Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


2022 | 1 | 35-53

Article title

mRNA expressions MMP-2 and MMP-9 as potential molecular markers for distinguishing the boundary between tumour and normal tissue in basal cell carcinoma

Content

Title variants

PL
mRNA dla MMP-2 i MMP-9 jako potencjalne markery molekularne pozwalające na rozróżnienie granicy między guzem a tkanką prawidłową w przypadku raka BCC

Languages of publication

Abstracts

PL
Wprowadzenie: Nieczerniakowe nowotwory skóry (NMSC) są najczęstszymi nowotworami złośliwymi, których liczba stale rośnie. BCC charakteryzuje się powolnym wzrostem, a główną cechą kliniczną tego guza jest naciekanie okolicznych tkanek i niszczenie sąsiadujących struktur. Materiał i metody: Ekspresję transkryptów mRNA dla kolagenu typu I i IV oraz MMP-2 i MMP-9 porównano w biopsjach skóry od pacjentów z BCC skóry oraz w biopsjach zdrowej skóry z marginesu guza. W badaniu wzięło udział 70 pacjentów, u których zdiagnozowano BCC. Wyniki: Stwierdzono różnice między ekspresją mRNA dla MMP-2 i MMP-9, kolagenu typu I i IV w BCC guzkowym i naciekowym w próbkach tkanek nowotworowych i tkanek prawidłowych pobranych z marginesów guza tych samych pacjentów. Wnioski: Istotnie wyższe poziomy ekspresji mRNA dla kolagenu typu I, MMP-2 i MMP-9, a także zawsze niższe poziomy ekspresji mRNA dla kolagenu typu IV w tkance nowotworowej w porównaniu z tkanką marginesu guza uzyskaną od tych samych pacjentów wykazano w obu typach BCC. Postrzegane różnice wskazują na inną rolę kolagenu I i kolagenu IV w patomechanizmie BCC.
EN
Introduction: Non-melanoma skin cancers (NMSC) are the most common malignant neoplasms, the number of which continues to increase. BCC is characterized by slow growth, its main clinical feature being that it infiltrates adjacent tissues and destroys adjacent structures. Material and methods: The expression of mRNA transcripts for collagen types I, IV and MMP-2 and MMP-9 were compared in skin biopsies from patients with BCC of the skin and in the biopsies of healthy skin from the tumour margin. The study involved seventy patients diagnosed with BCC. Results: The differences between mRNA expressions for MMP-2 and MMP-9, type I collagen and type IV collagen were investigated in nodular and infiltrative BCC both in tumour tissue samples and normal tissue samples taken from the tumour margins of the same patients. Conclusions: Significantly higher levels of mRNA expressions for type I collagen, MMP-2 and MMP-9, as well as consistently lower levels of mRNA expression for type IV collagen in tumour tissue compared to tumour margin tissue obtained from the same patients, were identified in both types of BCC. These differences indicate a different role for collagen I and collagen IV in the pathomechanism of BCC.

Year

Issue

1

Pages

35-53

Physical description

Dates

published
2022

Contributors

  • Andrzej Frycz Modrzewski Krakow University, Faculty of Health and Medical Studies, Division of Medical Cosmetology, Krakow, Poland
  • University of Applied Sciences in Tarnow, Faculty Of Health Sciences, Department of Nursing, Tarnów, Poland
  • Andrzej Frycz Modrzewski Krakow University, Faculty of Health and Medical Studies, Krakow, Poland
  • Medical University of Warsaw, Student’s Science Society of the Department of Infectious and Tropical Diseases and Hepatology, Warsaw, Poland

