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Some asymptotic results of the estimators  
for conditional mode for functional data  

in the single index model missing data at random 

Souad Mekkaoui,a Nadia Kadiri,b Abbes Rabhic 
 
Abstract. In this work, we consider the problem of non-parametric estimation of a regression 
function, namely the conditional density and the conditional mode in a single functional index 
model (SFIM) with randomly missing data. The main result of this work is the establishment of 
the asymptotic properties of the estimator, such as almost complete convergence rates. 
Moreover, the asymptotic normality of the constructs is obtained under certain mild conditions. 
We finally discuss how to apply our result to construct confidence intervals. 
Keywords: functional data analysis, functional single-index process, kernel estimator, missing 
at random, non-parametric estimation, small ball probability 
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1. Introduction 

The Single Index Model (SIM) is a popular framework used for reducing 
dimensionality and modelling complex relationships between covariates and 
responses in a simplified way. When dealing with functional data, where each 
observation is a curve or a function, the SIM is extended to handle functional 
predictors and responses. When dealing with missing data in the SIM framework, 
the missingness is assumed to be at random (MAR). This means that the probability 
of missing values is related to the observed data but not to the missing values 
themselves. The key idea is that, given the observed data, the missingness 
mechanism is unrelated to the values that are missing. It is important to note that 
the choice of approach depends on the specifics of your data, the extent of the 
missingness, and the assumptions you are willing to make. A careful consideration 
of the nature of your data and consulting domain experts when handling missing 
data in the SIM or any other modeling framework is always recommended. 
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 The asymptotic properties of semi-parametric estimators of the conditional mode 
for functional data in the Single Index Model (SIM) with data missing at random 
(MAR) are an active area of research, and specific results may depend on the 
particular assumptions and estimation methods employed. However, this work 
provides a general overview of some relevant concepts and approaches in this 
context. In the SIM framework, functional data refers to observations that are 
functions rather than scalar values. The goal is to estimate the conditional mode of  
a functional-response variable given a set of functional predictors and a single-index 
variable. 
 To establish the asymptotic properties of the semi-parametric estimators of the 
conditional mode for functional data in the SIM with data missing at random, 
various theoretical conditions need to be satisfied. These conditions often involve 
assumptions about the functional data, the missing data mechanism, and the model 
specification. Some common conditions include consistency and efficiency. Specific 
results in this area may depend on the assumptions and estimation techniques 
employed in each study. Therefore, it is important to refer to the literature and 
research articles that focus on the specific estimation method and assumptions one is 
interested in to obtain more detailed and precise asymptotic properties of the 
estimators. 
 One of the most common problems in non-parametric statistics is forecasting. In 
some situations, regression is the best forecasting tool. Sometimes, however, e.g. in 
the case where the conditional density is asymmetrical or multimodal, this tool is 
inadequate. Therefore, the conditional quantile predicts the impact of the variable of 
interest 𝑌𝑌 on the explanatory variable 𝑋𝑋 more efficiently. There is scarce literature 
investigating the statistical properties of a functional non-parametric regression 
model for missing data when the explanatory variable is infinite dimensional or it is 
of a functional nature. Recently, Ferraty et al. (2013) proposed to estimate the mean 
of a scalar response based on an independent and identically distributed (i.i.d) 
functional sample in which explanatory variables were observed for every subject, 
and a part of the responses were missing at random (MAR) for some of them. It 
generalised the results in Cheng (1994) to the case where the explanatory variables 
are of a functional nature. 
 To the best of our knowledge, the estimation of a non-parametric conditional 
distribution in the functional single index structure combining missing data and 
stationary processes of a functional nature has not yet been studied in statistical 
literature. Therefore, in this work we investigate a conditional quantile estimation 
when the data are MAR. Our aim is to develop a functional methodology for dealing 
with MAR samples in non-parametric problems (namely in the conditional quantile 
estimation). Then, the asymptotic properties of the estimator are obtained under 
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some mild conditions. Our study considers a model in which the response variable is 
missing.  

