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ABSTRACT 

 
We live in an information society where the usage, creation, distribution, mani-

pulation, and integration of information is a significant activity. Computations allow 
us to process information from various sources in various forms and use the derived 
knowledge in improving efficiency and resilience in our interactions with each other 
and with our environment. The general theory of information tells us that informa-
tion to knowledge is as energy is to matter. Energy has the potential to create or 
modify material structures and information has the potential to create or modify 
knowledge structures. In this paper, we analyze computations as a vital technologi-
cal phenomenon of contemporary society which allows us to process and use infor-
mation. This analysis allows building classifications of computations based on their 
characteristics and explication of new types of computations. As a result, we extend 
the existing typologies of computations by delineating novel forms of information 
representations. While the traditional approach deals only with two dimensions of 
computation²symbolic and sub-symbolic, here we describe additional dimensions, 
namely, super-symbolic computation, hybrid computation, fused computation, 
blended computation, and symbiotic computation. 

Keywords: symbol; structure; system; computation; process; symbolic; sub-
symbolic; super-symbolic; superstructure; structural machine. 

 
 

1. INTRODUCTION 
 
The organization of computations in general and the power of operations 

of the utilized information processing devices have an indispensable impact 
on the efficiency of computations and the goals that this computation can 
achieve. 

As people are accustomed to computing with symbols, the beginning of 
information processing technology started with the development of compu-
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ting devices, which operated with symbols. This trend has been prevailing 
for quite a while. Therefore, all contemporary computers process symbolic 
information while digitalization expands to a variety of areas including 
computers, calculators, tablets, cell phones, TV sets, and servers to mention 
but a few. Similarly, the development of mathematical models of computa-
tion and algorithms started with symbolic systems such as Turing machines 
or partial recursive functions. 

As a result, the symbolic computation was used for modeling the mind 
and its higher functions intelligence, and cognition, while experts in artifi-
cial intelligence formulated the Physical Symbol System Hypothesis (Newell, 
Simon, 1991��� ZKLFK� VWDWHG�� ³$� SK\VLFDO� V\PERO� V\VWHP� KDV� WKH� QHFHVVDU\�
DQG�VXIILFLHQW�PHDQV�IRU�JHQHUDO�LQWHOOLJHQW�DFWLRQ�´ 

However, some researchers, for example, philosopher John Searle, criti-
cized this hypothesis, while the development of information processing the-
ory and technology brought forth another approach to computation and 
modeling higher brain functions (Searle. 1980). It was connectionism, which 
was later extended to associationism. According to connectionism, the func-
tioning of the brain is based not on manipulation with symbols but on inter-
actions of the highly connected network of neurons. At the same time, the 
model of artificial neural networks emerged as an alternative to symbolic 
information processing. At first, researchers did not regard the functioning 
of neural networks as computation but later the situation changed and it 
was assumed that it is subsymbolic or connectionist computation. 

Adherents of the connectionist approach to computation in general and 
to AI in particular maintain that the level of symbolic information pro-
cessing is too high for many problems and to elaborate an adequate model 
of the mind and build effective AI systems, it is necessary to utilize subsym-
bolic computation instead of designing programs that work with symbols. 

Here we argue that it is crucial to organize computations not only on two 
levels²symbolic and subsymbolic but go higher to perform super-symbolic 
computations and combining all these forms to achieve a superior stage  
of performance and high level of intelligence. Thus, the goal of this paper is 
a methodological and philosophical analysis of different pure and combined 
or aggregated forms of computation. 

This paper has the following structure. In Section 2, the concepts of sym-
bol and structure are defined and analyzed. In Section 3, we discuss sub-
symbolic computations. In Section 4, we reflect on symbolic computations. 
In Section 5, we determine and explore super-symbolic computations. In 
Section 6, we describe tools created for operation with structures. Aggregat-
ed types of computation are elucidated in Section 7. In Conclusion, we dis-
cuss the results of this paper suggesting new directions for research in the 
theory and practice of algorithms and computation. 
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2. SYMBOLS AND STRUCTURES 
 
Exploring RI�WKH�XWLOL]DWLRQ�RI�WKH�WHUP�³V\PERO´�LQ�FRQWHPSRUDU\�VRFiety, 

it is possible to find that there are three main interpretations of the word 
³V\PERO�´� 

(1) symbol as a physical object with some meaning,  
(2) symbol as a synonym of the concept sign being treated as a conceptu-

al structure,  
(3) symbol as a conceptual (theoretical) structure and a particular case of 

signs.  
 
:H�ZLOO� FDOO� D� V\PERO�E\� WKH�QDPH�³material symbol´�when we have in 

mind the first interpretation, by the name conceptual sign when we bear  
in mind the second interpretation, and conceptual symbol when we take 
into consideration the third interpretation. In computation, conceptual 
symbols are represented by material symbols. 

Examples of material symbols are printed, written, and displayed on the 
screen letters, words, digits, and traffic signs. 