References

  • Epstein EH Jr. Mommy – where do tumors come from?. J Clin Invest. 2011; 121(5):1681–1683. doi: 10.1172/JCI57700.
  • Tanese K. Diagnosis and Management of Basal Cell Carcinoma. Curr Treat OptionsOncol. 2019; 20(2): 13. doi: 10.1007/s11864-019-0610-0.
  • Owczarek W, Rutkowski P, Słowińska M, Wysocki W, Sołtysiak M, Nowecki ZI, Lesiak A, Herman K, Czajkowski R, Rudnicka L, Jeziorski A. Zalecenia dotyczące leczenia raka podstawnokomórkowego i raka kolczystokomórkowego przygotowane przez Sekcję Onkologiczną Polskiego Towarzystwa Dermatologicznego i Sekcję Akademia Czerniaka Polskiego Towarzystwa Chirurgii Onkologicznej. Onkol Prakt Klin Edu. 2015; 1(2): 96–106.
  • Migden MR, Chang ALS, Dirix L, Stratigos AJ, Lear JT. Emerging trends in thetreatment of advanced basal cell carcinoma. Cancer Treat Rev. 2018; 64: 1–10. doi:10.1016/j.ctrv.2017.12.009.
  • Cigna E, Tarallo M, Maruccia M, Sorvillo V, Pollastrini A, Scuderi N. Basal cell carcinoma: 10 years of experience. J Skin Cancer. 2011; 2011: 476362. doi:10.1155/2011/476362.
  • Kapka-Skrzypczak L, Dudra-Jastrzębska M, Czajka M, Raszewska-Famielec M, Popek S, Sawicki K, Kruszewski M. Charakterystyka kliniczna oraz molekularne podstawy nowotworów skóry. Hygeia Public Health. 2014; 49(1): 39–45.
  • Pabiańczyk R, Cieślik K, Tuleja T. Metody leczenia raka podstawnokomórkowego skóry / Management methods of basal cell carcinoma. Chirurgia Polska / Polish Surgery. 2011; 13(1): 48–58.
  • Ciążyńska M, Szczęsna P, Narbutt J, Lesiak A. Przypadek raka podstawnokomórkowego skóry – jak leczyć, gdy chirurg już nic nie może?. Forum Derm. 2017; 3(2): 58–62.
  • Peris K, Fargnoli MC, Garbe C, Kaufmann R, Bastholt L, Seguin NB, Bataille V, Del Marmol V, Dummer R, Harwood CA, Hauschild A, Höller C, Haedersdal M, Malvehy J, Middleton MR, Morton CA, Nagore E, Stratigos AJ, Szeimies RM, Tagliaferri L, Trakatelli M, Zalaudek I, Eggermont A, Grob JJ; European Dermatology Forum (EDF), the European Association of Dermato-Oncology (EADO) and the European Organization for Research and Treatment of Cancer (EORTC). Diagnosis and treatment of basal cell carcinoma: European consensus-based interdisciplinary guidelines. Eur J Cancer. 2019; 118: 10–34. doi: 10.1016/j.ejca.2019.06.003.
  • Sobolewska-Sztychny D, Lesiak A. Charakterystyka raków podstawnokomórkowych skóry oraz związek ich rozwoju ze szlakiem transdukcji sygnału wewnątrzkomórkowego sonic hedgehog. Forum Derm. 2015; 1(1): 1–5.
  • Rigel DS. Cutaneous ultraviolet exposure and its relationship to the development of skin cancer. J Am Acad Dermatol. 2008; 58(5 Suppl 2): S129-132. doi: 10.1016/j.jaad.2007.04.034.
  • Dika E, Scarfì F, Ferracin M, Broseghini E, Marcelli E, Bortolani B, Campione E, Riefolo M, Ricci C, Lambertini M. Basal Cell Carcinoma: A Comprehensive Review. Int J Mol Sci. 2020; 21(15): 5572. doi: 10.3390/ijms21155572.
  • McDaniel B, Badri T, Steele RB. Basal Cell Carcinoma. National Library of Medicine; http://www.ncbi.nlm.nih.gov/books/NBK482439 [accessed: 16.05.2022].
