Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


2021 | 312 |

Article title

Wykorzystanie potencjału mikrobiomu środowiskowego w kryminalistyce

Content

Title variants

EN
Harnessing the potential of the environmental microbiome in forensic science

Languages of publication

Abstracts

EN
A scientific consortium led by the Central Forensic Laboratory of the Police has undertaken to develop a method for DNA analysis of the soil microbiome to be used in forensic investigations. The aim of the project entitled Soil Microbiome Analysis Forensic Tool – SMAFT (http://smaft.eu/), financed by the National Center for Research and Development (DOB-BIO10/03/01/2019), is to develop a new tool that enables the association of a trace in the form of a soil sample with a specific geographical location. The first part of the paper introduces the concept of the microbiome and presents the possibilities of using microbiome DNA analysis in forensic science. In the second part, the stages of the SMAFT project are described in detail, beginning from the collection of soil samples from different sites in Poland across all seasons and isolation of microbiome DNA through massively parallel sequencing (MPS) technology-based analysis of isolates and the development of a genetic test containing a set of metagenomic markers allowing for effective individualization of soil samples, up to the creation of an IT system enabling analysis and interpretation of the obtained results, which includes a database of soil microbiome DNA profiles from various locations in Poland.
PL
Konsorcjum naukowe pod przewodnictwem Centralnego Laboratorium Kryminalistycznego Policji podjęło się opracowania metody analizy DNA mikrobiomu gleby, która znajdzie zastosowanie w badaniach kryminalistycznych. Celem projektu o akronimie SMAFT (Soil Microbiome Analysis Forensic Tool, http://smaft.eu/), finansowanego przez Narodowe Centrum Badań i Rozwoju (DOB-BIO10/03/01/2019), jest stworzenie nowego narzędzia umożliwiającego powiązanie śladu w postaci próbki gleby z określoną lokalizacją geograficzną. W pierwszej części artykułu przybliżono pojęcie mikrobiomu oraz przedstawiono możliwości wykorzystania analiz DNA mikrobiomu w kryminalistyce. W jego drugiej części szczegółowo opisano etapy realizowanego projektu, począwszy od zbierania próbek gleby z różnych miejsc Polski w czterech porach roku i izolacji z nich DNA mikrobiomów, poprzez oparte na technologii MPS (ang. Massively Parallel Sequencing) sekwencjonowanie izolatów oraz opracowanie testu genetycznego zawierającego zestaw markerów metagenomicznych pozwalających na skuteczną indywidualizację próbek gleby, aż po stworzenie systemu informatycznego umożliwiającego analizę i interpretację otrzymanych wyników, który obejmuje bazę danych profili DNA mikrobiomów gleb pochodzących z różnych miejsc Polski.

Year

Issue

312

Physical description

Dates

published
2021

Contributors

  • Centralne Laboratorium Kryminalistyczne Policji
author
  • Centralne Laboratorium Kryminalistyczne Policji
  • Ardigen SA
  • Warszawski Uniwersytet Medyczny
  • Warszawski Uniwersytet Medyczny
  • Warszawski Uniwersytet Medyczny
author
  • Instytut Biologii Molekularnej i Genetyki Narodowej Akademii Nauk Ukrainy
  • Uniwersytet Jagielloński
  • Uniwersytet Jagielloński
author
  • Uniwersytet Jagielloński
  • Pomorski Uniwersytet Medyczny w Szczecinie
  • Centralne Laboratorium Kryminalistyczne Policji
  • Uniwersytet Jagielloński
author
  • Uniwersytet Jagielloński
  • Uniwersytet Jagielloński
  • Centralne Laboratorium Kryminalistyczne Policji

