Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


2023 | 1 |

Article title

The Evolution of Air Threats in Future Conflicts

Authors

Content

Title variants

Languages of publication

Abstracts

EN
Currently, there is an observable trend towards continuous and comprehensive development in both fixed-wing and rotary-wing aircraft design. Furthermore, a dynamic progression has been also witnessed in the evolution of unmanned aerial vehicles, loitering munitions, lethal autonomous weapons systems, ballistic missiles, cruise missiles, hypersonic cruise missiles, lighter-than-air sensor platforms, high altitude pseudo satellites and any others. The development of modern technologies and the acquisition of new materials create opportunities for the modernization of existing air threats as well as the development of novel types. Additionally, the potential of artificial intelligence in unmanned systems is a significant factor that should not be overlooked. The aforementioned circumstances have prompted the author of the article to conduct a thorough examination of contemporary military air threats and to make a forecast regarding the evolution of air threats in future conflicts.

Year

Volume

1

Physical description

Dates

published
2023

Contributors

  • War Studies University, Warsaw

References

  • 1. Boyd, I. (2022,04,18). How Hypersonic Missiles Work and the Significant Threats They Pose. SciTechDaily, Technology News. https://scitechdaily.com/how-hypersonic-missiles-work-and-the-significant-threats-they-pose/?expand_article=1
  • 2. Bronk J. (2020). Russian and Chinese Combat Air Trends: Current Capabilities and Future Threat Outlook. RUSI. https://rusi. org/explore-our-research/publications/whitehall-reports/russian-and-chinese-combat-air-trends-current-capabilities-andfuture-threat-outlook.
  • 3. DD/3.3(B). (2014). Połączone operacje powietrzne. Ministry of Defense. Bydgoszcz.
  • 4. Dobija K. (2019). Uwarunkowania rozwoju Systemu Obrony Powietrznej Polski. (pp. 66–103). War Studies University, Warsaw.
  • 5. GAO – U.S. Government Accountability Office. (2019). Hypersonic Weapons. Science, Technology Assessment, and Analytics, Science & Tech Spotlight. https://www.gao.gov/assets/gao-19-705sp.pdf.
  • 6. Kowalczewska K. (2021). Sztuczna inteligencja na wojnie, perspektywa międzynarodowego prawa humanitarnego konfliktów zbrojnych. Przypadek autonomicznych systemów śmiercionośnej broni. (pp. 39–70). Wydawnictwo Naukowe SCHOLAR. Warsaw.
  • 7. Radomyski A. (2014). Współczesne zagrożenia powietrzne. Kontekst teoretyczny i praktyczny. In A. Radomyski (Ed.), Podstawy obrony powietrznej (pp. 10–89). National Defense Academy, Warsaw.
  • 8. Radomyski, A., & Michalski, D. (2021). A Diagnosis of Russia’s Military Capability in a Situation of an Escalation of Hostility in Ukraine and Possible Implications for the Safety of the Eastern NATO Flank. Historia, 1(28), 35. https://doi.org/10.12775/hip.2021.035
  • 9. Scharre P. (2017). Centaur Warfighing: The False Choice of Humans vs. Automation, Temple International and Comparative Law Journal, vol. 30, issue 1, https://sites.temple.edu/ticlj/files/2017/02/30.1.Scharre-TICLJ.pdf.
  • 10. Zajas S. (2009). Uwarunkowania rozwoju sił powietrznych do 2025 roku. In S. Zajas (Ed.), Studium przyszłości sił powietrznych. Kierunki rozwoju do 2025 roku (pp. 9–37). National Defense Academy, Warsaw.

Document Type

Publication order reference

Identifiers

Biblioteka Nauki
27315607

YADDA identifier

bwmeta1.element.ojs-doi-10_37105_sd_196
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.