  • Saldanha G, Fletcher A, Slater DN. Basal cell carcinoma: a dermatopathological and molecular biological update. Br J Dermatol. 2003; 148(2): 195–202. doi:10.1046/j.1365-2133.2003.05151.x.
  • Pazdrowski J, Dańczak-Pazdrowska A, Golusiński P, Szybiak B, Silny W, Golusiński W. Wznowy raka podstawnokomórkowego (BCC) twarzy w materiale Oddziału Chirurgii Głowy i Szyi i Onkologii Laryngologicznej Wielkopolskiego Centrum Onkologii w latach 2007–2010. Otolaryngologia Polska. 2012; 66(3): 185–190.
  • Montagna E, Lopes OS. Molecular basis of basal cell carcinoma. An Bras Dermatol. 2017; 92(4): 517–520. doi: 10.1590/abd1806-4841.20176544.
  • Dummer R, Guminski A, Gutzmer R, Dirix L, Lewis KD, Combemale P, Herd RM, Kaatz M, Loquai C, Stratigos AJ, Schulze HJ, Plummer R, Gogov S, Pallaud C, Yi T, Mone M, Chang ALS, Cornélis F, Kudchadkar R, Trefzer U, Lear JT, Sellami D, Migden MR. The 12-month analysis from Basal Cell Carcinoma Outcomes with LDE225 Treatment (BOLT): A phase II, randomized, double-blind study of sonidegib in patients with advanced basal cell carcinoma. J Am Acad Dermatol. 2016; 75(1): 113–125.e5. doi: 10.1016/j.jaad.2016.02.1226.
  • Dummer R, Guminksi A, Gutzmer R, Lear JT, Lewis KD, Chang ALS, Combemale P, Dirix L, Kaatz M, Kudchadkar R, Loquai C, Plummer R, Schulze HJ, Stratigos AJ, Trefzer U, Squittieri N, Migden MR. Long-term efficacy and safety of sonidegib in patients with advanced basal cell carcinoma: 42-month analysis of the phase II randomized, double-blind BOLT study. Br J Dermatol. 2020; 182(6): 1369–1378. doi: 10.1111/bjd.18552.
  • Li Y, Song Q, Day BW. Phase I and phase II sonidegib and vismodegib clinical trials for the treatment of paediatric and adult MB patients: a systemic review and meta-analysis. Acta Neuropathol Commun. 2019; 7(1): 123. doi: 10.1186/s40478-019-0773-8.
  • Bartoš V, Pokorný D, Zacharová O, Haluska P, Doboszová J, Kullová M, Adamicová K, Péč M, Péč J. Recurrent basal cell carcinoma: a clinicopathological study and evaluation of histomorphological findings in primary and recurrent lesions. Acta Dermatovenerol Alp Pannonica Adriat. 2011; 20(2): 67–75.
  • Mott JD, Werb Z. Regulation of matrix biology by matrix metalloproteinases. Curr Opin Cell Biol. 2004; 16(5): 558–564. doi: 10.1016/j.ceb.2004.07.010.
  • Woessner JF, Nagase H. Matrix Metalloproteinases and TIMPs. Oxford University Press, Oxford 2000.
  • Westermarck J, Kähäri VM. Regulation of matrix metalloproteinase expression in tumor invasion. FASEB J. 1999; 13(8): 781–792.
  • Gupta A, Kaur CD, Jangdey M, Saraf S. Matrix metalloproteinase enzymes and their naturally derived inhibitors: novel targets in photocarcinoma therapy. Ageing Res Rev. 2014; 13: 65–74. doi: 10.1016/j.arr.2013.12.001.
  • Murphy G, Nagase H. Progress in matrix metalloproteinase research. Mol Aspects Med. 2008; 29(5): 290–308. doi: 10.1016/j.mam.2008.05.002.
  • Nagase H, Visse R, Murphy G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res. 2006; 69(3): 562–573. doi: 10.1016/j.cardiores.2005.12.002.
  • Overall CM. Molecular determinants of metalloproteinase substrate specificity: matrix metalloproteinase substrate binding domains, modules, and exosites. Mol Biotechnol. 2002; 22(1): 51–86. doi: 10.1385/MB:22:1:051.
