Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Journal

2024 | 3 (79) | 93-100

Article title

Biomimetics and biomimicry. Their role as a tool and ideology in contemporary architecture

Content

Title variants

PL
Biomimetyka i biomimikra jako narzędzie i ideologia we współczesnej architekturze

Languages of publication

Abstracts

PL
Tezą opracowania jest stwierdzenie, że koncepcja biomimetyki i biomimikry zaznacza swoją obecność w praktyce architektonicznej na dwóch poziomach: narzędziowym i ideologicznym. Na poziomie narzędziowym mamy do czynienia z wykorzystaniem w architekturze różnorodnych technologii o charakterze biomimetycznym, czerpiących wzór i inspirację ze szczegółów budowy i zachowania organizmów żywych, w celu optymalizacji konstrukcyjnej i funkcjonalnej poszczególnych elementów architektonicznych. Na poziomie ideologicznym biomimikra to naśladownictwo praw i procesów biologicznych, inspiracja naturą w skali makro, czyli dążenie do odwzorowania w budynku reguł i sposobu funkcjonowania ekosystemów. Produktem finalnym są kompleksowo postrzegane budynki i zespoły urbanistyczne. Idea biomimikry może być realizowana zarówno z użyciem rozwiązań wysokotechnologicznych (high-tech)–posługując się biomimetycznymi narzędziami, jak i w sposób niskotechnologiczny (low-tech)–nawiązując do architektury wernakularnej i habitatów zwierząt.
EN
The aim of the study is to present how biomimetics and biomimicry manifest themselves in the architectural practice on two basic levels: as a tool and ideology. Biomimetics can be perceived as an architectural tool. It takes inspiration from the details of form, structure, and behaviour of living organisms, producing architectural elements of specific functionalities. Biomimicry is a contemporary architecture’s ideology. It means the imitation of biological rules and processes at the ecosystem level. Here, nature provides inspiration at the macro level, the idea of biomimicry is of a synthetic character, based on a holistic view and general laws and principles. The final products are buildings, perceived in a holistic way, and urban complexes. The idea of biomimicry can be implemented either using advanced high-tech solutions (biomimetic tools), or with a low-tech approach, taking inspiration from vernacular architecture or animals’ habitats.