References

  • Ambers, A.D., Churchill, J.D., King, J.L., Stoljarova, M., Gill-King, H., Assidi, M., Abu-Elmagd, M., Buhmeida, A., Al-Qahtani, M., Budowle, B. (2016). More comprehensive forensic genetic marker analyses for accurate human remains identification using massively parallel DNA sequencing. BMC Genomics, 17, doi: 10.1186/s12864-016-3087-2.
  • Berg, G., Rybakova, D., Fischer, D., Cernava, T., Vergès, M.C., Charles, T., Chen, X., Cocolin, L., Eversole, K., Corral, G.H., Kazou, M., Kinkel, L., Lange, L., Lima, N., Loy, A., Macklin, J.A., Maguin, E., Mauchline, T., McClure, R., Mitter, B., Ryan, M., Sarand, I., Smidt, H., Schelkle, B., Roume, H., Kiran, G.S., Selvin, J., Souza, R.S.C., van Overbeek, L., Singh, B.K., Wagner, M., Walsh, A., Sessitsch, A., Schloter, M. (2020). Microbiome definition re-visited: old concepts and new challenges. Microbiome, 8(1), doi:10.1186/s40168-02000875-0.
  • Bruijns, B., Tiggelaar, R., Gardeniers, H. (2018). Massively parallel sequencing techniques for forensics: A review. Electrophoresis, 39, doi: doi.org/10.1002/ elps.201800082.
  • Clarke, T.H., Gomez, A., Singh, H., Nelson, K.E., Brinkac, L.M. (2017). Integrating the microbiome as a resource in the forensics toolkit. Forensic Science International: Genetics, 30, doi: 10.1016/j. fsigen.2017.06.008.
  • Concheri, G., Bertoldi, D., Polone, E., Otto, S., Larcher, R., Squartini, A. (2011). Chemical elemental distribution and soil DNA fingerprints provide the critical evidence in murder case investigation. PLOS ONE, 6(6), doi: 10.1371/journal.pone. 0020222.
  • Damaso, N., Mendel, J., Mendoza, M., von Wettberg, E.J., Narasimhan, G., Mills, D. (2018). Bioinformatics approach to assess the biogeographical patterns of soil communities: The utility for soil provenance. Journal of Forensic Sciences, 63(4), doi: 10.1111/1556-4029.13741.
  • Dawson, L.A., Hillier, S. (2010). Measurement of soil characteristics for forensic applications. Surface and Interface Analysis, 42(5), doi: 10.1002/sia.3315.
  • Fierer, N. (2017). Embracing the unknown: disentangling the complexities of the soil microbiome. Nature Reviews Microbiology, 15, doi: 10.1038/nrmicro. 2017.87.
  • Fierer, N., Hamady, M., Lauber, C.L., Knight, R. (2008). The influence of sex, handedness, and washing on the diversity of hand surface bacteria. Proceedings of the National Academy of Sciences, 105(46), doi: 10.1073/pnas.0807920105.
  • Fierer, N., Lauber, C.L., Zhou, N., McDonald, D., Costello, E.K., Knight, R. (2010). Forensic identification using skin bacterial communities. Proceedings of the National Academy of Sciences, 107, doi: 10.1073/pnas.1000162107.
  • Fitzpatrick, R.W., Raven, M.D., Forrester, S.T. (2009). A systematic approach to soil forensics: Criminal case studies involving transference from crime scene to forensic evidence. W: K. Ritz, L. Dawson, D. Miller (red.), Criminal and Environmental Soil Forensics. Dordrecht: Springer.
  • Fitzpatrick, R., Raven, M., Self, P. (2017).The role of pedology and mineralogy in providing evidence for 5 crime investigations involving a wide range of earth materials. Episodes, 40, doi: 10.18814/epiiugs/2017/ v40i2/017017.
  • Giampaoli, S., Berti, A., Di Maggio, R.M., Pilli, E., Valentini, A., Valeriani, F., Gianfranceschi, G., Barni, F., Ripani, L., Romano Spica, V. (2014). The environmental biological signature: NGS profiling for forensic comparison of soils. Forensic Science International, 240, doi: 10.1016/j.forsciint.2014.02.028.
  • Habtom, H., Demanèche, S., Dawson, L., Azulay, C., Matan, O., Robe, P., Gafny, R., Simonet, P., Jurkevitch, E., Pasternak, Z. (2017). Soil characterisation by bacterial community analysis for forensic applications: A quantitative comparison of environmental technologies. Forensic Science International: Genetics, 26, doi: 10.1016/j.fsigen.2016.10.005.
  • Habtom, H., Pasternak, Z., Matan, O., Azulay, C., Gafny, R., Jurkevitch, E. (2019). Applying microbial biogeography in soil forensics. Forensic Science International: Genetics, 38, doi:10.1016/j.fsigen. 2018.11.010.