  • Dery MC, Van Themsche C, Provencher D, Mes-Masson AM, Asselin E. Characterization of EN-1078D, a poorly differentiated human endometrial carcinoma cell line: a novel tool to study endometrial invasion in vitro. Reprod Biol Endocrinol. 2007; 5: 38. doi: 10.1186/1477-7827-5-38.
  • Chen W, Fu X, Ge S, Sun T, Sheng Z. Differential expression of matrix metalloproteinases and tissue-derived inhibitors of metalloproteinase in fetal and adult skins. Int J Biochem Cell Biol. 2007; 39(5): 997–1005. doi: 10.1016/j.biocel.2007.01.023.
  • Duffy MJ, Maguire TM, Hill A, McDermott E, O’Higgins N. Metalloproteinases: role in breast carcinogenesis, invasion and metastasis. Breast Cancer Res. 2000; 2(4): 252–257. doi: 10.1186/bcr65.
  • Rao JS. Molecular mechanisms of glioma invasiveness: the role of proteases. Nat Rev Cancer. 2003; 3(7): 489–501. doi: 10.1038/nrc1121.
  • Tang CH, Tan TW, Fu WM, Yang RS. Involvement of matrix metalloproteinase-9 in stromal cell-derived factor-1/CXCR4 pathway of lung cancer metastasis. Carcinogenesis. 2008; 29(1): 35–43. doi: 10.1093/carcin/bgm220.
  • Sullu Y, Demirag GG, Yildirim A, Karagoz F, Kandemir B. Matrix metalloproteinase-2 (MMP-2) and MMP-9 expression in invasive ductal carcinoma of the breast. Pathol Res Pract. 2011; 207(12): 747–753. doi: 10.1016/j.prp.2011.09.010.
  • Piao S, Zhao S, Guo F, Xue J, Yao G, Wei Z, Huang Q, Sun Y, Zhang B. Increased expression of CD147 and MMP-9 is correlated with poor prognosis of salivary duct carcinoma. J Cancer Res Clin Oncol. 2012; 138(4): 627–635. doi: 10.1007/s00432-011-1142-6.
  • Bogaczewicz J, Dudek W, Zubilewicz T, Wroński J, Przywara S, Chodorowska G, Krasowska D. Rola metaloproteaz macierzy i ich tkankowych inhibitorów w angiogenezie. Pol Merkur Lekarski. 2006; 21(121): 80–85.
  • Chen GS, Lu MP, Wu MT. Differential expression of matrix metalloproteinase-2 by fibroblasts in co-cultures with keratinocytes, basal cell carcinoma and melanoma. J Dermatol. 2006; 33(9): 609–615. doi: 10.1111/j.1346-8138.2006.00141.x.
  • Hernández-Pérez M, El-hajahmad M, Massaro J, Mahalingam M. Expression of gelatinases (MMP-2, MMP-9) and gelatinase activator (MMP-14) in actinic keratosis and in in situ and invasive squamous cell carcinoma. Am J Dermatopathol. 2012; 34(7): 723–728. doi: 10.1097/DAD.0b013e31824b1ddf.
  • Singh S, Barrett J, Sakata K, Tozer RG, Singh G. ETS proteins and MMPs: partners in invasion and metastasis. Curr Drug Targets. 2002; 3(5): 359–367. doi:10.2174/1389450023347489.
  • Zaręba I, Donejko M, Rysiak E. Znaczenie i przydatność diagnostycznych metaloproteinaz w raku piersi. Nowotwory. Journal of Oncology. 2014; 64(6): 491–495.
  • Roh MR, Zheng Z, Kim HS, Kwon JE, Jeung HC, Rha SY, Chung KY. Differential expression patterns of MMPs and their role in the invasion of epithelial premalignant tumors and invasive cutaneous squamous cell carcinoma. Exp Mol Pathol. 2012; 92(2): 236–242. doi: 10.1016/j.yexmp.2012.01.003.
