
Przegląd Statystyczny. Statistical Review, 2022, vol. 69, 4, 1–19                https://doi.org/10.59139/ps.2022.04.1 
Received: 11.02.2023, revised: 17.03.2023, accepted: 20.03.2023 
  

Estimation of Yu and Meyer bivariate 
stochastic volatility model by iterated filtering 

Piotr Szczepockia 
 
Abstract. In financial applications, understanding the asset correlation structure is crucial to 
tasks such as asset pricing, portfolio optimisation, risk management, and asset allocation. Thus, 
modelling the volatilities and correlations of multivariate stock market returns is of great 
importance. 
 This paper proposes the iterated filtering algorithm for estimating the bivariate stochastic 
volatility model of Yu and Meyer. The iterated filtering method is a frequentist-based approach 
that utilises particle filters and can be applied to estimating the parameters of non-linear or 
non-Gaussian state-space models. 
 The paper presents an empirical example that demonstrates the way in which the proposed 
estimation method might be used to estimate the correlation between the returns of two 
assets: Standard and Poor’s 500 index and the price of gold in US dollars. This is accompanied 
by a simulation study that proves the validity of the approach. 
Keywords: multivariate stochastic volatility, iterated filtering, particle filters 
JEL: C32, C58, G15 

1. Introduction 

The knowledge of correlation structures is vital in many financial applications, 
because it provides a measurement of the relationship between different financial 
assets or variables. This information can be used to make informed investment 
decisions, assess risk, and design and evaluate financial products. In a portfolio 
construction, knowledge of the correlation structure between assets can help 
investors create a well-diversified portfolio. If the assets are highly correlated, their 
returns are likely to move in the same direction, which can lead to a higher portfolio 
risk. On the other hand, if the assets are uncorrelated or negatively correlated, their 
returns may offset each other, reducing the portfolio risk. In risk management, 
understanding the correlation structure between different financial variables can 
help financial institutions assess the potential for losses and determine how to 
allocate capital to manage risk. This is particularly important for complex financial 
products, such as derivatives, which can have non-linear and highly interconnected 
risk profiles. The knowledge of the correlation structure can also be used to price 
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financial products and to develop financial models, e.g. value at risk (VaR) models, 
which are widely used to measure the risk of financial portfolios. 
 Numerous applications of the correlation structure generate the need for 
modelling the volatilities of multivariate stock market returns. Over several past 
decades, there has been significant progress in the estimation of multivariate 
volatility models. Nowadays, we can distinguish three main approaches to this 
problem: multivariate generalised autoregressive conditional heteroskedasticity 
(GARCH) models (represented by e.g. the BEKK models of Engle and Kroner (1995) 
and the DCC models of Engle (2002)), multivariate stochastic volatility (MSV) 
models (see Chib et al., 2009), and realised covariance models (see e.g. Bollerslev  
et al., 2018; Jin & Maheu, 2013). Recently, machine learning (ML) algorithms have 
also become increasingly popular for the forecasting of multivariate financial time 
series (Bejger & Fiszeder, 2021; Fiszeder & Orzeszko, 2021). 
 The estimation of multivariate stochastic volatility models generates significant 
difficulties due to both their high-dimensional parameter space resulting from their 
multidimensional nature, and the absence of a closed-form likelihood in stochastic 
volatility models. Moreover, the estimation process has to account for the positive 
semidefiniteness of the covariance matrix.  
 Despite these challenges, various methods for estimating MSV models have been 
developed. The first approach involved the application of Kalman-based filtering to 
the evaluation and maximisation of the quasi-loglikelihood function (Harvey et al., 
1994; So et al., 1997). Soon afterwards, the Bayesian approach began to dominate the 
estimation of MSV models. It was followed by the multi-move sampler proposed by 
Shephard and Pitt (1997) and modified by Watanabe and Omori (2004), which 
became a standard technique in the early 2000s. This method was used, among 
other authors, by Ishihara and Omori (2012) for the estimation of the MSV model 
with cross-leverage and heavy-tailed errors, Ishihara et al. (2016) for the matrix 