2. Literature review 

Therefore, within this framework, the independence of the variables was assumed. 
As far as we know, the estimation of a conditional quantile combining censored 
data, an independent theory and functional data with single-index structure has not 
been studied in statistical literature yet. Our paper extends the work of Ling et al. 
(2015, 2016) and Mekki et al. (2021) to the functional single-index model case.  
 For the above-mentioned theoretical and application reasons, the statistical 
community has displayed a great interest in estimating conditional quantiles, 
especially the conditional median function, as an interesting, alternative predictor to 
the conditional mean (thanks to its robustness to the presence of outliers) (see 
Chaudhuri et al., 1997). The estimation of the conditional mode of a scalar response 
given a functional covariate has attracted the attention of many researchers. Ferraty 
et al. (2005) introduced a non-parametric estimator of the conditional quantile, 
defined as the inverse of the conditional distribution function when data are 
dependent. Ezzahrioui and Ould-Saïd (2008) established the asymptotic normality of 
the kernel conditional mode estimator. In the censored case, Ould-Saïd and Cai 
(2005) established a uniform strong consistency of the kernel estimator for the 
conditional mode function. In this context, we recommend referring to Lemdani et 
al. (2009) for the estimation of conditional quantiles. Other authors have been 
interested in the estimation of conditional models when the observations were 
censored or truncated, eg. Hamri et al. (2022), Liang and de Uña-Alvarez (2010), 
Ould-Saïd and Tatachak (2011), Ould-Saïd and Yahia (2011), Rabhi et al. (2021), etc. 
 For instance, Aït-Saidi et al. (2008) were interested in using SFIM to estimate the 
regression operator, and suggested using a cross-validation procedure allowing the 
estimation of the unknown link function as well as the unknown functional index. 
Attaoui (2014) and Attaoui and Ling (2016) studied, respectively, the estimation of 
the conditional density and the conditional cumulative distribution function based 
on a SFIM with the assumption that the data satisfy a strong mixing condition. 
Kadiri et al. (2018) studied the asymptotic properties of the kernel-type estimator of 
the conditional quantiles when the response was right-censored and the data was 
sampled from a strong mixing process. 
 The remaining part of the paper is arranged in the following way: in Section 3, we 
present the non-parametric estimator of the functional conditional model when the 
data are MAR. In Section 4, we make assumptions for the theoretical study.  
The point-wise almost-complete convergence and the uniform almost-complete 
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convergence of the kernel estimator for our models (with rates) are established in 
Section 5. 

3. Model and estimator 

3.1. The functional non-parametric framework 

Consider a random pair (𝑋𝑋,𝑌𝑌), where Y is valued in ℝ and X is valued in some 
infinite dimensional Hilbertian space ℋ with a scalar product <·, · >. Let the 
(𝑋𝑋𝑖𝑖 ,𝑌𝑌𝑖𝑖)𝑖𝑖=1,…,𝑛𝑛 be the statistical sample of pairs which are identically distributed 
like (𝑋𝑋,𝑌𝑌), but not necessarily independent. Henceforward, X will be called 
functional random variable f.r.v. Let x be fixed in ℋand let 𝐹𝐹(𝜃𝜃,𝑦𝑦,𝑥𝑥) be the 
conditional cumulative distribution function (cond-cdf) of T given <𝜃𝜃,𝑋𝑋> = 
< 𝜃𝜃,𝑥𝑥 >, specifically: 
 

∀𝑦𝑦 ∈ ℝ, 𝐹𝐹 (θ,y,x) = ℙ(Y ≤ y|<𝜃𝜃,𝑋𝑋> = <𝜃𝜃, 𝑥𝑥>). 
 