  • Hampton-Marcell, J.T., Larsen, P., Anton, T., Cralle, L., Sangwan, N., Lax, S., Gottel, N., Salas-Garcia, M., Young, C., Duncan, G., Lopez, J.V., Gilbert, J.A., (2020). Detecting personal microbiota signatures at artificial crime scenes. Forensic Science International, 313, doi 10.1016/j.forsciint.2020.110351.
  • Heather, J.M., Chain, B. (2017). The sequence of sequencers: The history of sequencing DNA. Genomics, 107(1), doi: 10.1016/j.ygeno.2015.11.003.
  • Johll, M.E. (2009). Investigating Chemistry. A Forensic Science Perspective, wyd. 2. New York: W.H. Freeman and Company.
  • Kayser, M. (2015). Forensic DNA phenotyping: Predicting human appearance from crime scene material for investigative purposes. Forensic Science International: Genetics, 18, doi: 10.1016/j.fsigen.2015. 02.003.
  • Khodadadian, A., Darzi, S., Haghi-Daredeh, S., Sadat Eshaghi, F., Babakhanzadeh, E., Mirabutalebi, S.H., Nazari, M. (2020). Genomics and transcriptomics: The powerful technologies in precision medicine. International Journal of General Medicine, 13, doi: 10.2147/IJGM.S249970.
  • Lax, S., Smith, D.P., Hampton-Marcell, J., Owens, S.M., Handley, K.M., Scott, N.M., Gibbons, S.M., Larsen, P., Shogan, B.D., Weiss, S., Metcalf, J.L., Ursell, L.K., Vázquez-Baeza, Y., Van Treuren, W., Hasan, N.A., Gibson, M.K., Colwell, R., Dantas, G., Knight, R., Gilbert, J.A. (2014). Longitudinal analysis of microbial interaction between humans and the indoor environment. Science, 345(6200), doi: 10.1126/ science.1254529.
  • Lax, S., Hampton-Marcell, J.T., Gibbons, S.M., Colares, G.B., Smith, D., Eisen, J.A., Gilbert, J.A. (2015). Forensic analysis of the microbiome of phones and shoes. Microbiome, 3, doi: 10.1186/ s40168-015-0082-9.
  • Lee, S.Y., Woo, S.K., Lee, S.M., Eom, Y.B. (2016). Forensic analysis using microbial community between skin bacteria and fabrics. Toxicology and Environmental Health Sciences, 8(3), doi: 10.1007/ s13530-016-0284-y.
  • Maron, P.A., Mougel, C., Ranjard L. (2011). Soil microbial diversity: Methodological strategy, spatial overview and functional interest. Comptes Rendus Biologies, 334(5–6), doi: 10.1016/j.crvi.2010.12.003.
  • Meadow, J.F., Altrichter, A.E., Bateman, A.C., Stenson, J., Brown, G.Z., Green, J.L., Bohannan, B.J.M. (2015). Humans differ in their personal microbial cloud. PeerJ Life & Environment, 3, doi: 10.7717/peerj.1258.
  • Murray, R.C. (2004). Forensic geology: Yesterday, today and tomorrow. Geological Society, Special Publications, 232(1), doi: 10.1144/GSL.SP.2004. 232.01.02.
  • Murray, R.C. (2012). Forensic examination of soils. W: L. Kobilinsky (red.), Forensic Chemistry Handbook. Hoboken, New Jersey: John Wiley & Sons, doi: 10.1002/9781118062241.ch4.
  • Neckovic, A., van Oorschot, R.A.H., Szkuta, B., Durdle, A. (2020). Investigation of direct and indirect transfer of microbiomes between individuals. Forensic Science International: Genetics, 45, doi: 10.1016/j.fsigen.2019.102212.
  • Needelman, B.A. (2013) What are soils? Natural Education Knowledge, 4(3).
  • O’Brien, S.L., Gibbons, S.M., Owens, S.M., Hampton-Marcell, J., Johnston, E.R., Jastrow, J.D., Gilbert, J.A., Meyer, F., Antonopoulos, D.A. (2016). Spatial scale drives patterns in soil bacterial diversity. Environmental Microbiology, 18(6), doi: 10.1111/1462-2920.13231.
  • Pasternak, Z., Al-Ashhab, A., Gatica, J., Gafny, R., Avraham, S., Minz, D., Gillor, O., Jurkevitch, E. (2013). Spatial and temporal biogeography of soil microbial communities in arid and semiarid regions. PLOS ONE, 8(7), doi: 10.1371/journal.pone.0069705.
  • Petraco, N., Kubic, T.A., Petraco, N.D.K. (2008). Case studies in forensic soil examinations. Forensic Science International, 178(2–3), doi: 10.1016/j. forsciint.2008.03.008.
  • Pirrie, D., Dawson, L., Graham, G. (2017). Predictive geolocation: Forensic soil analysis for provenance determination. Episodes, 40(2), doi: 10.18814/ epiiugs/2017/v40i2/017016.