exponential MSV model with cross-leverage, and Kastner et al. (2017) for the multi-
variate factor SV model. In the case of MSV models, it is necessary to construct an 
efficient MCMCM sampler separately in each model (Chib et al., 2009). 
 Although the Bayesian inferences are very effective, they have some limitations 
that can restrict their usefulness in certain applications. Firstly, the inferences 
depend on the choice of prior distributions. Choosing appropriate prior 
distributions is therefore of key importance in the case of Bayesian methods. 
Otherwise, estimates might turn out biased, and results incorrect. It is especially 
advisable to use methods independent of a priori beliefs if the task is to identify the 
information in the studied data. Secondly, in some cases, the interpretation of 
Bayesian models can be challenging due to the complexity of the posterior 
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distributions. In addition, Bayesian methods are more difficult to implement and 
require more computing power than frequentist approaches.  
 Frequentist approaches, such as maximum likelihood estimation, are often easier 
to interpret and are computationally simpler, which renders them more accessible 
than Bayesian methods, and thus widely used. However, they also have limitations, 
such as problems with taking into account a priori knowledge. In addition, using 
them, one cannot get a full picture of the uncertainty of estimates. The choice 
between the Bayesian and the frequentist approaches is often very subjective. Both 
have strengths and weaknesses, and the preference of one over the other depends on 
the specific context and the type of problem addressed. 
 Frequentist-based statistical inference for MSV is very limited compared to the 
Bayesian analysis. The quasi-maximum likelihood method of Harvey et al. (1994) is 
restricted only to models with constant correlation. Jungbacker and Koopman 
(2006) proposed importance-sampling Monte Carlo techniques for the maximum 
likelihood estimation of the SV of three specific multivariate extensions of the basic 
SV model.  
 In this paper, we propose to use an iterated filtering algorithm (Ionides et al. 2006, 
2015) for estimating the bivariate SV model of Yu and Meyer (2006). Iterated 
filtering is a frequentist-based method based on particle filters that can be used to 
estimate parameters for general non-linear or non-Gaussian state-space models 
(SSM). Despite being limited to only a bivariate relationship, the Yu and Meyer 
model has gained popularity due to its ability to model the dynamic correlation 
between a pair of assets.  
 Johansson (2010b) used the Yu and Meyer model to study the systematic risk of 
sovereign bonds in four East Asian countries, and the relationship between stocks 
and bonds in nine Asian countries (Johansson, 2010a). Du et al. (2011) applied it to 
the investigation of volatility spillovers in the crude oil and agricultural commodity 
markets. Hui and Zheng (2012a, 2012b) examined the correlations between housing 
and retail property markets in Hong Kong by means of it. Gębka and Karoglou 
(2013) used the Yu and Meyer model to explore the integration of the European 
peripheral financial markets with Germany, France, and the UK. Kliber (2011) 
applied it to the study of the correlation between selected sovereign Central 
European credit default swaps. Recently, Kliber et al. (2019) used the Yu and Meyer 
model to check whether Bitcoin can act as a hedge, diversifier or safe haven in five 
countries (Japan, Venezuela, China, Estonia and Sweden), whereas Będowska-Sójka 
and Kliber (2021) examined by means of it the safe-haven properties of gold and two 
cryptocurrencies, Bitcoin and Ether, for four main stock indices (S&P500, FTSE, 
DAX and STOXX600). All the above-mentioned applications of the Yu and Meyer 
model utilised the Bayesian approach for parameter estimation. 
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 The most valuable contribution of this paper to the existing body of research is 
the proposed frequentist-based estimation method for the Yu and Meyer model. The 
frequentist-based approach may also be applied to the estimation of the filtering 
distribution of log-volatilities and the dynamic correlation using the standard 
bootstrap particle filter. The paper further consists of: Section 2 introducing the Yu 
and Meyer model and categorising it as a special case within the broader class of 
state-space models, Section 3 presenting the estimation methodology, Section 4 
featuring an empirical example, Section 5 where a simulation study is conducted, 
and Section 6 presenting the conclusions of the study. 