 By the above, we are implicitly assuming the existence of a regular version of the 
conditional distribution Y, given <𝜃𝜃,𝑋𝑋> = <𝜃𝜃, 𝑥𝑥>. 
 In our infinite dimensional purpose, we use the ‘functional non-parametric’ term, 
where the word ‘functional’ refers to the infinite dimensionality of the data, and the 
word ‘non-parametric’ denotes the infinite dimensionality of the model. Such 
‘functional non-parametric’ statistics is also called ‘doubly infinite dimensional’ (see 
Ferraty & Vieu, 2003, for more details). We also use the ‘operational statistics’ term, 
since the target object to be estimated (the cond-df 𝑓𝑓(𝜃𝜃, . , 𝑥𝑥)) can be viewed as  
a non-linear operator. 

3.2. The estimators 

In the case of complete data, the kernel estimator 𝑓𝑓𝑛𝑛(𝜃𝜃, . ,𝑥𝑥)of 𝑓𝑓(𝜃𝜃, . , 𝑥𝑥) is presented 
as follows: 
 

𝑓𝑓(𝜃𝜃, 𝑡𝑡,𝑥𝑥) =
𝑔𝑔𝑛𝑛−1 ∑ 𝐾𝐾�ℎ𝑛𝑛−1(|<𝑥𝑥−𝑋𝑋𝑖𝑖,𝜃𝜃>|)�𝐻𝐻�𝑔𝑔𝑛𝑛−1(𝑦𝑦−𝑌𝑌𝑖𝑖)�𝑛𝑛

𝑖𝑖=1

∑ 𝐾𝐾�ℎ𝑛𝑛−1(<𝑥𝑥−𝑋𝑋𝑖𝑖,𝜃𝜃>)�𝑛𝑛
𝑖𝑖=1

 , 

 
where 𝐾𝐾 and 𝐻𝐻 are kernel functions, and ℎ𝑛𝑛(resp. 𝑔𝑔𝑛𝑛) is a sequence of positive real 
numbers. Note that using similar ideas, Roussas (1969) introduced some related 
estimates, but in the special case where 𝑋𝑋 was real, while Samanta (1989) produced 
an earlier asymptotic study on the subject. 
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 Meanwhile, in an incomplete case with data missing at random for the response 
variable, we observe (𝑋𝑋𝑖𝑖 ,𝑌𝑌𝑖𝑖 ,𝛿𝛿𝑖𝑖)1≤𝑖𝑖≤𝑛𝑛, where 𝑋𝑋𝑖𝑖 is observed completely, and 𝛿𝛿𝑖𝑖 = 1 if 
𝑌𝑌𝑖𝑖 and 𝛿𝛿𝑖𝑖 = 0 otherwise. We define the Bernoulli random variable 𝛿𝛿 by 
 

ℙ(𝛿𝛿 = 1|〈𝑋𝑋, 𝜃𝜃〉 = 〈𝑥𝑥,𝜃𝜃〉,𝑌𝑌 = 𝑦𝑦) = ℙ(𝛿𝛿 = 1|〈𝑋𝑋, 𝜃𝜃〉 = 〈𝑥𝑥, 𝜃𝜃〉) = 𝑝𝑝(𝑥𝑥,𝜃𝜃), 
 
where 𝑝𝑝(𝑥𝑥,𝜃𝜃) is a functional operator which is conditional only on 𝑋𝑋.  
 
 Therefore, the estimator of 𝑓𝑓(𝜃𝜃,𝑦𝑦,𝑥𝑥) in the single-index model with response 
MAR is presented as 
 