  • Pye, K. (2004). Forensic geology. W: R.C. Selley, L.R.M. Cocks, I.R. Plimer (red.), Encyclopedia of Geology, t. 2. Amsterdam: Elsevier.
  • Ravel, J., Gajer, P., Abdo, Z., Schneider M.G., Koenig, S.S.K., McCulle, S.L., Karlebach, S., Gorle, R., Russell, J., Tacket, C.O., Brotman, R.M., Davis, C.C., Ault, K., Peralta, L., Forney, L.J. (2011). Vaginal microbiome of reproductive-age women. Proceedings of the National Academy of Sciences, 108 (Supplement 1), doi: 10.1073/pnas.1002611107.
  • Robinson, J.M., Pasternak, Z., Mason, C.E., Elhaik, E. (2021). Forensic applications of microbiomics: A review. Frontiers in Microbiology, 11, doi. org/10.3389/fmicb.2020.608101.
  • Ruffell, A., McKinley, J. (2005). Forensic geoscience: Applications of geology, geomorphology and geophysics to criminal investigations. Earth-Science Reviews, 69, doi: 10.1016/j.earscirev.2004.08.002.
  • Schmedes, S.E., Woerner, A.E., Novroski, N.M.M., Wendt, F.R., King, J.L., Stephens, K.M., Budowle, B. (2018). Targeted sequencing of clade-specific markers from skin microbiomes for forensic human identification. Forensic Science International: Genetics, 32, doi: 10.1016/j.fsigen.2017.10.004.
  • Sensabaugh, G.F. (2009). Microbial community profiling for the characterisation of soil evidence: Forensic considerations. W: K. Ritz, L. Dawson, D. Miller (red.), Criminal and Environmental Soil Forensics. Dordrecht: Springer, doi: 10.1007/978-1-4020-9204-6_4.
  • Ślósarek, G. (2012). Współczesna rewolucja naukowa na pograniczu fizyki i biologii. Zagadnienia Filozoficzne w Nauce (Philosophical Problems in Science), 51.
  • Trevors, J.T. (2010). One gram of soil: A microbial biochemical gene library. Antonie van Leeuwenhoek, 97, doi: 10.1007/s10482-009-9397-5.
  • Tridico, S.R., Murray, D.C., Addison, J., Kirkbride, K.P., Bunce, M. (2014). Metagenomic analyses of bacteria on human hairs: A qualitative assessment for applications in forensic science. Investigative Genetics, 5(1), doi: 10.1186/s13323-014-0016-5.
  • Velsko, S.P. (2020). Chapter 24 – Inferential validation and evidence interpretation. W: B. Budowle, S.E. Schutzer, S.A. Morse (red.), Microbial Forensics, wyd. 3. San Diego: Academic Press, doi: 10.1016/ B978-0-12-815379-6.00024-6.
  • Vidaki, A., Kayser, M. (2018). Recent progress, methods and perspectives in forensic epigenetics. Forensic Science International: Genetics, 37, doi: 10.1016/j.fsigen.2018.08.008.
  • Whipps, J.M., Lewis, K., Cooke, R.C. (1988). Mycoparasitism and plant disease control. W: M.N. Burge (red.), Fungi in Biological Control Systems. Manchester: Manchester University Press.
  • Woods, B., Lennard, C., Kirkbride, K.P., Robertson, J. (2016). Soil examination for a forensic trace evidence laboratory – Part 3: A proposed protocol for the effective triage and management of soil examinations. Forensic Science International, 262, doi: 10.1016/j. forsciint.2016.02.034.
  • Young, J.M., Austin, J.J., Weyrich, L.S. (2017). Soil DNA metabarcoding and high-throughput sequencing as a forensic tool: Considerations, potential limitations and recommendations, FEMS Microbiology Ecology, 93(2), doi: 10.1093/femsec/fiw207.
  • Young, J.M., Higgins, D., Austin, J.J. (2019). Soil DNA: Advances in DNA technology offer a powerful new tool for forensic science. W: R.W. Fitzpatrick, L.J. Donnelly (red.), Forensic Soil Science and Geology. London: Geological Society, Special Publications, doi: 10.1144/SP492-2017-351.
  • Zbieć-Piekarska, R., Spólnicka, M., Kupiec, T., Parys-Proszek, A., Makowska, Ż., Pałeczka, A., Kucharczyk, K., Płoski, R., Branicki, W. (2015). Development of a forensically useful age prediction method based on DNA methylation analysis. Forensic Science International: Genetics, 17, doi: 10. 1016/j.fsigen.2015.05.001.

Document Type

Publication order reference

Identifiers

Biblioteka Nauki
23050939

YADDA identifier

bwmeta1.element.ojs-doi-10_34836_pk_2021_312_3
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.