication

EN

Abstracts

PL
Morze Bałtyckie jest wyjątkowym ekosystemem wodnym, charakteryzującym się wyraźnymi zmianami w środowisku, szczególnie w odniesieniu do zasolenia i klimatu. Jest to także miejsce występowania morskich i słodkowodnych organizmów roślinnych, które od stuleci fascynują naukowców. Niewiele jest jednak prac prezentujących bałtyckie glony makroskopowe, jako potencjalne źródło dla zastosowań komercyjnych. Celem niniejszego opracowania było przedstawienie bałtyckich makroglonów, jako źródła zasobów przemysłowych. W przeglądzie uwzględniono, m.in. potencjał wykorzystania tych organizmów w przemyśle kosmetycznym i medycznym, w tym najważniejsze składniki, które czynią je cennym produktem spożywczym. Zwrócono także uwagę na ich rosnącą popularność i potencjalne wykorzystanie w przyszłości, np. jako biopaliwa, nawozy naturalne lub składniki oczyszczalni ścieków. Przedstawiono także możliwość wykorzystania makroglonów jako biologicznego czynnika, ograniczającego występowanie masowych zakwitów sinic w Morzu Bałtyckim.

Year

Pages

220-237

Physical description

Dates

published
2020-11-12

Contributors

  • Institute of Oceanography, University of Gdansk, Av. Piłsudskiego 46, 81-378 Gdynia, Poland
  • Institute of Oceanography, University of Gdansk, Av. Piłsudskiego 46, 81-378 Gdynia, Poland
  • Institute of Oceanography, University of Gdansk, Av. Piłsudskiego 46, 81-378 Gdynia, Poland
author
  • Institute of Oceanography, University of Gdansk, Av. Piłsudskiego 46, 81-378 Gdynia, Poland
author
  • Institute of Oceanography, University of Gdansk, Av. Piłsudskiego 46, 81-378 Gdynia, Poland