According to David J. Chalmers, a symbol is an atomic entity, designat-
ing some object or concept, which can be manipulated explicitly by a physi-
cal symbol system, leading to intelligent behavior (Chalmers, 1992).  
Symbolic AI deals with the class of programs that perform computations 
directly upon such symbols. 

An example of the case when the terms symbol and sign are treated as 
synonyms is the usage of the expressions symbolic system and sign system 
although the first one is used much more often.  

The third meaning of the word symbol as a theoretical or philosophical 
structure is studied in semiotics as the science of signs. The name semiotics 
comes from ancient Greece where it was assumed that signs exist in nature 
while symbols function in society. Later Augustine of Hippo (354±430) de-
termined sign as a general concept and symbol as its particular case in his 
study of signs and symbols (cf., (Deely, 2009)). An important contribution 
to this area was the book of John Poinsot (1589±1644) who was also called 
John of St. Thomas (Poinsot, 1632). The next imperative contribution to 
semiotics was done by Charles Sanders Peirce (1839±1914) in the form of  
a general theory of signs (Peirce, 1931±1935; Alp, 2010; Burgin, 2012; 2016; 
Burgin and Schumann, 2006; Goodman, 1968). Similar to Augustine of 
Hippo, Peirce treated sign as the general term while symbol as the conven-
tion-based sign constructing the following triadic model of a sign, Balanced 
Sign Triad (cf. Figure 1), where a sign is understood as a relation consisting 
of three elements: vehicle, object of the sign and meaning. 

The Existential Triad of the world (Burgin, 2012) imposes the existence 
of three substantial types of signs and symbols: material, mental, and con-
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ceptual signs/symbols, which belong to the physical world, mental word, 
and the structural world, correspondingly. 

name/vehicle/signifier 
 

  
object/thing/signified                                     meaning/interpretant 

Figure 1. The Balanced Sign Triad or Sign Triangle of Peirce 
 

Usually, when people speak or write about symbols, they mean material 
symbols. Note that material symbols are not only as individual aggregates of 
points, such as a or 3, written or printed on paper or displayed on the 
screen. Electrical charges, stones or pebbles can be also material symbols of 
numbers.  

The Balanced Sign Triad of Peirce agreeably correlates with the Existen-
tial Triad of the world, which is formed of three basic components: the Phys-
ical World, the Mental World, and the World of Structures (Burgin, 2012). 
,Q�3HLUFH¶V�WULDG��WKH�name corresponds to the World of Structures as a syn-
tactic system, the object/thing corresponds to the Physical World, and the 
meaning/interpretant corresponds to the Mental World as a semantic sys-
tem. At the same time, the object can be non-material and thus, beyond the 
Physical World. Nevertheless, the object is always closer to the Physical 
World. On the one hand, this implies that the Balanced Sign Triad of Peirce 
is homomorphic to the Existential Triad of the world, while on the other 
hand, it demonstrates fractality of the Existential Triad of the world, which 
is repeated in a diversity of other natural and artificial systems. 

We remind that a fractal is a complex system displaying self-similarity 
across different scales (cf., for example, (Mandelbrot, 1983; Edgar, 2008)). 
In other words, fractality means that the structure of the whole is repeat-
ed/reflected in the structure of its parts on many levels (cf., for example, 
(Coleman and Pietronero, 1992; Calcagni, 2010)). It is possible to find for-
malized mathematical definition of fractals in (Lapidus, et al, 2017). 

According to Peirce, there are three relational types of signs: icon, index, 
and symbol. Thus, as a particular case of signs, a conceptual symbol has the 
sign triad of Peirce is its structure. 

Definition 2.1. An icon is an image of the object it signifies.  
Photographs at the level of direct resemblance or likeness are prototypi-

cal examples of icons. Computer icons helped popularize the word being, as 
well as the pictographs such as those used on "pedestrian crossing" signs, 
typical examples of icons. There is no real connection between an object and 
its icon other than the likeness, so the mind itself is required to see the simi-
larity and associate the two. A characteristic of the icon is that by observing 
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it, we can derive information about its object. The more simplified the im-
age, the less it is possible to learn. No other kind of signs gives that kind of 
information.  

Peirce further divides icons into three kinds: 
² images have the simplest quality, the similarity of aspect, while por-

traits, photographs, and computer icons are images.  
² diagrams represent relationships of parts rather than tangible fea-

tures, while block schemes, flowcharts, and algebraic formulae are 
diagrams.  

² metaphors possess a similarity of character, representing an object 
by using parallelism in some other object being widely used in poetry 
and language. 

One more type of signs index has a causal and/or sequential relationship 
to its object. A key to understanding inGLFHV��RU� LQGH[HV�� LV� WKH�YHUE�³indi-
FDWH�´� RI� ZKLFK� ³LQGH[´ is substantive. For instance, directly perceivable 
events that can act as a reference to events that are not directly perceivable, or 
in other words, something visible that indicates something out of sight, are 
indices. You may not see a fire, but you do see the smoke and that indicates to 
you that a fire is burning and the smoke is its index. Such words as this, that, 
these, and those are also indices. The nature of the index can be unrelated to 
that of the signified, but the connection with it is logical and organic, e.g., the 
two elements are inseparable, and there is little or no participation of the 
mind to see this connection. Indices are generally non-deliberate, although 
written or printed arrows are just one example of deliberate ones.  