𝑓𝑓(𝜃𝜃, 𝑡𝑡,𝑥𝑥) =
𝑔𝑔𝑛𝑛−1 ∑ 𝛿𝛿𝑖𝑖𝐾𝐾�ℎ𝑛𝑛−1(|<𝑥𝑥−𝑋𝑋𝑖𝑖,𝜃𝜃>|)�𝐻𝐻�𝑔𝑔𝑛𝑛−1(𝑦𝑦−𝑌𝑌𝑖𝑖)�𝑛𝑛

𝑖𝑖=1

∑ 𝛿𝛿𝑖𝑖𝐾𝐾�ℎ𝑛𝑛−1(<𝑥𝑥−𝑋𝑋𝑖𝑖,𝜃𝜃>)�𝑛𝑛
𝑖𝑖=1

= �̂�𝑓𝑁𝑁(𝜃𝜃,𝑦𝑦,𝑥𝑥)
�̂�𝑓𝐷𝐷(𝜃𝜃,𝑥𝑥) , 

 
where 𝐾𝐾𝑖𝑖(𝜃𝜃,𝑥𝑥): = K(ℎ𝑛𝑛−1|< 𝑥𝑥 − 𝑋𝑋𝑖𝑖 ,𝜃𝜃 >|),𝐻𝐻𝑖𝑖(𝑦𝑦) = 𝐻𝐻�𝑔𝑔𝑛𝑛−1(𝑦𝑦 − 𝑌𝑌𝑖𝑖)�, 
 

𝑓𝑓𝐷𝐷(𝜃𝜃, 𝑥𝑥) = ∑ 𝛿𝛿𝑖𝑖𝐾𝐾𝑖𝑖(𝜃𝜃,𝑥𝑥)𝑛𝑛
𝑖𝑖=1
𝑛𝑛𝑛𝑛�𝐾𝐾1(𝜃𝜃,𝑥𝑥)�

, and 𝑓𝑓𝑁𝑁(𝜃𝜃,𝑦𝑦,𝑥𝑥) = ∑ 𝛿𝛿𝑖𝑖𝐾𝐾𝑖𝑖(𝜃𝜃,𝑥𝑥)𝐻𝐻𝑖𝑖(𝑦𝑦)𝑛𝑛
𝑖𝑖=1
𝑛𝑛𝑔𝑔𝑛𝑛𝑛𝑛�𝐾𝐾1(𝜃𝜃,𝑥𝑥)�

. 

3.3. Assumptions on the functional variable 

Let 𝑁𝑁𝑥𝑥 be a fixed neighborhood of x in ℋ and let Bθ(x,h) be a ball of center x and 
radius h, namely Bθ(x,h) = { 𝜒𝜒∈ℋ: 0 <| <x − 𝜒𝜒,θ >| < h}, dθ(x,Xi) = | < x −Xi,θ>| 
denote a random variable such that its cumulative distribution function is given by 
𝜙𝜙𝜃𝜃,𝑥𝑥(𝑢𝑢) = ℙ(𝑑𝑑𝜃𝜃(𝑥𝑥,𝑋𝑋𝑖𝑖) ≤ 𝑢𝑢) = ℙ�𝑋𝑋𝑖𝑖 ∈ 𝐵𝐵𝜃𝜃(𝑥𝑥,𝑢𝑢)�. 
 Now, let us consider the following basic assumptions that are necessary in 
deriving the main result of this paper. 
(H1) ℙ�𝑋𝑋 ∈  𝐵𝐵𝜃𝜃(𝑥𝑥, ℎ𝑛𝑛)� =:𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛) > 0;𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛) ⟶  0 asℎ𝑛𝑛 →  0. 

3.4. The non-parametric model 

As is usually the case in non-parametric estimation, we suppose that the  
cond-df𝑓𝑓(𝜃𝜃, . ,𝑥𝑥) verifies some smoothness constraints. Let 𝛼𝛼1 and 𝛼𝛼2 be two 
positive numbers, such that 
(H2) ∀(𝑥𝑥1,𝑥𝑥2) ∈ 𝑁𝑁𝑥𝑥 × 𝑁𝑁𝑥𝑥 ,∀(𝑦𝑦1,𝑦𝑦2) ∈ 𝑆𝑆ℝ × 𝑆𝑆ℝ 

(i)  |𝑓𝑓(𝜃𝜃,𝑦𝑦1, 𝑥𝑥1)− 𝑓𝑓(𝜃𝜃,𝑦𝑦2,𝑥𝑥2)| ≤ 𝐶𝐶𝜃𝜃,𝑥𝑥(‖𝑥𝑥1 − 𝑥𝑥2‖𝛼𝛼1 + |𝑦𝑦1 − 𝑦𝑦2|𝛼𝛼2) 
(ii) ∫𝑦𝑦𝑓𝑓(𝜃𝜃,𝑦𝑦,𝑥𝑥)𝑑𝑑𝑦𝑦 < ∞ for all 𝜃𝜃,𝑥𝑥 ∈ ℋ. 
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4. Asymptotic study 