2. Yu and Meyer model 

Yu and Meyer (2006) proposed a bivariate SV model for which not only volatilities 
but also correlation coefficients are time-varying. This model describes the evolution 
of two asset returns through time. Let us denote the observed mean-centred log-
returns at time t as 𝑦𝑦𝑡𝑡 = (𝑦𝑦1𝑡𝑡 ,𝑦𝑦2𝑡𝑡)′ for 𝑡𝑡 = 1, … ,𝑇𝑇. Let ℎ𝑡𝑡 = (ℎ1𝑡𝑡,ℎ2𝑡𝑡)′ be a vector 
of log-volatiles, 𝜇𝜇 =  (𝜇𝜇1,𝜇𝜇2)′ a vector of long-term means of log-volatiles, 
Ω𝑡𝑡 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(exp(ℎ1𝑡𝑡/2), exp(ℎ2𝑡𝑡/2)) a diagonal matrix of log-return standard 
deviations, and 𝜀𝜀𝑡𝑡 = (𝜀𝜀1𝑡𝑡, 𝜀𝜀2𝑡𝑡)′ and 𝜂𝜂𝑡𝑡 = (𝜂𝜂1𝑡𝑡, 𝜂𝜂2𝑡𝑡)′ two vectors of error terms. The 
model might then be written as: 
 

 

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝑦𝑦𝑡𝑡 = Ω𝑡𝑡𝜀𝜀𝑡𝑡, 𝜀𝜀𝑡𝑡|Ω~𝑖𝑖𝑖𝑖𝑖𝑖 𝑁𝑁�0,Σ𝜀𝜀,𝑡𝑡�,

Σ𝜀𝜀,𝑡𝑡 = � 1 𝜌𝜌𝑡𝑡
𝜌𝜌𝑡𝑡 1 � ,

ℎ𝑡𝑡+1 = 𝜇𝜇 + 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝜙𝜙1,𝜙𝜙2)(ℎ𝑡𝑡 − 𝜇𝜇) + 𝜂𝜂𝑡𝑡 ,𝜂𝜂𝑡𝑡~𝑖𝑖𝑖𝑖𝑖𝑖 𝑁𝑁�0,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�𝜎𝜎𝜂𝜂12 ,𝜎𝜎𝜂𝜂22 �� ,

𝑞𝑞𝑡𝑡+1 = 𝜓𝜓0 + 𝜓𝜓1(𝑞𝑞𝑡𝑡 − 𝜓𝜓0) + 𝜎𝜎𝜂𝜂𝜐𝜐𝑡𝑡, 𝜐𝜐𝑡𝑡~𝑖𝑖𝑖𝑖𝑖𝑖 𝑁𝑁(0, 1),   𝜌𝜌𝑡𝑡 =
exp(𝑞𝑞𝑡𝑡)− 1
exp(𝑞𝑞𝑡𝑡) + 1

,

 (1) 