A symbol represents something in a completely arbitrary relationship 
with its object. The connection between the signifier/name and signi-
fied/object depends entirely on the observer, or more exactly, what the ob-
server was taught. Symbols are subjective. Their relation to the signified 
object is dictated either by social and cultural conventions or by habit. 
Words are the best example of symbols. Whether as a group of sounds or  
a group of characters, they are only linked to their signified because people 
decide they are  and because the connection is neither physical nor logical, 
words change the meaning or objects change names as time goes by. Here it 
all happens in mentality and depends on it.  

Note that contrary to Peirce, the French linguist Ferdinand de Saussure 
(1857±1913) understood the concept sign as a subcategory of the concept 
symbol. This relation is represented by the Dyadic Sign Triad of Saussure 
and is presented in Figure 2 (Saussure, 1916).  
 

Signification 
 

sign                         signified 
 

Figure 2. The Dyadic Sign Triad of Saussure 
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Note that this triad is a kind of the fundamental triad (Burgin, 2011).  
Indeed, we have the following definition. 
Definition 2.2.(a) A basic named set, also called a basic fundamental 

triad, is a triad X = (X, f, N) with the following visual (graphic) representa-
tion: 

f 
X                                            N 

 
(b) A bidirectional named set, also called a bidirectional fundamental 

triad, is a triad X = (X, f, Z) with the following visual (graphic) representa-
tion: 

f 
X                                            N 

 
The theory of named sets provides unified foundation of mathematics 

encompassing set theory, logic, category theory and homotopy type theory 
as its subtheories (Burgin, 2004). Moreover, it is proved that all mathemati-
cal structures, e.g., functions, relations, graphs, categories, functors, opera-
tors, and topological spaces, are either named sets or systems of named sets 
(Burgin, 2011). 

Returning to the concept of sign, we see that in contrast to de Saussure 
and Peirce, Morris defines sign in a dynamic way relative to some interpret-
er. He writes that S is a sign (the sign name) of an object or objects D for an 
interpreter I to the degree that I takes the account of D in virtue of the pres-
ence of S (Morris, 1938). Thus, the object S becomes a sign only if somebody 
(an interpreter) interprets S as a sign (the sign name). This gives us the fol-
lowing diagram.  

 
                                                        Interpreter (I) 

 

 

            Sign/Sign Name (S)                                             Object (D) 
 

Figure 3. The Dynamic Sign Triad of Morris 
 

 
According to Morris, the sign name is what supports the triadic relation 

of the sign with other signs, with designated objects and with the subjects 
using the sign. These relations are represented by the corresponding fields 
of semiotics. 

The Dynamic Sign Triad of Morris also correlates with the Existential 
7ULDG�RI�WKH�ZRUOG��,Q�0RUULV¶� WULDG�� WKH�name corresponds to the World of 
Structures as a syntactic system, the object can be associated with the Physi-
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cal World, and the Interpreter corresponds to the Mental World as a system 
mentality that comprehends S as a sign (symbol). At the same time, the  
object can be non-material and thus, beyond the Physical World. Neverthe-
less, the object is always closer to the Physical World. On the one hand, this 
implies that the Peircean triad is homomorphic to the Existential Triad of 
the world, while on the other hand, it demonstrates fractality of the Existen-
tial Triad of the world, which is repeated in a diversity of other natural and 
artificial systems. 

Observing symbols and signs, we can see their inherent relation to con-
cepts. Indeed, let us look at the Concept Triangle of Russell presented in 
Figure 4 (Russell, 1905). Then taking Denotation as an Object, we come 
from the Concept Triangle of Russell to the Balanced Sign Triad (Sign Tri-
angle) of Peirce while interpreting Object as Denotation, we come from the 
Sign Triangle of Peirce to the Concept Triangle of Russell. 

 

Concept name 

 
 

Denotation                                      Meaning 
 

Figure 4. The Concept Triangle of Russell 
 

The most advanced model of concepts²the Representational Triad² 
presented in Figure 5 is homomorphic to the Dyadic Sign Triad of Saussure 
(Burgin and Gorsky, 1991; Burgin, 2012). At the same time, both of them are 
particular cases of the fundamental triad. 

 
            Concept Name                                Conceptual Representative 

 
Figure 5. The Representational Triad of a Concept 

 

Signs, symbols, and concepts are structures. Computations are per-
formed by operation with structures. That is why we present the exact defi-
nition of a structure. 

Traditionally it is defined as follows (cf., for example, (Robinson, 1963; 
Grossmann, 1990; Tegmark, 2008)): 

Definition 2.3. A structure is (a representation of) a complex entity 
that consists of parts in relations to each other.  

However, it was demonstrated that this definition is essentially incom-
plete. A more comprehensive formal definition was suggested by Bourbaki 
in the case of mathematical structures (Bourbaki, 1957).  
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It is necessary to remark that Bourbaki (1957; 1960) also elaborated  
a formal definition of a general mathematical structure as a very abstract 
concept. Here we provide a short description of the formal definition from 
(Bourbaki, 1960) omitting some formal details and expressions. 