The objective of this paragraph is to adapt the above-mentioned ideas to the 
framework of a functional explanatory variable, and to construct a kernel-type 
estimator of the conditional distribution function 𝐹𝐹(θ, y, x) adjusted to MAR 
response samples. We establish an almost complete convergence1 of our kernel 
estimator 𝐹𝐹�(𝜃𝜃, 𝑦𝑦, 𝑥𝑥) when we consider a model in which the response variable is 
missing. The presented results are accompanied by the data on the rate of 
convergence. In what follows, 𝐶𝐶 and 𝐶𝐶’ denote generic, strictly positive real 
constants, and ℎ𝑛𝑛 (resp. 𝑔𝑔𝑛𝑛) is a sequence which tends to 0 with 𝑛𝑛. 

4.1. Point-wise almost-complete convergence 

Besides the assumptions introduced in Section 3.4, we will need additional 
conditions. The assumptions we will need later, concerning the parameters of our 
estimator, i.e. 𝐾𝐾,𝐻𝐻, ℎ𝑛𝑛 and 𝑔𝑔𝑛𝑛, are not very restrictive. Indeed, on the one hand they 
are rather inherent in the estimation problem of 𝑓𝑓(𝜃𝜃, 𝑦𝑦, 𝑥𝑥), and on the other they 
correspond to the assumptions usually made in the context of non-functional 
variables. More precisely, we will introduce the following conditions to ensure the 
performance of the estimator 𝑓𝑓(𝜃𝜃, . ,𝑥𝑥): 
(H3) Kernel H is a positive bounded function such that 

(i)   ∀(𝑦𝑦1,𝑦𝑦2) ∈ ℝ2, |𝐻𝐻(𝑦𝑦1)−𝐻𝐻(𝑦𝑦2)| ≤ 𝐶𝐶|𝑦𝑦1 − 𝑦𝑦2|, ∫|𝑦𝑦|𝛼𝛼2𝐻𝐻(𝑦𝑦)𝑑𝑑𝑦𝑦 < ∞ and 
∫𝑦𝑦𝐻𝐻(𝑦𝑦)𝑑𝑑𝑦𝑦 = 0. 

(ii) 𝐻𝐻(1) and 𝐻𝐻(2) are bounded with ∫ �𝐻𝐻(1)(𝑡𝑡)�
2
𝑑𝑑𝑡𝑡 < ∞. 

(H4) 𝐾𝐾 is a positive bounded kernel function with the support of [0,1]: ∀𝑢𝑢 ∈ (0,1),  
0 < K(𝑢𝑢), and the derivative 𝐾𝐾′ exists on [0,1] with 𝐾𝐾′(𝑡𝑡) < 0 for all 𝑡𝑡 ∈
[0, 1] and ∫ �𝐾𝐾𝑗𝑗�′(𝑡𝑡)𝑑𝑑𝑡𝑡 < ∞1

0  for 𝑗𝑗 = 1,2. 
(H5) 𝑝𝑝(𝑥𝑥,𝜃𝜃) is continuous in the neighbourhood of 𝑥𝑥: 0 < 𝑝𝑝(𝑥𝑥,𝜃𝜃) < 1. 
 