References

  • Bedoux, G., Hardouin, K., Burlot, A.S., Bourgougnon, N. (2014). Bioactive components from seaweeds: Cosmetic applications and future development. In: N. Bourgougnon (ed.), Advances in Botanical Research, 71, 345–378. Academic Press. https://doi.org/10.1016/B978-0-12-408062-1.00012-3
  • Berger, J., Schagerl, M. (2003). Allelopathic activity of Chara aspera. Hydrobiologia, 501(1–3), 109–115. https://doi.org/10.1023/A:1026263504260
  • Biłos, Ł., Golla, S., Patyna, A. (2016). Wykorzystanie glonów w rolnictwie i przemyśle spożywczym (The use of algae in agriculture and the food industry). Przemysł Chemiczny, 95(9), 1797–1801. [In Polish]
  • Buchholz, C.M., Krause, G., Buck, B.H. (2012). Seaweed and man. In: Wiencke C., Bischof K. (eds.), Seaweed Biology, 471–493. Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-642-28451-9_22
  • Deluga, W. (2018). The role of ecological marketing in preserving the purity of wasters of the Baltic Sea. Folia Pomeranae Universitatis Technologiae Stetinensis. Oeconomica, 346(92), 5–16. https://doi.org/10.21005/oe.2018.92.3.01 [In Polish]
  • Dominguez, H., Loret, E.P. (2019). Ulva lactuca, a source of troubles and potential riches. Marine Drugs, 17(6), 357. https://doi.org/10.3390/md17060357
  • Duke, S.O., Scheffler, B.E., Dayan, F.E. (2001). Allelochemicals as herbicides, in physiological aspects of allelopathy. In: M.J. Reigosa, N.P. Bonjoch (eds.), First European OECD Allelopathy Symposium, Vigo, Spain, pp. 47–59.
  • Filipkowska, A., Lubecki, L., Szymczak-Zyla, M., Kowalewska, G., Zbikowski, R., Szefer, P. (2008). Utilisation of macroalgae from the Sopot beach (Baltic Sea). Oceanologia, 50(2), 255–273.
  • Filipkowska, A., Lubecki, L., Szymczak-Zyla, M., Lotocka, M., Kowalewska, G. (2009). Factors affecting the occurrence of algae on the Sopot beach (Baltic Sea). Oceanologia, 51(2), 233–262.
  • Fitzgerald, C., Gallagher, E., Tasdemir, D., Hayes, M. (2011). Heart health peptides from macroalgae and their potential use in functional foods. Journal of Agricultural and Food Chemistry, 59(13), 6829–6836. https://doi.org/10.1021/jf201114d
  • Ghobrial, M.G., Nassr, H.S., Kamil, A.W. (2015). Bioactivity effect of two macrophyte extracts on growth performance of two bloom-forming cyanophytes. The Egyptian Journal of Aquatic Research, 41(1), 69–81. https://doi.org/10.1016/j.ejar.2015.01.001
  • Granéli, E., Hansen, P.J. (2006). Allelopathy in harmful algae: a mechanism to compete for resources? In: E. Granéli, J.T. Turner (eds.), Ecology of Harmful Algae, Ecological Studies. 189 Berlin Heidelberg, Germany: Springer-Verlag, p. 189–201.
  • Gupta, S., Abu-Ghannam, N. (2011). Bioactive potential and possible health effects of edible brown seaweeds. Trends in Food Science & Technology, 22(6), 315–326. https://doi.org/10.1016/j.tifs.2011.03.011
  • HELCOM (2012). Development of a set of core indicators: interim report of the HELCOM CORESET project. Part B: Descriptions of the indicators. Baltic Sea Environment Proceedings, 129B, 1–219.
  • Hilt, S., Gross, E.M. (2008). Can allelopathically active submerged macrophytes stabilise clear-water states in shallow lakes? Basic and Applied Ecology, 9(4), 422–432. https://doi.org/10.1016/j.baae.2007.04.003
  • Huppatz, J.L. (1996). Quantifying the inhibitor-target site interactions of photosystem II herbicides. Weed Science, 44, 743–748. https://doi.org/10.1017/S0043174500094625
  • Kandale, A., Meena, A.K., Rao, M.M., Panda, P., Mangal, A.K., Reddy, G., Babu, R. (2011). Marine algae: an introduction, food value and medicinal uses. Journal of Pharmacy Research, 4(1), 219–221.
  • Kolb, N., Vallorani, L., Milanović, N., Stocchi, V. (2004). Evaluation of marine algae wakame (Undaria pinnatifida) and kombu (Laminaria digitata japonica) as food supplements. Food Technology and Biotechnology, 42(1), 57–61.
  • McHugh, D.J. (2003). A guide to the seaweed industry. FAO Fish Tech Pap 441, Rome, Italy, pp. 105.
  • McLachlan, J. (1985). Macroalgae (seaweeds): industrial resources and their utilization. In: J. Mclachlan (ed.), Biosalinity in Action: Bioproduction with Saline Water. Plant and Soil, 89(1/3), 137–157. Dordrecht: Springer.
  • Milledge, J.J., Nielsen, B.V., Bailey, D. (2015). High-value products from macroalgae: the potential uses of the invasive brown seaweed, Sargassum muticum. Reviews in Environmental Science and Bio/Technology, 15(1), 67–88.
  • Milledge, J.J., Smith, B., Dyer, P.W., Harvey, P. (2014). Macroalgae-derived biofuel: a review of methods of energy extraction from seaweed biomass. Energies, 7(11), 7194–7222. https://doi.org/10.3390/en7117194
  • Mohy El Din, S.M. (2015). Utilization of seaweed extracts as bio-fertilizers to stimulate the growth of wheat seedlings. The Egyptian Journal of Experimental Biology (Botany), 11(1), 31–39.