Bourbaki start their definition of a structure 6 with a finite sequence of 
ordered pairs of whole numbers, calling this sequence an echelon construc-
tion scheme. Then taking such a scheme S and n terms E1 , E2 , E�� �� «� �� �En , 
which denote (name) sets, in a formal theory T that is stronger that a theory 
of sets, such as ZF, they build an echelon construction E of the scheme S on 
the sets E1 , E2 , E����«����En , which are taken as the building blocks of the induc-
tive construction employed by Bourbaki.  Each step of this construction con-
sists either of taking the Cartesian product (E u F) of two sets obtained in 
the preceding steps or of taking the power set 2D of the set D obtained in the 
previous steps.  This echelon construction of the scheme S is a sequence of 
terms in the theory T built according to the scheme S. After building this 
construction, Bourbaki take (in the theory T) a formal representation of a 
group of mappings fi: Ei  ĺ Ei¶ (i  ����������«���m) and determine canonical 
extensions with the scheme S of the mappings fi to a mapping of an echelon 
construction E of the scheme S on the sets E1 , E2 , E����«����En . 

After this, Bourbaki characterize a typification T of letters x1 , x2 , x3 ��«��  -
xn in T. Subsequently, they delineate the concept of a transportable relation 
with respect to T. Next Bourbaki define (1) a species of the structure 6 in T 
as a text that is a combination of letters x1 , x2 , x3 ��«��  xn , s , terms in T, (2) a 
typification T{x1 , x2 , x3 ��«� �  xn , s} of the letters x1 , x2 , x3 ��«� �  xn , s in T 
called the typical characterization of the species of the structure 6, and (3) a 
relation R{ x1 , x2 , x3 ��«��  xn , s} that is transportable with respect to T and 
called the axiom of the species of the structure 6. 

7R�GHILQH�D�³VSHFLHV�RI�VWUXFWXUH´�6, Bourbaki take:  
(1) n sets E1 , E2 , ... , En ��DV�³SULQFLSDO�EDVH�VHWV�´ 
(2) m sets A1 , A2 ��«���Am ��WKH�³DX[LOLDU\�EDVH�VHWV´��DQG�ILQally 
(3) a specific echelon construction scheme S(X1 , X2 , ... , Xn , A1 , A2 ��«���

Am). 
All these auxiliary constructions and definitions allow Bourbaki to define 

the structure of species 6, taking terms E1 , E2 , E�� ��«� �� �En in the theory T as 
principal base sets. Namely, this construction leads to the following defini-
tion (Bourbaki, 1960). 

Definition 2.4. A term U in the theory T is called a structure of species 
6 if the relation 

                                 T{E1 , E2 , E����«����En , U}& R{E1 , E2 , E����«����En , U} 
is a theorem in T. 
Covering several pages in the book (Bourbaki, 1960), the completely for-

malized formal definition of a structure in the sense of Bourbaki is essential-
ly much more complex and much longer than the partially formal definition 
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given above. Besides, this definition is too abstract and complicated even for 
the majority of mathematicians, who prefer to use an informal notion of  
a mathematical structure or the definition where a structure is formalized as 
a set with UHODWLRQV�LQ�WKLV�VHW��$V�&RUU\��������ZULWHV��%RXUEDNL¶V�FRQFHSW�RI�
structure was, from a mathematical point of view, a superfluous undertak-
ing. Even Bourbaki themselves did not use this formalized concept in their 
later books of the (OpPHQWV after they had introduced it in Theory of Sets 
(Bourbaki, 1960). However, being overcomplicated, this definition is still 
incomplete. For instance, this definition does not discern inner and outer 
structures. 

The complete formal definition of a structure was developed in the gen-
eral theory of structures including both formal and informal forms (Burgin, 
2012). Here we give only an informal definition of set-theoretical structures. 
There are also mereological structures, which are defined and explored in 
(Burgin, 2012). 

Definition 2.5. A structure R consists of elements/parts and connec-
tions/relations of the three categories: 

² Connections/relations between (groups of) elements/parts 
² Connections/relations between (groups of) elements/parts and 

(groups of) connections/relations 
² Connections/relations between (groups of) connections/relations 
Note that elements themselves can be and often are structures. This 

property is called nesting and is used in many processes to improve their 
efficiency (Burgin, 2020). 

Structures, elements of which are also structures, are called super-
structures. 

According to the general theory of structures (Burgin, 2012), there are 
three existential types of structures:  

1. Ideal structures 
2. Abstract structures 
3. Embedded structures 
Embedded structures are structures of physical systems (things), such as 

tables, trees or cars, and of mental systems, such as thoughts or values. An 
interesting example of a structure embedded in the mentality of society is  
a moral space studied in (Boltuc, 2013). 

Abstract structures exist in the mentality of people or groups of people 
and are characterized only by their properties. 

Ideal structures dwell in the world of structures described for example in 
(Burgin, 2017). 