THEOREM 1: Suppose that hypotheses (H1)–(H5) are satisfied if ∃𝛽𝛽 > 0,𝑛𝑛𝛽𝛽𝑔𝑔𝑛𝑛

𝑛𝑛→∞
�⎯⎯�∞, and if 
 

𝑙𝑙𝑙𝑙𝑔𝑔 𝑛𝑛
𝑛𝑛𝑔𝑔𝑛𝑛2𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛) 𝑛𝑛→∞

�⎯⎯� 0, 

 
 

 
1 We say that a sequence (𝑆𝑆𝑛𝑛)𝑛𝑛∈ℕ converges almost completely to S if and only if, for any 𝜖𝜖 > 0, we have 
∑ ℙ(|𝑆𝑆𝑛𝑛 − 𝑆𝑆| > 𝜖𝜖) < ∞𝑛𝑛 .  
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then we have 
 

𝑠𝑠𝑢𝑢𝑝𝑝
𝑦𝑦∈𝑆𝑆ℝ

�𝑓𝑓(𝜃𝜃, 𝑦𝑦, 𝑥𝑥)− 𝑓𝑓(𝜃𝜃, 𝑦𝑦, 𝑥𝑥)� = 𝒪𝒪�ℎ𝑛𝑛
𝛼𝛼1 + 𝑔𝑔𝑛𝑛

𝛼𝛼2�+ 𝒪𝒪𝑎𝑎.𝑐𝑐𝑐𝑐. ��
𝑙𝑙𝑐𝑐𝑔𝑔𝑛𝑛

𝑛𝑛𝑔𝑔𝑛𝑛2𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)
�. 

 
PROOF: The proof is based on the following decomposition, valid for any 𝑦𝑦 ∈ 𝑆𝑆ℝ: 
 

𝑠𝑠𝑢𝑢𝑝𝑝
𝑡𝑡∈𝑆𝑆ℝ

�𝑓𝑓(𝜃𝜃, 𝑦𝑦, 𝑥𝑥)− 𝑓𝑓(𝜃𝜃, 𝑦𝑦, 𝑥𝑥)� ≤ 1
�̂�𝑓𝐷𝐷(𝜃𝜃,𝑥𝑥) 𝑠𝑠𝑢𝑢𝑝𝑝𝑦𝑦∈𝑆𝑆ℝ

�𝑓𝑓𝑁𝑁(𝜃𝜃, 𝑦𝑦, 𝑥𝑥)− 𝑛𝑛𝑓𝑓𝑁𝑁(𝜃𝜃, 𝑦𝑦, 𝑥𝑥)�+

+ 1 
�̂�𝑓𝐷𝐷(𝜃𝜃,𝑥𝑥)

𝑠𝑠𝑢𝑢𝑝𝑝
𝑡𝑡∈𝑆𝑆ℝ

�𝑛𝑛𝑓𝑓𝑁𝑁(𝜃𝜃,𝑦𝑦,𝑥𝑥)− 𝑓𝑓(𝜃𝜃,𝑦𝑦,𝑥𝑥)�+ 𝑓𝑓(𝜃𝜃,𝑦𝑦,𝑥𝑥)
�̂�𝑓D(𝜃𝜃,𝑥𝑥) 𝑠𝑠𝑢𝑢𝑝𝑝𝑦𝑦∈𝑆𝑆ℝ

�𝑓𝑓D(𝜃𝜃,𝑥𝑥)− 𝑛𝑛𝑓𝑓D(𝜃𝜃, 𝑥𝑥)�. 
(1) 

 
 Finally, the proof of this theorem is a direct consequence of the following 
intermediate results: 
 
LEMMA 1: Suppose that hypotheses (H1)–(H3) and (H5) are satisfied, then we have 
 

𝑠𝑠𝑢𝑢𝑝𝑝
𝑦𝑦∈𝑆𝑆ℝ

�𝑛𝑛𝑓𝑓𝑁𝑁(𝜃𝜃, 𝑦𝑦, 𝑥𝑥)− 𝑓𝑓(𝜃𝜃, 𝑦𝑦, 𝑥𝑥)� = 𝒪𝒪�ℎ𝑛𝑛
𝛼𝛼1 + 𝑔𝑔𝑛𝑛

𝛼𝛼2�. 