 
with initial conditions: ℎ0 = 𝜇𝜇 and 𝑞𝑞0 = 𝜓𝜓0. Error terms 𝜀𝜀𝑡𝑡 , 𝜂𝜂𝑡𝑡 and 𝜐𝜐𝑡𝑡 are 
independent. Correlation matrix Σ𝜀𝜀,𝑡𝑡 is well-defined, because the inverse Fisher 
transformation for 𝑞𝑞𝑡𝑡 constrains 𝜌𝜌𝑡𝑡 to interval (–1,1). Log-volatiles ℎ𝑡𝑡 follow 
reverting autoregressive processes to the order one mean. The model is equivalent 
to the bivariate GARCH model with dynamic conditional correlation (DCC-
MGARCH). One significant limitation of this model is that it is difficult to extend it 
to higher dimensions. The main challenge is to ensure the positive definiteness of 
correlation matrix Σ𝜀𝜀,𝑡𝑡. Asai et al. (2006) suggested the following solutions for 
situations where the dimension of log-returns is larger than two: the Cholesky 
decomposition (Tsay, 2005), the matrix exponential (Chiu et al., 1996), and the 
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Wishart models (Gouriéroux, 2006). However, in many practical situations, the 
principal goal is to examine the temporal correlation between a pair of assets. 
 There are nine parameters to be estimated in the Yu and Meyer model, namely 
𝜇𝜇1,𝜇𝜇2,𝜙𝜙1,𝜙𝜙2,𝜎𝜎1,𝜎𝜎2,𝜓𝜓0,𝜓𝜓1 and 𝜎𝜎𝜂𝜂 . The authors employed a Bayesian approach, 
defining separate prior distributions for each of the considered parameters. They 
used the WinBUGS, which enables a convenient and efficient implementation of the 
single-move Gibbs sampler. All the examples of the application of the Yu and Mayer 
model mentioned in the introduction also use the Bayesian approach through 
WinBUGS1 or OpenBUGS (often using the R2WinBUGS and R2OpenBUGS R 
packages, respectively (Sturtz et al., 2005)). To the author’s best knowledge, there has 
been no attempt to estimate the Yu and Meyer model in the classical inference 
paradigm so far. 
 In fact, the Yu and Meyer model is, like most (multivariate) SV models, an 
example of a broader class of statistical models called state-space models (SSMs). 
This class provides a general framework for analysing a hidden stochastic process 
that is measured or observed through another stochastic process. SSMs are very 
flexible and have been widely applied in economics, ecology, epidemiology, 
medicine (mainly neuroscience), signal processing and mechanical system 
monitoring (see Chapter 1 in Cappé et al. (2005) and Chapter 2 in Chopin and 
Papaspiliopoulos (2020) for details). 
 More specifically, an SSM consists of a pair of discrete-time processes: 𝕐𝕐𝑡𝑡 = 
= (𝑌𝑌𝑡𝑡)𝑡𝑡≥0, i.e. the measurement process, and 𝕏𝕏𝑡𝑡 = (𝑋𝑋𝑡𝑡)𝑡𝑡≥0, i.e. the latent state 
process. The observable random variables 𝕐𝕐𝑡𝑡 are assumed to be conditionally 
independent given 𝕏𝕏𝑡𝑡 . According to the definition of SSMs, the latent process model 
is determined by the set of densities �𝑓𝑓𝑡𝑡(𝑥𝑥𝑡𝑡+1|𝑥𝑥𝑡𝑡;𝜃𝜃)�𝑡𝑡≥0 and the initial density 
𝑓𝑓0(𝑥𝑥0;𝜃𝜃) (i.e. the state process, 𝕏𝕏𝑡𝑡, is Markovian). The measurement process is 
determined by the set of densities �𝑔𝑔𝑡𝑡(𝑦𝑦𝑡𝑡|𝑥𝑥𝑡𝑡;𝜃𝜃)�𝑡𝑡≥0 (see Chapter 2 of Chopin and 
Papaspiliopoulos (2020) for a detailed examination of this definition of SSMs and 
two alternative ones). 
 In the case of the Yu and Meyer model at time t, the latent state process is 
𝑋𝑋𝑡𝑡 = (ℎ1𝑡𝑡,ℎ2𝑡𝑡,𝑞𝑞𝑡𝑡)′, and the measurement process is 𝑌𝑌𝑡𝑡 = (𝑦𝑦1𝑡𝑡,𝑦𝑦2𝑡𝑡)′. The latent 
process density (at time t) 𝑓𝑓𝑡𝑡(𝑥𝑥𝑡𝑡+1|𝑥𝑥𝑡𝑡;𝜃𝜃), due to independence of error terms 𝜂𝜂𝑡𝑡 and 
𝜐𝜐𝑡𝑡, may be decomposed as: 
 

 ℎ𝑡𝑡+1|ℎ𝑡𝑡~𝑁𝑁�𝜇𝜇 + 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝜙𝜙1,𝜙𝜙2)(ℎ𝑡𝑡 − 𝜇𝜇),𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�𝜎𝜎𝜂𝜂12 ,𝜎𝜎𝜂𝜂22 ��, (2) 
 

 
1 WinBUGS 1.4.3 is available for routine use, but is no longer being developed (Lunn et al., 2009). 
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 𝑞𝑞𝑡𝑡+1|𝑞𝑞𝑡𝑡~𝑁𝑁�𝜓𝜓0 + 𝜓𝜓1(𝑞𝑞𝑡𝑡 − 𝜓𝜓0),𝜎𝜎𝜂𝜂2 �, (3) 
 
with the initial densities: 
 

 ℎ0~𝛿𝛿(ℎ0 − 𝜇𝜇),𝑞𝑞0~𝛿𝛿(𝑞𝑞0 − 𝜓𝜓0), (4) 
 
where 𝛿𝛿 is delta Dirac function (i.e. 𝑃𝑃(ℎ0 = 𝜇𝜇) = 1, 𝑃𝑃(𝑞𝑞0 = 𝜓𝜓0) = 1). The 
measurement process density (at time t) may be written as 
 

 𝑦𝑦𝑡𝑡|ℎ𝑡𝑡,𝑞𝑞𝑡𝑡~𝑁𝑁�0,ΩΣ𝜀𝜀,𝑡𝑡Ω′�, (5) 
 
where: 
 