This world is the scientific incarnation of the world of Plato Ideas 
(Forms). Indeed, for millennia, the enigma of the world of Ideas or Forms, 
which Plato suggested and advocated, has been challenging the most promi-
nent thinkers of the humankind. The solution to this problem was found 
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only recently. Namely, an Idea/Form in the Platoތs sense can be interpreted 
as a scientific object called a structure. The difference is that Plato Ide-
as/Forms do not have a rigorous inclusive definition while structures have 
an accurate definition in the general theory of structures (Burgin, 2012). 
Based on this definition, it was demonstrated that structures have the basic 
properties of Platoތs Ideas. In addition, it was proved the existence the 
world of ideal structures (Burgin, 2017).  

It is also important that it was possible to discover the most basic atomic 
structure in the world of structures. It is called fundamental triad or named 
set (Burgin, 2011). Its definition is given in Section 2. Any structure is either 
a fundamental triad (named set) or is built of some number of fundamental 
triads (named sets). It means that the discovery of fundamental triad 
(named set) actually accomplished the search at first of philosophers and 
later of physicists for the entity out of which everything in the world is built. 
In this sense, the theory of named sets is the theory of everything (Burgin, 
2011). 

Assessing the place of structures in the world and their roles, it was 
found in the general theory of structures (Burgin, 2012) that systems have 
five substantive types of structures: inner, internal, intermediary, outer, 
and external structures.   

 According to the general theory of structures, we have the following def-
initions of these types: 

Definition 2.6. (a) An internal structure TQ of a system R contains on-
ly inner structural parts, components and elements, i.e., parts, components 
and elements of R, relations between these parts, components and elements, 
relations between these parts, components, elements and relations from TQ 
and relations between relations from TQ. 

(b) An inner structure IQ of a system R is a substructure of an internal 
structure TQ of R, where IQ is obtained by exclusion of (1) the whole system 
R as a part, component or element of itself and (2) all relations that in- 
clude R.   

(c) An external structure EQ of a system R is an extension of the internal 
structure, in which other systems, their parts, components and elements are 
included, as well as relations between all these included parts, components 
and elements, relations between these parts, components, elements and 
relations from EQ and relations between relations from EQ. 

(d) An intermediate structure MQ of a system R is a substructure of an 
external structure EQ of R, where MQ is obtained by exclusion of (1) the 
whole system R and other systems from EQ, as well as (2) all relations that 
include these systems.    

(e) An outer structure OQ of a system R is an inner structure of a system 
U in which R is only one of the inner elements of the inner structure IQ of 
the system U. 
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It is also possible to classify structures by their elements. It results in 
three pure classes of structures: 

² Subsymbolic structures have only elements that are not treated as 
symbols but as parts of symbols 

² Symbolic structures have only elements that are treated as symbols 
² Super-symbolic structures have elements that are assembled from 

symbols   
Examples of subsymbolic structures are sets of pixels on the screen of  

a computer, tablet or TV set. 
Symbolic structures are composed of symbols in a simple way, that is, 

these structures have low structural complexity. Symbols, words, texts as  
a linear composition of words, and sets are symbolic structures. 

Letters and digits are paradigmatic examples of symbols while words and 
numerals are examples of symbolic structures. 

Texts, hypertexts, and diagrams are examples of super-symbolic struc-
tures. 

In addition, there are mixed structures, which have elements of both 
types: 

² Hybrid structures have both elements that are comprehended as 
symbols and elements that are treated as parts of symbols 

² Fused structures have both elements that are recognized as symbols 
and elements that are operated as super-symbolic structures, for ex-
ample, as assemblages of symbols 

² Blended structures have both elements that are identified with  
subsymbols and elements that form super-symbolic structures, for 
example, as assemblages of symbols 

² Symbiotic structures have elements of all three pure types 
 

According to the general theory of structures, there is a hierarchy of 
structures composed of different orders of structures (Burgin, 2017). 

Let us consider the mathematical formalization of the two first levels of 
this hierarchy. 

Definition 2.7 (Burgin, 2012). A first-order structure is a triad of the 
form 

A = (A, r, R) 

In this expression, we have: 
² the set A, which is called the substance of the structure A and consists 

of elements of the structure A, which are called structure elements of the 
structure A 

² the set R, which is called the arrangement of the structure A and con-
sists of relations between elements from A in the structure A, which have 
the first order and are called structure relations of the structure A 
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² the incidence relation r, which connects groups of elements from A 
with the names of relations from R 

Examples of structures of the first order:  
 

The order relation: 1 < 2 < 3 < 4 < 5 
A string: a ± b ± c ± d ± e  
A word:  s ± e ± v ± e ± n 

 
Definition 2.8 (Burgin, 2012). A second-order structure is a triad of 

the form 

A = (A, r, R) 
Here 
² the set A, which is called the substance of the structure A and consists 

of elements of the structure A, which are called structure elements of the 
structure A 

² the set R, which is called the arrangement of the structure A and con-
sists of relations in the structure A, which are called structure relations of 
the structure A  

² r is the incidence relation that connects groups of elements from A 
and/or relations from R with names of relations from R 

² R = R1 � R2 � R3 
² R1 is the set of relations between the elements from the set A 
² R2 is the set of relations in the set R1, i.e., elements from R2 are rela-

tions between relations from R1 
² R3 is the set of relations between elements from A and relations from 

R1 
 

Relations from R2 and R3 are called relations of the second order in A. 
 