  • Poswar FO, Fraga CAC, Farias LC, Feltenberger JD, Cruz VPD, Santos SHS, Silveira CM, de Paula AMB, Guimarrães ALS. Immunohistochemical analysis of TIMP-3 and MMP-9 in actinic keratosis, squamous cell carcinoma of the skin, and basal cell carcinoma. Pathol Res Pract. 2013; 209(11): 705–709. doi: 10.1016/j.prp.2013.08.002.
  • Chen N, Nomura M, She QB, Ma WY, Bode AM, Wang L, Flavell RA, Dong Z. Suppression of skin tumorigenesis in c-Jun NH(2)-terminal kinase-2-deficient mice. Cancer Res. 2001; 61(10): 3908–3912.
  • El-Khalawany MA, Abou-Bakr AA. Role of cyclooxygenase-2, ezrin and matrix metalloproteinase-9 as predictive markers for recurrence of basal cell carcinoma. J Cancer Res Ther. 2013; 9(4): 613–617. doi: 10.4103/0973-1482.126456.
  • Hakverdi S, Balci DD, Dogramaci ÇA, Toprak S, Yaldız M. Retrospective analysis of basal cell carcinoma. Indian J Dermatol Venereol Leprol. 2011; 77(2): 251. doi: 10.4103/0378-6323.77483.
  • Cowden Dahl KD, Zeineldin R, Hudson LG. PEA3 Is Necessary for Optimal Epidermal Growth Factor Receptor-Stimulated Matrix Metalloproteinase Expression and Invasion of Ovarian Tumor Cells. Mol Cancer Res. 2007; 5(5): 413–421. doi:10.1158/1541-7786.MCR-07-0019.
  • Cowden Dahl KD, Symowicz J, Ning Y, Gutierrez E, Fishman DA, Adley BP, Stack MS, Hudson LG. Matrix metalloproteinase 9 is a mediator of epidermal growth factor-dependent e-cadherin loss in ovarian carcinoma cells. Cancer Res. 2008; 68(12): 4606–4613. doi: 10.1158/0008-5472.CAN-07-5046.
  • Dumas V, Kanitakis J, Charvat S, Euvrard S, Faure M, Claudy A. Expression of basement membrane antigens and matrix metalloproteinases 2 and 9 in cutaneous basal and squamous cell carcinomas. Anticancer Res. 1999; 19(4B): 2929–2938.
  • Davidson B, Goldberg I, Berner A, Kristensen GB, Reich R. EMMPRIN (extracellular matrix metalloproteinase inducer) is a novel marker of poor outcome in serous ovarian carcinoma. Clin Exp Metastasis. 2003; 20(2): 161–169. doi: 10.1023/a:1022696012668.
  • El-Bahrawy M, El-Masry N, Alison M, Poulsom R, Fallowfield M. Expression of beta-catenin in basal cell carcinoma. Br J Dermatol. 2003; 148(5): 964–970. doi: 10.1046/j.1365-2133.2003.05240.x.
  • Oh ST, Kim HS, Yoo NJ, Lee WS, Cho BK, Reichrath J. Increased immunoreactivity of membrane type-1 matrix metalloproteinase (MT1-MMP) and β-catenin in high-risk basal cell carcinoma. Br J Dermatol. 2011; 165(6): 1197–1204. doi: 10.1111/j.1365-2133.2011.10506.x.
  • Ciurea ME, Cernea D, Georgescu CC, Cotoi OS, Pătraşcu V, Pârvănescu H, Popa D, Pârvănescu V, Ciurea RN, Mercuţ R. Expression of CXCR4, MMP-13 and β-catenin in different histological subtypes of facial basal cell carcinoma. Rom J Morphol Embryol. 2013; 54(4): 939–951.
  • Brew K, Nagase H. The tissue inhibitors of metalloproteinases (TIMPs): An ancient family with structural and functional diversity. Biochim Biophys Acta. 2010; 1803(1): 55–71. doi: 10.1016/j.bbamcr.2010.01.003.

Document Type

Publication order reference

Identifiers

Biblioteka Nauki
2129676

YADDA identifier

bwmeta1.element.ojs-doi-10_48269_2451-0858-pis-2022-1-003
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.