 Ω𝑡𝑡 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(exp(ℎ1𝑡𝑡/2), exp(ℎ2𝑡𝑡/2)),  Σ𝜀𝜀,𝑡𝑡 = � 1 𝜌𝜌𝑡𝑡
𝜌𝜌𝑡𝑡 1 � ,𝜌𝜌𝑡𝑡 =

exp(𝑞𝑞𝑡𝑡)− 1
exp(𝑞𝑞𝑡𝑡) + 1

 . (6) 

 
 The SSM resulting from the Yu and Meyer model is non-linear (exponential 
transformation for ℎ𝑡𝑡 and the inverse Fisher transformation for 𝑞𝑞𝑡𝑡) and Gaussian. 
Strong non-linearity excludes the direct use of the Kalman filter. Particle filters are 
an established method of estimating the latent state in a nonlinear/non-Gaussian 
SSM when the parameters are fixed. Particle filters also provide an unbiased 
likelihood estimator, but they cannot be used directly to estimate likelihood, because 
the estimator of likelihood is not continuous as a function of parameters 𝜃𝜃 (Malik  
& Pitt, 2011). Xu and Jasra (2019) proposed a particle filter technique for the 
inference of high-dimensional SV models with a constant correlation matrix, but the 
parameter estimation is based on the Bayesian particle marginal Metropolis-Hasting 
algorithm (Andrieu et al., 2010). 

3. Estimation method 

Estimating parameters for state-space models (SSMs) is a complex task. The primary 
obstacle is that the exact computation of likelihood functions is not possible, as it 
requires evaluating multiple integrals. Another significant difficulty is that SSMs 
often generate log-likelihoods that are awkward to optimise numerically, for 
example non-concave, multi-modal, or flat (in certain directions) ones (Chopin 
& Papaspiliopoulos, 2020, p. 260). 
 Iterated filtering was pioneered by Ionides et al. (2006), and theoretically 
substantiated by Ionides et al. (2011). The second generation of iterated filtering, 
IF2, was introduced by Ionides et al. (2015) and developed by a theoretical study of 
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Nguyen (2016). Even though both generations of iterated filtering employ a recursive 
filtering approach through an augmented model, their theoretical foundations differ. 
The first generation (IF1) approximates the Fisher score function, while the second 
one (IF2) combines the concept of data cloning (Lele et al., 2007) with the 
convergence of an iterated Bayes map (Nguyen, 2016). Empirical studies showed 
that the IF2 outperforms the IF1 (Ionides et al., 2015). The calculations in this article 
used exclusively the second generation of the algorithm. 
 Iterated filtering has been successfully applied to many SSMs, mostly in the 
context of epidemiology (Bhadra et al., 2011; He et al., 2009; King et al., 2008; Stocks 
et al., 2020; You et al., 2020), but also in economic modelling, especially for 
univariate SV models (Bretó, 2014; Szczepocki, 2020). 
 Iterated filtering is a technique that utilises particle filters and involves replacing 
the model we are interested in with a similar model, but with parameters that take 
a random walk in time. This extra variability smooths the likelihood surface (which 
is the main impediment for particle filters in parameter estimation) and counteracts 
particle depletion. Over multiple repetitions of the filtering procedure (each made 
using a particle filter), the variance of this random walk goes to zero and the 
augmented model approaches the original one. As a result, iterated filtering provides 
a sequence of iteratively updated parameter estimates that converge to the maximum 
likelihood estimate (see Ionides et al., 2015; Nguyen, 2016, for details). Thus the 
algorithm is likelihood-based.  
 In practical applications, the convergence of the algorithm is often assessed via 
diagnostic plots (see e.g. Bretó, 2014; King et al., 2008; Szczepocki, 2020). Iterated 
filtering uses only a basic bootstrap particle filter (Gordon et al., 1993), and thus it 
does not have to evaluate the transition density 𝑓𝑓𝑡𝑡(𝑥𝑥𝑡𝑡+1|𝑥𝑥𝑡𝑡;𝜃𝜃). It only requires the 
capability to simulate from this density (simulation-based). This simulation-based 
methodology has developed fast because of the relatively non-restrictive require-
ments, but its main representatives follow the Bayesian paradigm, i.e. the 
Approximate Bayesian Computation (Toni et al., 2009) and the Particle Markov 
Chain Monte Carlo (Andrieu et al., 2010), SMC2 (Chopin et al., 2013). 
 To sum up, iterated filtering is one of few, if not the only method for the maximum 
likelihood inference in general state-space models (SSMs) that satisfy the  
three following conditions: it is likelihood-based (applies full data-likelihood 
inference), simulation-based (captures dynamics of the model only via the simulation 
of 𝑓𝑓𝑡𝑡(𝑥𝑥𝑡𝑡+1|𝑥𝑥𝑡𝑡;𝜃𝜃)), and frequentist-based (based on a frequency interpretation of 
probability). 
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 The necessary conditions for the application of the iteration algorithm to a specific 
SSM include the ability to: 
• simulate from the initial density 𝑓𝑓0(𝑥𝑥0;𝜃𝜃); 
• simulate from the transition density 𝑓𝑓𝑡𝑡(𝑥𝑥𝑡𝑡+1|𝑥𝑥𝑡𝑡;𝜃𝜃); 
• evaluate the measurement density 𝑔𝑔𝑡𝑡(𝑦𝑦𝑡𝑡|𝑥𝑥𝑡𝑡;𝜃𝜃). 
 In the case of the Yu and Meyer model, all the above conditions are fulfilled. The 
initial conditions are with probability one, which in practical implementations are 
treated as not random. However, there is also a possibility to initially draw conditions 
from stationary distributions: 
 