Second-order structures are used to represent data processed by struc-
tural machines of the second order. 

Similarly, we determine relations and structures of higher orders. 
 
Examples:  

1. The strict order < on numbers is a suborder of the non-strict order d on 
numbers. This is a relation of the second order. 

2. Addition and subtraction are ternary relations. Subtraction is inverse 
to addition. This is a relation of the second order. 

3. A function is a binary relation. When one function is an extension of 
another function, it defines a relation of the second order. 

4. 0 is neutral element with respect to addition. This is a relation of the 
second order. 

5. Taking relations between people, when the relations between A and B 
are better than the relations between A and D, it defines a relation of the 
second order. 
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In information technology, supercomputers are computers that have es-
sentially better characteristics of information processing in comparison with 
ordinary computers. Usually, the improved characteristic is the higher speed 
of computing. In a similar way, superstructures are structures that have 
essentially higher complexity. 

Symbolic superstructures are composed from symbols and symbolic 
structures. Intricate hypertexts, operational schemas, multicomponent im-
ages, and structures of higher order are symbolic superstructures. 

Now let us analyze how operating with different types of structures shape 
specific types of information processing in general and computation in par-
ticular. 

 
 

3. SUBSYMBOLIC COMPUTATIONS IN NATURE  
AND ARTIFICIAL DEVICES 

 
Although there are different definitions of subsymbolic computation, 

here we uphold the following definition. 
Definition 3.1. Subsymbolic computation is computation in which el-

ements of processed data are not interpreted as symbols or sets of symbols 
by the computing system. 

This well correlates with the opinion that in a system performing sub-
symbolic computation, the objects of computation are more fine-grained 
than the objects of semantic interpretation (Chalmers, 1992). 

For instance, it is often assumed that the tokens manipulated by neural 
networks performing primitive operations are subsymbolic as they are lo-
cated at a level lower than that of the symbols (Rumelhart, McClelland, 
1986; Smolensky, 1988). Examples of such tokens are the activation values 
of neurons. In many cases, in a system performing subsymbolic computa-
tion, the computational level lies beneath the representational level 
(Chalmers, 1992). 

Starting from the last quarter of the 19th century, there was an assump-
tion in computer science, artificial intelligence and cognitive sciences that 
neural networks, which represent the connectionist model, perform sub-
symbolic computations. For instance, Smolensky introduced the following 
Subsymbolic HySRWKHVLV�DV�³WKH�FRUQHUVWRQH�RI�WKH�VXEV\PEROLF�SDUDGLJP´� 
 

³7KH� LQWXLWLYH�SURFHssor is a subconceptual connectionist dynamical system 
that does not admit a complete, formal, and precise conceptual level descrip-
WLRQ�´�(Smolensky, 1988) 

 
A paradigmatic example of subsymbolic computations is provided by ar-

tificial neural network, which lately became extremely popular due to their 
ability to perform deep learning. 
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Analog computing is another important form of subsymbolic computa-
tions. 

In comparison with symbolic computation, subsymbolic computation has 
the following advantages (Kwasny, Faisal, 1992): 

² It is more robust in noisy conditions 
² Provides better performance for analog data 
² It demands less knowledge upfront 
² It is easier for scaling up 
² It better adapts to Big Data 
² It is better for perceptual problems 
² It is more useful for building models in neuroscience 
Indeed, now the prevailing opinion of neuroscientists is that intuitive 

mental processes that internal functioning of the brain does not utilize  
a symbolic description but require subsymbolic descriptions inherent for 
connectionist architecture. As a result, the subsymbolic paradigm provides 
better means for modeling the capabilities of the brain, which also im-
plies reduction of mental to neural computation. 

 
 

4. SYMBOLIC COMPUTATIONS AS THE BASIC FORM  
OF ALGORITHMIC INFORMATION PROCESSING 

 
Now we come to symbolic computations. In contrast to subsymbolic 

computation, in a system performing subsymbolic computation, the objects 
of computation are also objects of semantic interpretation and very often the 
computational level coincides with the representational level (Chalmers, 
1992). 

Definition 4.1. Symbolic computation is computation in which ele-
ments of processed data are interpreted as symbols by the computing sys-
tem and computation is performed by the individual transformation of these 
symbols. 

Turing machines are the paragon of automata performing symbolic  
computations. Indeed, on each step of its computation a Turing machine, 
observes a symbol in a cell of its tape and eventually changes this symbol to 
another symbol before moving to another cell. 