 
PROOF: We have 
 

𝐼𝐼 = 𝑛𝑛𝑓𝑓𝑁𝑁(𝜃𝜃,𝑦𝑦,𝑥𝑥)− 𝑓𝑓(𝜃𝜃,𝑦𝑦,𝑥𝑥) = 𝑛𝑛� 1
𝑛𝑛𝑔𝑔𝑛𝑛𝑛𝑛�𝐾𝐾1(𝜃𝜃,𝑥𝑥)�

∑ 𝛿𝛿𝑖𝑖𝐾𝐾𝑖𝑖(𝜃𝜃, 𝑥𝑥)𝐻𝐻𝑖𝑖(𝑦𝑦)𝑛𝑛
𝑖𝑖=1 �+

−𝑓𝑓(𝜃𝜃, 𝑦𝑦, 𝑥𝑥) = 1
𝑛𝑛𝑔𝑔𝑛𝑛𝑛𝑛�𝐾𝐾1(𝜃𝜃,𝑥𝑥)�

∑ 𝑛𝑛([𝑛𝑛(𝛿𝛿𝑖𝑖𝐾𝐾𝑖𝑖(𝜃𝜃,𝑥𝑥)𝐻𝐻𝑖𝑖(𝑦𝑦)|< 𝜃𝜃,𝑋𝑋𝑖𝑖 >)])𝑛𝑛
𝑖𝑖=1 − 𝑓𝑓(𝜃𝜃,𝑦𝑦,𝑥𝑥) =

= 1
𝑔𝑔𝑛𝑛𝑛𝑛�𝐾𝐾1(𝜃𝜃,𝑥𝑥)�

𝑛𝑛�𝑝𝑝(𝑥𝑥, 𝜃𝜃)𝐾𝐾1(𝜃𝜃,𝑥𝑥)𝑛𝑛(𝐻𝐻1(𝑦𝑦))� − 𝑓𝑓(𝜃𝜃, 𝑦𝑦, 𝑥𝑥). 

 
 Moreover, by changing variables and using the fact that H is a df and uses a double 
conditioning with respect to 𝑌𝑌1, we can easily obtain 
 

 𝑛𝑛�𝐻𝐻�𝑔𝑔𝑛𝑛−1(𝑦𝑦 − 𝑌𝑌1)�|<  𝜃𝜃,𝑋𝑋1 >� = ∫ 𝐻𝐻 �𝑦𝑦−𝑢𝑢
𝑔𝑔𝑛𝑛
�𝑓𝑓(𝜃𝜃,𝑢𝑢,𝑋𝑋1)𝑑𝑑𝑢𝑢ℝ = 

 = ∫ 𝐻𝐻(𝑣𝑣)𝑓𝑓(𝜃𝜃, 𝑦𝑦 − 𝑣𝑣𝑔𝑔𝑛𝑛,𝑋𝑋1)𝑑𝑑𝑣𝑣ℝ = 
 = 𝑔𝑔𝑛𝑛 ∫ 𝐻𝐻(𝑣𝑣)�𝑓𝑓(𝜃𝜃, 𝑦𝑦 − 𝑣𝑣𝑔𝑔𝑛𝑛,𝑋𝑋1)− 𝑓𝑓(𝜃𝜃,𝑢𝑢,𝑥𝑥)�𝑑𝑑𝑣𝑣ℝ + 𝑔𝑔𝑛𝑛𝑓𝑓(𝜃𝜃,𝑢𝑢,𝑥𝑥)∫ 𝐻𝐻(𝑣𝑣)𝑑𝑑𝑣𝑣ℝ .

  

 
 We can write, because of (H2) and (H3): 
 