 ℎ0𝑖𝑖~𝑁𝑁�𝜇𝜇𝑖𝑖,
𝜎𝜎𝑖𝑖
2

1−𝜌𝜌𝑖𝑖
2� , 𝑖𝑖 = 1,2, (7) 

 

 𝑞𝑞0~𝑁𝑁�𝜓𝜓0,
𝜎𝜎𝜂𝜂2

1 − 𝜓𝜓12
� (8) 

 
 Simulating from the transition density is straightforward because it requires 
drawing from a normal distribution (Equations (2) and (3)). Similarly, evaluating the 
measurement density is immediate, as it is based on the bivariate normal distribution 
(Equations (5) and (6)). 
 All the computations presented in the article were made using the POMP package 
(Partially Observed Markov Processes, King et al., 2016) written for the R statistical 
computing environment (R Development Core Team, 2010). To make the calculations 
faster, the code of initial, transition and measurement density was written in the C 
programming language. 

4. Empirical example 

In this section, we will apply our Yu and Meyer model-estimation method to the 
estimation of the correlation between the returns of two assets, i.e. Standard and 
Poor’s 500 index (S&P500) and the price of gold in US dollars. The sample period 
from 22 July 2014 to 3 March 2022 yielded a total of 1,751 observations of 
logarithmic returns multiplied by 100 (we excluded those days when at least one of 
two observations was not reported). The data came from Eikon Refinitiv Database. 
Figure 1 presents time series of assets prices (top row) and returns (bottom row). 
Table 1 shows summary statistics of returns which demonstrate that the S&P500 
returns are more leptokurtic and more left-skewed than the gold returns. As in Yu 
and Meyer (2006), the returns were mean-corrected before the estimation. 
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 Gold is often considered a safe haven asset, which means that it is expected to 
retain or increase its value during periods of economic or political uncertainty. This 
is because for centuries gold has been the carrier of value and was able to retain 
purchasing power over time. During crises, investors tend to resort to gold as a way 
to protect their assets from inflation or currency devaluation. 
 Baur and Lucey (2009) introduced a precise conceptual distinction between a ‘safe 
haven’ and a ‘hedge’. A safe haven asset is defined as a security that is uncorrelated 
with stock market returns in the case of market crash, and a hedge as a security  
that is uncorrelated with the stock market on average. Baur and McDermott (2010) 
distinguished between strong and weak safe haven effects. A strong safe haven is an 
asset that is negatively correlated, and a weak safe haven is one that is uncorrelated 
with another asset or portfolio at a time of the falling stock prices. 
 
Table 1. Summary statistics of logarithmic returns multiplied by 100 calculated for Standard 

and Poor's 500 index (S&P500) and the price of gold in US dollars 
in the period from 22 July 2014 to 3 March 2022 

Asset 
Summary statistics 

Mean St. Dev. Skewness Kurtosis Minimum Q1 Median Q3 Maxi-
mum 

S&P500  ............  0.045 1.170 –1.168 22.808 –12.765 –0.342 0.069 0.550 8.968 
Gold  .................  0.023 0.928 -0.207 7.157 –6.254 -0.452 0.033 0.500 5.477 
 
Source: author’s work. 
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Figure 1. Time series of Standard and Poor’s 500 index (S&P500) and the price of gold (top row) 
and corresponding logarithmic returns multiplied by 100 (bottom row)  
in the period from 22 July 2014 to 3 March 2022 

 

 
Source: author’s work. 