Journal

Year

Issue

Pages

93-100

Physical description

Dates

published
2024

Contributors

  • Faculty of Architecture, Cracow University of Technology, Poland

References

  • AlAli, Mariam, Yara Mattar, Mhd Amer Alzaim, and Salwa Beheiry. “Applications of biomimicry in architecture, construction and civil engineering.” Biomimetics 8, no. 202 (2023): 1–22. https://doi.org/10.3390/biomimetics8020202.
  • Allgaier, Christoph, Benjamin Felbrich, Frederik Wulle, Emna Khechine, James H. Nebelsick, Achim Menges, Günter Reiter, Renate Reiter, Armin Lechler, Alexander Verl, and Karl-Heinz Wurst. “Snails as living 3D printers: free forms for the architecture of tomorrow.” In Biomimetics for architecture. Learning from Nature, edited by Jan Knippers, Ulrich Schmid, and Thomas Speck, 126–133. Basel: Birk¬häuser, 2019.
  • Benyus, Janine M. Biomimicry. Innovation inspired by Nature. New York: HarperCollins Publishers, 2002.
  • “Biomimetyzm w architekturze 2.0.” Architektura MuratorPlus, March 10, 2019. Accessed March 2, 2024. https://architektura.muratorplus.pl/wydarzenia/bioarchitektura-20-aa-YvNa-MQxp-ceTM.html.
  • Bunk, Katharina, Florian A. Jonas, Larissa Born, Linnea Hesse, Claudia Möhl, Götz T. Gresser, Jan Knippers, Thomas Speck, and Tom Masselter. “From plant branchings to technical support structures.” In Biomimetics for architecture. Learning from Nature, edited by Jan Knippers, Ulrich Schmid and Thomas Speck, 144–152. Basel: Birkhäuser, 2019.
  • Chayamoor-Heil, Natasha. “From bioinspiration to biomimicry in architecture: Opportunities and challenges.” Encyclopedia 3, no. 1 (2023): 202–223. https://doi.org/10.3390/encyclopedia3010014.
  • Contreras, Gastón S., Roberto A.G. Lezcano, Eduardo J.L. Fernández, and María C.P. Gutiérrez. “Architecture learns from Nature. The influence of biomimicry and biophilic design in building.” Modern Applied Science 17, no. 1 (2023): 58–70. https://doi.org/10.5539/mas.v17n1p58.
  • Dixit, Saurav, and Anna Stefańska. “Bio-logic, a review on the biomimetic application in architectural and structural design.” Ain Shams Engineering Journal 14, no. 1 (2023): 1–11. https://doi.org/10.1016/j.asej.2022.101822.
  • Gruber, Petra. Biomimetics in architecture: Architecture of life and buildings. Wien: Springer, 2011.
  • Januszkiewicz, Krystyna, and Jakub I. Gołębiewski. “Climate change-oriented design: Living on the water. A new approach to architectural design.” Journal of Water and Land Development, no. 47 (2020): 96–104. https://doi.org/10.24425/jwld.2020.135036.
  • Kaplinsky, Joe. “Biomimicry versus humanism.” Architectural Design 76, no. 1 (2006): 66–71. https://doi.org/10.1002/ad.212.
  • Kovaleva, Daria, Oliver Gericke, Frederik Wulle, Pascal Mindermann, Werner Sobek, Alexander Verl, and Götz T. Gresser. “Rosenstein Pavilion: a lightweight concrete shell based on principles of biological structures.” In Biomimetics for architecture. Learning from Nature, edited by Jan Knippers, Ulrich Schmid, and Thomas Speck, 92–101. Basel: Birkhäuser, 2019.
  • Krężlik, Adrian. “Biomimetyka w kilku przykładach.” Autoportret 55, no. 4 (2016). https://www.autoportret.pl/artykuly/biomimetyka-w-kilku-przykladach/.
  • Logan, Katharine. “Continuing education: Biomimetic materials.” Ac¬cessed March 25, 2024. https://www.architecturalrecord.com/articles/14288-continuing-education-biomimetic-materials.
  • Menges, Achim. “Biomimetic design processes in architecture: Morphogenetic and evolutionary computational design.” Bioinspiration and Biomimetics 7, no. 1 (2012). https://doi.org/10.1088/1748-3182/7/1/015003.
  • Nasir, Osama, and Mohammad Arif Kamal. “Inspiration from Nature: Biomimicry as a paradigm for architectural and environmental de¬sign.” American Journal of Civil Engineering and Architecture 10, no. 3 (2022): 126–136. https://doi.org/10.12691/ajcea-10-3-3.
  • Oliveira, Maria João Marques de. “Towards a bio-shading system con¬cept: design methodology.” PhD diss., ISTAR-IUL, ISCTE-Instituto Universitário de Lisboa, 2019.
  • Onyszkiewicz, Jakub. “Elementy biomimetyki w projektowaniu architektury w środowisku zrównoważonym. Ewolucja i interpretacja bioniki na przykładzie polskich i zagranicznych konkursów architektonicznych.” PhD diss., Politechnika Wrocławska Wydział Architektury, 2019.
  • OXMAN. “Silk Pavilion I.” (2013). Accessed March 19, 2024. https://oxman.com/projects/silk-pavilion-i.
  • Pawlyn, Michael. Biomimicry in architecture. London: RIBA, 2011.
  • Ripley, Renee L., and Bharat Bhushan. “Bioarchitecture: bioinspired art and architecture – a perspective.” Philosophical Transactions of the Royal Society A, no. 374 (2016): 1–36. https://doi.org/10.1098/rsta.2016.0192.
  • Saffarian, Saman, Larissa Born, Axel Körner, Anja Mader, Anna S. Westermeier, Simon Poppinga, Markus Milwich, Götz T. Gresser, Thomas Speck, and Jan Knippers. “From pure research to biomi¬metic products: the Flectofold façade shading device.” In Biomimetics for architecture. Learning from Nature, edited by Jan Knip¬pers, Ulrich Schmid and Thomas Speck, 42–51. Basel: Birkhäuser, 2019.
  • Schwinn, Tobias, Daniel Sonntag, Tobias Grun, James H. Nebelsick, Jan Knippers, and Achim Menges. “Potential applications of segmented shells in architecture.” In Biomimetics for architecture. Learning from Nature, edited by Jan Knippers, Ulrich Schmid, and Thomas Speck, 116–125. Basel: Birkhäuser, 2019.
  • Stefańska, Anna, and Marta Cygan. “Bionic patterns in search of analytical models to build structural forms of ephemeral architectural objects.” In Multifaceted Research in Architecture 4, [INTERFER¬ENCES] design+art+science, edited by Beata Komar, Natalia Bąba-Ciosek, and Beata Kucharczyk-Brus. Gliwice: Wydawnictwo Politechniki Śląskiej, 2022. https://doi.org/10.34918/84433.
  • Szołomicki, Jerzy, and Hanna Golasz-Szołomicka. “Agora Green Tower w Tajpej na Tajwanie – symbol zrównoważonego budynku mieszkalnego w futurystycznej formie.” Builder 277, no. 8 (2020): 14–17. https://doi.org/10.5604/01.3001.0014.2782.
  • Vallas, Thomas, and Luc Courard. “Using nature in architecture: Building a living house with mycelium and trees.” Frontiers of Architec¬tural Research 6, no. 3 (2017): 318–328. https://doi.org/10.1016/j.foar.2017.05.003.
  • Verbrugghe, Nathalie, Eleonora Rubinacci, and Ahmed Z. Khan. “Biomimicry in architecture: A review of definitions, case studies, and design methods.” Biomimetics 8, no. 107 (2023): 1–29. https://doi.org/10.3390/biomimetics8010107.
  • Vincent Callebaut Architectures. “Treescrapers – Climate Responsive Vertical Villages, Towards Net-Zero Future of Mid-Rise Living, New York 2023, United States of America.” Accessed March 29, 2024. https://www.vincent.callebaut.org/object/230412_treescrapers/treescrapers/projects.
  • Vitalis, Louis, and Natasha Chayaamor-Heil. “Forcing biological scienc¬es into architectural design: On conceptual confusions in the field of biomimetic architecture.” Frontiers of Architectural Research 11, no. 2 (2022): 179–190. https://doi.org/10.1016/j.foar.2021.10.001.
  • Wallis, David. “When algae on the exterior is a good thing.” The New York Times, April 24, 2013. https://www.nytimes.com/2013/04/25/business/energy-environment/german-building-uses-algae-for-heat-ing-and-cooling.html.
  • Zari, Maibritt P. “Biomimetic approaches to architectural design for increased sustainability.” Sustainable Buildings Conference (SB07), no. 033 (2007): 1–10. https://www.academia.edu/9509268/Biomimetic_approaches_to_architectural_design_for_increased_sustainability.

Document Type

Publication order reference

Identifiers

Biblioteka Nauki
58969935

YADDA identifier

bwmeta1.element.ojs-doi-10_37190_arc240310
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.