In comparison with subsymbolic computation, symbolic computation has 
the following advantages (Kwasny, Faisal, 1992): 

² In it, introspection more useful for coding 
² It is easier to debug 
² It is easier to understand and explain 
² It is easier to control 
² It is more efficient for solving abstract problems 
² ,W�LV�EHWWHU�DGDSWHG�IRU�H[SODLQLQJ�SHRSOH¶V�WKLQNLQJ 
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At the same time, the symbolic/subsymbolic distinction does not imply 
the architectural dissimilarity (Chalmers, 2018). Indeed, on the one hand, 
Turing machines can and contemporary digital computers do simulate neu-
ral networks, which are paradigm examples of subsymbolic computation. 
On the other hand, neural-network can precisely model Turing machines 
(Siegelman, 1999).  

Connectionist paradigm also does not contradict the possibility to imply 
it using symbolic computation. Indeed, cellular automata have the connec-
tionist architecture but each cell of these automata performs symbolic com-
putation (cf., for example, (Burgin, 2005)). 

Now we can describe the new type of computation. 
 
 
5. SUPER-SYMBOLIC COMPUTATIONS AS A NEW DIMENSION  

OF INFORMATION PROCESSING 
 
Analysis of real-life computations show that computers and other ad-

vanced information processing systems, such as the brain, operate not only 
with symbolic and subsymbolic data but also with essentially more advanced 
structures.   

Definition 5.1. Computation is super-symbolic when symbolic struc-
tures of higher orders and superstructures are transformed as holistic ob-
jects. 

This contrasts symbolic computations where symbolic structures are 
transformed by operating with separate symbols. 

Super-symbolic (transcendent) computation is a model of functioning of 
the right hemisphere of the brain. Indeed, processing images of material 
systems by transformations of holistic shapes is an example of super-
symbolic computation.  

One more important example of super-symbolic computation is opera-
tion with schemas (Burgin, Mikkilineni, 2021). These processes are very 
important for the functioning of the mind because the framework of schema 
theory can provide a better bridge from human psychology to brain theory 
than that offered by the symbol systems (Arbib, 2021). 

The advantage of the super-symbolic (transcendent) computing is its 
ability to operate big formal and informal systems of data and knowledge 
with high efficiency. That is why the implementation of super-symbolic 
computing is the way to the solution of the problem of big data and infor-
mation overflow. 
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6. AMALGAMATED LEVELS OF COMPUTATION 
 
The combinations of pure types give mixed types of information pro-

cessing. The first step in this direction gives us hybrid computation, which 
comprises both symbolic and subsymbolic computations being a two-fold 
type of computations (Burgin, Dodig-Crnkovic, 2015). Hybrid computation 
allows combining advantages of both symbolic and subsymbolic computa-
tions. 

Researchers found that individual neurons can perform symbolic compu-
tations (Cepelewicz, 2020; Gidon, et al, 2020). For instance, it was discov-
ered that individual dendritic compartments can also perform a particular 
computation²³H[FOXVLYH� 25´²that mathematical theorists had previously 
categorized as unsolvable by single-neuron systems. 

Moreover, some psychologists assume that the roots of arithmetic reside 
in single neurons (Dehaene, 2002). It means that neural networks in the 
brain perform both symbolic and subsymbolic computations, i.e., they oper-
ate is on the level of hybrid computation. 

 
Conventional models of computation perform either symbolic computa-

tion, e.g., finite automata, Turing machines, inductive Turing machines or 
Random Access Machines (RAM), or subsymbolic computation, e.g., neural 
networks or cellular automata. New models, such as neural Turing machines 
(Graves, et al, 2014; Collier, Beel, 2018) or structural machines with sym-
bolic and subsymbolic processors, carry out hybrid computation. 

A neural Turing machine is a recurrent neural network with a network 
controller connected to external memory resources. As a result, it combines 
subsymbolic computation of neural networks with symbolic computation of 
Turing machines. 

Super-symbolic (intuitive) computation adds one more dimension to the 
general schema of computational processes. This allows merging this type 
with already known types brings us to the system of three twofold types of 
computation: 

²  hybrid computation combines symbolic and subsymbolic computa-
tion 

² blended computation combines subsymbolic and super-symbolic 
computation 

² fused computation combines symbolic and super-symbolic computa-
tion 

While it is easy to understand how information processing systems, such 
as computers or the brain, can perform fused computations, realization of 
blended computation looks more intriguing. One way to do this is simply to 
utilize two types of processors in the computing system²processors of one 
type work with subsymbolic data whereas processors of the other type oper-
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ate super-symbolic data. Another mode of blended computation has two 
stages. At the first stage, the computing system processes subsymbolic input 
data developing one or several super-structures. These super-structures are 
handled at the second stage of the computational process. For instance,  
a neural network can aggregate or find an operational schema and then this 
schema is used and transformed, for example, improved, by an appropriate 
assembly of neural networks. 

Synthesizing super-symbolic computation with symbolic (rational) com-
putation and subsymbolic (intuitive) computation in one model, we come to 
symbiotic computation. Structural machines with flexible types of proces-
sors can accomplish symbiotic computation. Symbiotic computation allows 
combining advantages of all three pure types of computation representing 
the entire type of computations. 