 
 Table 2 presents the maximum likelihood estimation results for the analysed data. 
We used the following algorithmic settings: 200 iterations, 1,000 particles, random-
walk perturbations with the initial 0.01 perturbations, and a geometric decay of 
perturbations of α = 0.5 (the perturbations at the end of 50 iterations are a fraction 
α smaller than they are at first) for all the parameters. The estimation of the 
log-likelihood results from taking the average of nine likelihood evaluations of 
a bootstrap particle filter with 1,000 particles, from which we also calculate the 
Monte Carlo standard error. Sandard errors of the parameters were calculated via 
numerical approximation to the Hessian (see supporting text by Ionides et al. (2006) 
for details of the procedure). Figures A1 and A2 in the Appendix show diagnostics 
plots. 
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Table 2. Parameter and log-likelihood estimates and standard errors (in parentheses) 
of the Yu and Meyer model obtained using iterated filtering for the analysed data 

Log-likelihood S&P500 Gold Conditional correlation 
𝜇𝜇1 𝜙𝜙1 𝜎𝜎1 𝜇𝜇2 𝜙𝜙2 𝜎𝜎2 𝜓𝜓0 𝜓𝜓1 𝜎𝜎𝜂𝜂 

–4344.984 
(1.139) 

–0. 6408 
(0.0767) 

0.9313 
(0.0067) 

0.3939 
(0.0085) 

–0. 5003 
(0.0512) 

0.7668 
(0.0090) 

0.5236 
(0.0089) 

–0.3769 
(0.0768) 

0.9746 
(0.0055) 

0.1425 
(0.0089) 

 
Note. Algorithm settings: 200 iterations, 1,000 particles, random-walk perturbations with the initial 
0.01 perturbations, and a geometric decay of perturbations of α = 0.5 for all the parameters. 
Source: author’s work. 

 
 Comparing the estimation results of log-volatilities for S&P500 and gold, we can 
see that the stock index has the value of persistency parameter 𝜙𝜙 closer to one and 
a smaller value of conditional volatility parameter 𝜎𝜎. The former parameter controls 
the persistency of log-volatility (1- 𝜙𝜙 is the strength of a mean-reversion towards the 
unconditional mean 𝜇𝜇 after a shock in log-volatility), while the latter regulates its 
variability. Consequently, the volatility of the S&P500 index is more clustered and 
less time-varying than the volatility of gold. These differences are visible on the plots 
of logarithmic returns (bottom row of Figure 1) and log-volatilities (Figure 2). 
 
Figure 2. The mean of the filtering distributions of the log-volatilities.  

 
 
Note. The results were obtained by using a bootstrap particle filter with 1,000 particles. 
Source: author’s work. 

 
 Parameters 𝜓𝜓0, 𝜓𝜓1 and 𝜎𝜎𝜂𝜂 control the Fisher-transformed conditional correlation 
process 𝑞𝑞𝑡𝑡 . Similarly to log-volatilities, this is also the mean-reverted autoregressive 
process of order 1, and consequently, the parameters have similar interpretations: 𝜓𝜓0 
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is the long-term mean, and 𝜓𝜓1 and 𝜎𝜎𝜂𝜂 regulate the persistency and the variability of 
the transformed conditional correlations, respectively. On the basis of the estimated 
value of 𝜓𝜓0, after the inverse Fisher transformation, we obtain the long-term value of 
correlation –0.186. This value can be interpreted as a slightly or moderately negative 
long-term correlation. The strength of the mean-reversion is very high – higher than 
in the case of both log-volatilises. 
 Figure 3 presents a plot of conditional correlation process 𝜌𝜌𝑡𝑡 . For most of the 
sample period, the conditional correlation had a negative value, but the trajectory 
was volatile with several picks above zero. For the period of the COVID-19 
pandemic (2020–2022), the relationship between the S&P500 index and gold was 
mainly positive. Generally, in the sample period, gold acted as a hedge for the 
S&P500 index, but failed to be a safe haven asset during the COVID-19 crisis. 
Będowska-Sójka and Kliber (2021) arrived at a similar conclusion, as they analysed, 
among other things, the safe haven characteristics of gold versus the S&P500 index: 
‘gold tends to take the role of a safe haven asset in relatively short periods, yet the 
recent COVID crisis does not belong to them’. 
 
