Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


2023 | 6(26) | 1-12

Article title

Retencja wody w zróżnicowanych geograficznie zlewniach górskich

Content

Title variants

EN
Water retention in geographically diverse area of mountain catchments

Languages of publication

Abstracts

EN
The article describes the research on the retention capacity of two mountain catchments in the Polish Carpathian Mts. These are the catchments of the Czarna Woda and Biała Woda streams. These catchments are adjacent, have a similar area (about 11 km2 each), but are geographically diverse. Their geomorphology, hydrographic network, soil water permeability and land use were analyzed. The Czarna Woda catchment is a forest catchment, and the Biała Woda catchment is a forest and agricultural catchment with pasture areas. The geographical analysis of the catchment showed that the Czarna Woda catchment most likely has greater retention capacity. Theoretical analyzes were verified on the basis of long-term measurements of flows in both streams. Outflows were calculated for the entire study period (2006-2022), as well as annual, monthly and daily outflows. The measurements were carried out using the overflow method in permanent measurement cross-sections. The total outflow from both catchments was simi-lar, so they had similar water resources. In particular years, months and days, outflow often differed significantly between catchments. It was found that during the periods of increased water runoff (from precipitation, from snowmelt) the outflow from the Biała Woda catchment was higher, while in the periods without precipitation the outflow from the Czarna Woda catchment prevailed. Short-term flood outflows were at least several dozen percent higher in the Biała Woda catchment. The measurement data confirmed that water was better retained in the Czarna Woda catchment and the outflow was slower. Water retention processes in the Czarna Woda catchment allowed to maintain minimum outflows at a level several times higher than in the Biała Woda catchment. The studies have shown that in a very small mountain area there can be a large variation in outflow in individual streams. Retention capacity of the catchment depends on environmental conditions and human activity.

Year

Volume

Pages

1-12

Physical description

Dates

published
2023

Contributors

  • Institute of Technology and Life Sciences – National Research Institute, Falenty, Hrabska Av. 3, 09-090 Raszyn, Poland
  • University of Bielsko-Biala, Department of Environmental Protection and Engineering, Willowa 2, 43-309 Bielsko-Biała, Poland

References

  • Adamczyk B. 1980. Rola gleby w regulowaniu dyspozycyjnych zasobów wodnych w Karpatach. Zeszyty Problemowe Postępów Nauk Rolniczych, 235, 59–82.
  • Becker A., McDonnell J.J. 1998. Topographical and ecological controls of runoff generation and lateral flows in mountain catchments. IAHS Publication „Hydrology, Water Resources and Ecology in Headwaters”, 248, 199–206.
  • Dmitruk U., Kloze J., Sieinski E. 2012. Zamulenie polskich zbiorników retencyjnych. Diagnoza stanu i proponowane przeciwdziałania. [W:] Zrównoważone gospodarowanie zasobami wodnymi oraz infrastrukturą hydrotechniczną w świetle prognozowanych zmian klimatycznych (red. W. Majewski, T. Walczykiewicz). Instytut Meteorologii i Gospodarki Wodnej PIB, Warszawa, 161–229.
  • Dobrzański B., Gliński J., Guz T., Pomian J. 1958. Gleby terenu dorzecza Białej Wody. Roczniki Nauk Rolniczych, F, 72, 3, 963–990.
  • Dobrzański B., Gliński J., Guz T., Pomian J. 1962. Charakterystyka erodowanych gleb dorzecza Czarnej Wody. Roczniki Nauk Rolniczych, D, 96, 63–92.
  • Dubicki A., Woźniak Z. 1993. Wpływ degradacji leśnego środowiska w Sudetach zachodnich na zmianę odpływu rzek górskich. Zeszyty Naukowe AR we Wrocławiu, 232 – Inżynieria Środowiska, III, 77–85.
  • Dynowska I. 1991. Współczesne środowisko przyrodnicze – obieg wody. [W:] Starkel L. (red.): Geografia Polski. Środowisko przyrodnicze. PWN, Warszawa, 355–387.
  • He Z.B., Zhao W.Z., Liu H., Tang Z.X. 2012. Effect of forest on annual water yield in the mountains of an arid inland river basin: a case study in the Pailugou catchment on northwestern China's Qilian Mountains. Hydrological Processes, 26, 4, 613–621.
  • Jaguś A. 2019. Water retention problem in the mountain areas: a case of Sola river flows, Polish Carpathians. Journal of Ecological Engineering 20(11):167–177.
  • Jaguś A. 2020. The impact of extensive grazing on the fertility of mountain streams on the example of the Biała Woda valley in the Pieniny range (Polish Carpathians). Journal of Ecological Engineer-ing, 21, 4, 112–119.
  • Kopacz M., Kowalewski Z., Santos L., Mazur R., Lopes V., Kowalczyk A., Bar-Michalczyk D. 2021. Modelling of long term low water level in the mountain river catchments area. Journal of Water and Land Development, 51, 225–232.
  • Kopeć S. 1990. Wpływ sposobu użytkowania gruntu na wielkość spływu powierzchniowego po stoku i stężenia unoszonych składników nawozowych. Materiały Seminaryjne IMUZ, 26, 61– 68.
  • Kostuch R. 1976. Przyrodnicze podstawy gospodarki łąkowo-pastwiskowej w górach. PWRiL, Warszawa.
  • Kozak J., Cebulak D., Stec T., Jaguś A. 2019. Variation of precipitation gradient in mountain areas based on the example of the Western Beskids in the Polish Carpathians. Journal of Ecological Engineering, 20(9), 261–266.
  • Kurek S. 1990. Użytkowanie ziemi a ochrona wód. Materialy Seminaryjne IMUZ, 27, 83–94.
  • Mioduszewski W. 1999. Ochrona i kształtowanie zasobów wodnych w krajobrazie rolniczym. Wydawnictwo IMUZ, Falenty.
  • Prochal P. 1962. Charakterystyka sieci hydrograficznej źródłowych potoków Grajcarka na tle stosunków fizjograficznych. Roczniki Nauk Rolniczych, D, 96, 13–61.
  • Reinhardt-Imjela C., Imjela R., Bolscher J., Schulte A. 2018. The impact of late medieval deforestation and 20th century forest decline on extreme flood magnitudes in the Ore Mountains (Southeastern Germany). Quaternary International, 475, 42–53.
  • Ryffel A.N., Rid W., Gret-Regamey A. 2014. Land use trade-offs for flood protection: A choice experiment with visualizations. Ecosystem Services, 10, 111–123.
  • Stoffel M., Wyżga B., Marston R.A. 2016. Floods in mountain environments: A synthesis. Geomorphology, 272, 1–9.
  • Viviroli D., Weingartner R. 2004. The hydrological significance of mountains: from regional to global scale. Hydrology and Earth System Sciences, 8(6), 1016–1029.
  • Wyżga B., Kundzewicz Z., Konieczny R., Piniewski M., Zawiejska J., Radecki-Pawlik A. 2018. Comprehensive approach to the reduction of river flood risk: Case study of the Upper Vistula Basin. Science of the Total Environment 631-632, 1251–1267.
  • Yang G.J., Xiao D.N., Zhou L.H., Tang C.W. 2005. Hydrological effects of forest landscape patterns in the Qilian Mountains – A case study of two catchments in northwest China. Mountain Research and Development, 25, 3, 262–268.

Document Type

Publication order reference

Identifiers

Biblioteka Nauki
21150999

YADDA identifier

bwmeta1.element.ojs-doi-10_53052_pjmee_2023_6_01
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.