Thus, there is also one entire type of information processing: 
²  symbiotic computation combines all three pure types of information 

processing. 
It is possible to consider symbiotic computation as the highest level of 

computation as it comprises all other types of computation. 
 
 

7. OPERATING WITH STRUCTURES AND SCHEMAS 
 
The identification of the new types of computation needs machines that 

would be able to perform such computations. Structural machines provide 
means for all types of computation including symbiotic computation when 
the machines possess processors of different types (Burgin, Adamatzky, 
2017; Burgin, 2020). Let us describe these powerful models of computation. 

A structural machine M works with structures of a given type and has 
three components: 
 

1. The control device CM regulates the state of the machine M 
2. The (entire) processor PM performs transformation of the processed 

structures and its actions (operations) depend on the state of the ma-
chine M and the state of the processed structures. The entire proces-
sor consists of one or several unit processors. When a structural ma-
chine is considered only as a theoretical model, it is possible that the 
entire processor contains infinitely many unit processors. 

3. The functional space SpM consists of three components: 
� The input space InM, which contains the input structure(s). 
� The output space OutM, which contains the output structure(s).  
� The processing space PSM, in which the input structure(s) is 

transformed into the output structure(s), which form the results 
of computation of a structural machine.  
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Unit processors can move in the processing space performing operations 
with structures in their neighborhoods according to the rules of their struc-
tural machine. Unit processors can function in the centralized mode when 
they are regulated by the common centralized control device. When the 
structural machine has the distributed control device, which consists of sev-
eral unit control devices, the unit processors of this machine can function in 
two modes: clusterized and totally distributed modes. In the clusterized 
mode, all unit processors of the structural machine are divided into several 
groups (clusters) and each group works with its own control device. In  
a totally distributed mode, each unit processor has its individual control 
device. This architecture of the structural machine allows considerable flexi-
bility and adaptivity. 

Unit processors of one structural machine can be of different types and 
categories. For instance, it is possible that one unit processor is a Turing 
machine, another unit processor is a neural network, while the third one is  
a cellular automaton and one more unit processor is an inductive Turing 
machine. 

It is natural to assume that all structures²the input structures, the out-
put structures and all processed structures²have the same type. 

The computation of a structural machine M determines the trajectory of 
computation, which is a tree in general case and a sequence when the com-
putation is deterministic and is performed by a single processor unit. 

 
 

8. CONCLUSION 
 
Information, and the computing structures that process it, play a critical 

role in how we, as humans, perceive the structural reality that surrounds us 
and how we interact with it. The Existential Triad of the world derived from 
the general theory of information describes the three worlds that interact 
with each other (Burgin, 2012).  First, we have the material world, where 
structures exist and obey the laws of conversion of energy and matter. Bio-
logical systems have through evolution, and natural selection developed 
information processing structures that receive information about other ma-
terial structures through various senses they have developed using their 
physical structures. 

In addition, there is a mental world encompassing mental structures. 
Mental structures allow living sysWHPV�WR�FUHDWH�DQG�XVH�WKHLU�³YLWDO�SRWHQWi-
DOLWLHV� DQG� OLIH� SURFHVVHV�´�$FFRUGLQJ� WR� WKH� JHQHUDO� WKHRU\�RI� LQIRrmation, 
knowledge derived from information can be represented in the form of ideal 
VWUXFWXUHV�FRQVLVWLQJ�RI�DQ�DWRPLF�VWUXFWXUH�FDOOHG�WKH�³IXQGDPHQWDO�WULDG�´�
The fundamental triad (also known as a name set) consists of entities, rela-
tionships, and behaviors caused by actions and events that change the state 



 Seven Layers of Computation: Methodological Analysis and  « 29 

of the entities performing information processing in general and computa-
tion in particular. 

In this paper, we have discussed two types of computational structures 
namely, symbolic and subsymbolic computation, which are ubiquitous in 
the current state of the art in information technologies. Symbolic computing 
deals with the evolution of structures made up of symbols and subsymbolic 
computing deals with elements of processed data that are not interpreted as 
symbols or sets of symbols by the computing system. Deep learning using  
a neural network model is an example.  

In addition, we have also analyzed super-symbolic computation where 
structures as holistic objects are processed in contrast to symbolic computa-
tion where sequences of symbols are processed. This approach has many 
advantages (Burgin, Mikkilineni 2021) going beyond current symbolic and 
subsymbolic computational methods used in information technologies.  
The highest type²symbiotic computation allows us to use symbolic, sub-
symbolic, and super-symbolic computations. An application of symbiotic 
computing using symbolic, subsymbolic, and super-symbolic computing is 
discussed in Burgin-Mikkilineni Thesis (Burgin, Mikkilineni, 2021; Mik-
kilineni, 2022). The other three forms of computing are fused computation, 
blended computation, and hybrid computation, which are also observed in 
nature. 

In this paper, we have presented a new and comprehensive picture of in-
formation structures, information processes (computations), and the associ-
ated tools derived from the general theory of information. We hope that this 
will guide us to not only understand how we as humans process and use 
information, but also will allow us to build a new class of digital automata 
that mimic how people process information. 
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