  • Nyberg, E. (2007). Introduced marine macroalgae and habitat modifiers – their ecological role and significant attributes. Göteborg University, pp. 61 [PhD Thesis].
  • Ohad, N., Hirschberg, J. (1990). A similar structure of the herbicide binding site in photosystem II of plants and cyanobacteria is demonstrated by site specific mutagenesis of the psbA gene. Photosynthesis Research, 23, 73–79. https://doi.org/10.1007/BF00030065
  • Pakdel, F.M., Sim, L., Beardall, J., Davis, J. (2013). Allelopathic inhibition of microalgae by the freshwater stonewort, Chara australis, and a submerged angiosperm, Potamogeton crispus. Aquatic Botany, 110, 2–30. https://doi.org/10.1016/j.aquabot.2013.04.005
  • Roesijadi, G., Jones, S.B., Snowden-Swan, L.J., Zhu, Y. (2010). Macroalgae as a biomass feedstock: a preliminary analysis (No. PNNL-19944). Pacific Northwest National Lab.(PNNL), Richland, WA (United States). https://doi.org/0.2172/1006310
  • Rybak, A.S. (2016). Freshwater population of Ulva flexuosa (Ulvaceae, Chlorophyta) as a food source for great pond snail: Lymnaea stagnalis (Mollusca, Lymnaeidae). Phycological Research, 64(4), 207–211. https://doi.org/10.1111/pre.12138
  • Rybak, A.S. (2018). Species of Ulva (Ulvophyceae, Chlorophyta) as indicators of salinity. Ecological Indicators, 85, 253–261. https://doi.org/10.1016/j.ecolind.2017.10.061
  • Rybak, A.S., Gąbka, M. (2018). The influence of abiotic factors on the bloom-forming alga Ulva flexuosa (Ulvaceae, Chlorophyta): possibilities for the control of the green tides in freshwater ecosystems. Journal of Applied Phycology, 30(2), 1405–1416. https://doi.org/10.1007/s10811-017-1301-5
  • Saniewski, M. (2013). Roślinność bentosowa jako indykator stanu środowiska Morza Bałtyckiego (Benthic vegetation as an indicator of the state of the Baltic Sea environment). Polish Hyperbaric Research, 1(42), 83–102. [In Polish]
  • Schroeder, G., Messyasz, B., Łęska, B., Fabrowska, J., Pikosz, M., Rybak, A.S. (2013). Biomasa alg słodkowodnych surowcem dla przemysłu i rolnictwa (Biomass of freshwater algae as raw material for the industry and agriculture). Przemysł Chemiczny, 92(7), 1380–1384. [In Polish]
  • Snoeijs-Leijonmalm, P., Schubert, H., Radziejewska, T. (2017). Biological oceanography of the Baltic Sea. Switzerland: Springer Science & Business Media.
  • Suganya, T., Varman, M., Masjuki, H.H., Renganathan, S. (2016). Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: a biorefinery approach. Renewable and Sustainable Energy Reviews, 55, 909–941. https://doi.org/10.1016/j.rser.2015.11.026
  • Tang, Y.Z., Gobler, C.J. (2011). The green macroalga, Ulva lactuca, inhibits the growth of seven common harmful algal bloom species via allelopathy. Harmful Algae, 10(5), 480–488. https://doi.org/10.1016/j.hal.2011.03.003
  • van Donk, E., van de Bund, W.J. (2002). Impact of submerged macrophytes including charophytes on phyto- and zooplankton communities: allelopathy versus other mechanisms. Aquatic Botany, 72, 261–274. https://doi.org/10.1016/S0304-3770(01)00205-4
  • Wærn, M. (1965). A vista on the marine vegetation. Acta Phytogeographica Suecica, 50, 13–27.
  • Wang, H.M.D., Chen, C.C., Huynh, P., Chang, J.S. (2014). Exploring the potential of using algae in cosmetics. Bioresource Technology, 184, 355–362. https://doi.org/10.1016/j.biortech.2014.12.001
  • Wang, R., Xiao, H., Zhang, P., Qu, L., Cai, H., Tang, X., (2007). Allelopathic effects of Ulva pertusa, Corallina pilulifera and Sargassum thunbergii on the growth of the dinoflagellates Heterosigma akashiwo and Alexandrium tamarense. Journal of Applied Phycology, 19(2), 109–121. https://doi.org/10.1007/s10811-006-9117-18
  • Wells, M.L., Potin, P., Craigie, J.S., Raven, J.A., Merchant, S.S., Helliwell, K.E., Smith A.G, Camire, M.E. Brawley, S.H. (2017). Algae as nutritional and functional food sources: revisiting our understanding. Journal of Applied Phycology, 29(2), 949–982. https://doi.org/10.1007/s10811-016-0974-5
  • Żbikowski, R., Szefer, P., Latała, A. (2006). Distribution and relationships between selected chemical elements in green alga Enteromorpha sp. from the southern Baltic. Environmental Pollution, 143(3), 435–448. https://doi.org/10.1016/j.envpol.2005.12.007
  • Żbikowski, R., Szefer, P., Latała, A. (2007). Comparison of green algae Cladophora sp. and Enteromorpha sp. as potential biomonitors of chemical elements in the southern Baltic. Science of the Total Environment, 387(1–3), 320–332. https://doi.org/10.1016/j.scitotenv.2007.07.017
  • Złoch, I., Śliwińska-Wilczewska, S., Kucharska, M., Kozłowska, W. (2018). Allelopathic effects of Chara species (C. aspera, C. baltica, and C. canescens) on the bloom-forming picocyanobacterium Synechococcus sp. Environmental Science and Pollution Research, 25(36), 36403–36411. https://doi.org/10.1007/s11356-018-3579-5

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.ojs-doi-10_24917_25438832_5_14
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.