Figure 3. The mean (solid black line), the 0.05 quantile and the 0.95 quantile (dotted lines) 

of the filtering distributions of the dynamic conditional correlation  

 
 
Note. The results were obtained by using a bootstrap particle filter with 1,000 particles. 
Source: author’s work. 
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5. Simulation study 

As the convergence of the iterated filtering algorithm to the maximum likelihood 
estimates is difficult to demonstrate analytically, we assessed its performance 
through a simple simulation study. In order to evaluate the precision of the 
parameter estimation, we conducted 100 time-series simulations of the Yu and 
Meyer model, using identical parameter values as those derived from the empirical 
study detailed in Section 4 (see Table 2). Each simulation has the same length as the 
analysed time series of the S&P500 index and gold (1,751 observations). We followed 
the same estimation procedure as in the empirical study for each simulation. The 
results of the study are presented in Table 3, which consists of the mean errors (ME) 
and the root of mean square errors (RMSE) of parameter estimates. The obtained 
results show that there is no such type of a parameter (long-term mean, persistency, 
volatility) that would be biased in one direction. The obtained RMSE are comparable 
with standard errors from the empirical study. The results indicate that the proposed 
method is reliable to a sufficient degree. 
 
Table 3. Results of the simulation study based on a 100-time-series simulation  

of the Yu and Meyer model with the same parameter values as those obtained 
in the empirical study and the same length of time series as the analysed time series 
of the S&P500 index and gold 

Measure 
of errors 

S&P500 Gold Conditional correlation 

𝜇𝜇1 𝜙𝜙1 𝜎𝜎1 𝜇𝜇2 𝜙𝜙2 𝜎𝜎2 𝜓𝜓0 𝜓𝜓1 𝜎𝜎𝜂𝜂 

ME  .....................  0.0294 0.0154 –0.0446 –0.0326 –0.0403 0.0851 0.0025 0.0182 –0.0175 
RMSE  ................  0.0399 0.0009 0.0049 0.0104 0.0039 0.0101 0.1006 0.0057 0.0134 
 
Note. Algorithm settings: 200 iterations, 1,000 particles, the random-walk perturbations with initial 
0.01 perturbations, and geometric decay of perturbations of α = 0.5 for all parameters. 
Source: author’s work. 

6. Conclusions 

The main contribution of this paper to the is the existing body of research is the 
proposed iterated filtering algorithm for estimating the bivariate SV model of Yu 
and Meyer. It allows the estimation of parameters in the frequentist-based approach. 
Consequently, the filtering distribution of log-volatilities and the dynamic 
correlation might be estimated in the frequentist-based approach using a standard 
bootstrap particle filter. In order to show the effectiveness of the proposed 
estimation method, an empirical example was presented, in which the Yu and Meyer 
model was used to estimate the dynamic correlation between the returns of two 
assets, i.e. Standard and Poor’s 500 index (S&P500) and the price of gold in US 
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dollars. The results indicated that gold acted as a hedge within the observed period, 
but during the COVID-19 pandemic, it failed to perform as a safe haven. The 
obtained parameter estimates from the empirical study were confirmed in the 
simulation experiment. One of the limitations of our study was its restriction to 
a bivariate model of stochastic volatility. Further research in this area should 
determine whether the proposed approach proves effective in multivariate models of 
stochastic volatility based on the Cholesky decomposition or a matrix exponential. 
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Appendix 

Figure A1. Five trajectories of the algorithm with random start points (updates of estimation 
values during iteration steps) 

 
 
Note. The bolded trajectory converges to the highest value of log-likelihood. 
Source: author’s work. 
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Figure A2. Sliced log-likelihoods for the analysed parameters 

 
 
Note. The log-likelihood surface is explored along one of the parameters, keeping the others fixed 
at the point to which iterated filtering converges (see Table 2 for values). Each black circle shows 
the log-likelihood estimation obtained with 2,000 particles. The grey curve results from smoothing the 
log-likelihood evaluations with local quadratic regression (R base function loess). The empty squares 
correspond to the ends of the five trajectories of the iterated filtering algorithm (see Figure A1 for the 
trajectory plots). The black squares correspond to the estimated values. 
Source: author’s work. 

 
 