𝐼𝐼 =
1
𝑛𝑛𝐾𝐾1

𝑛𝑛�𝑝𝑝(𝑥𝑥, 𝜃𝜃)𝐾𝐾1(𝜃𝜃, 𝑥𝑥)�𝐻𝐻(𝑣𝑣)�𝑓𝑓(𝜃𝜃,𝑦𝑦 − 𝑣𝑣𝑔𝑔𝑛𝑛,𝑋𝑋1) − 𝑓𝑓(𝜃𝜃, 𝑦𝑦, 𝑥𝑥)�𝑑𝑑𝑣𝑣
ℝ

� ≤ 

≤ 𝐶𝐶𝜃𝜃,𝑥𝑥�𝑝𝑝(𝑥𝑥, 𝜃𝜃) + 𝑙𝑙(1)�∫ 𝐻𝐻(𝑣𝑣)�ℎ𝑛𝑛
𝛼𝛼1 + |𝑣𝑣|𝛼𝛼2𝑔𝑔𝑛𝑛

𝛼𝛼2�𝑑𝑑𝑣𝑣ℝ ≤ 𝒪𝒪�ℎ𝑛𝑛
𝛼𝛼1 + 𝑔𝑔𝑛𝑛

𝛼𝛼2�. 
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 Finally, the proof is achieved. 
 
LEMMA 2: Under hypotheses of Theorem 1, we have, as n → ∞, 
 

𝑠𝑠𝑢𝑢𝑝𝑝
𝑦𝑦∈𝑆𝑆ℝ

�𝑓𝑓𝑁𝑁(𝜃𝜃, 𝑦𝑦, 𝑥𝑥)− 𝑛𝑛𝑓𝑓𝑁𝑁(𝜃𝜃, 𝑦𝑦, 𝑥𝑥)� = 𝒪𝒪𝑎𝑎.𝑐𝑐𝑐𝑐. ��
𝑙𝑙𝑐𝑐𝑔𝑔𝑛𝑛

𝑛𝑛𝑔𝑔𝑛𝑛2𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)�. 

 
PROOF: Using the compactness of 𝑆𝑆ℝ, we can write that 𝑆𝑆ℝ ⊂ ⋃ �𝑧𝑧𝑗𝑗 − 𝑙𝑙𝑛𝑛, 𝑧𝑧𝑗𝑗 +𝜏𝜏𝑛𝑛

𝑗𝑗=1
+ 𝑙𝑙𝑛𝑛�, with 𝑙𝑙𝑛𝑛 and 𝜏𝜏𝑛𝑛 which can be chosen such that 𝑙𝑙𝑛𝑛 = 𝐶𝐶𝜏𝜏𝑛𝑛−1~𝐶𝐶𝑛𝑛−𝜍𝜍−1 2⁄ . 
Taking 𝑚𝑚𝑦𝑦 = arg min

𝑗𝑗∈�𝑧𝑧1,⋯,𝑧𝑧𝜏𝜏𝑛𝑛�
�𝑦𝑦 − 𝑚𝑚𝑗𝑗�. Thus, we have the following decomposition: 

 
𝑠𝑠𝑢𝑢𝑝𝑝
𝑦𝑦∈𝑆𝑆ℝ

�𝑓𝑓𝑁𝑁(𝜃𝜃,𝑦𝑦,𝑥𝑥)− 𝑛𝑛𝑓𝑓𝑁𝑁(𝜃𝜃,𝑦𝑦,𝑥𝑥)� ≤ 𝑠𝑠𝑢𝑢𝑝𝑝
𝑦𝑦∈𝑆𝑆ℝ

�𝑓𝑓𝑁𝑁(𝜃𝜃, 𝑡𝑡, 𝑥𝑥)− 𝑓𝑓𝑁𝑁�𝜃𝜃,𝑚𝑚𝑦𝑦,𝑥𝑥��

 + 𝑠𝑠𝑢𝑢𝑝𝑝
𝑦𝑦∈𝑆𝑆ℝ

�𝑓𝑓𝑁𝑁�𝜃𝜃,𝑚𝑚𝑦𝑦,𝑥𝑥� − 𝑛𝑛𝑓𝑓𝑁𝑁�𝜃𝜃,𝑚𝑚𝑦𝑦,𝑥𝑥��

+ 𝑠𝑠𝑢𝑢𝑝𝑝
𝑦𝑦∈𝑆𝑆ℝ

�𝑛𝑛𝑓𝑓𝑁𝑁�𝜃𝜃,𝑚𝑚𝑦𝑦,𝑥𝑥� − 𝑛𝑛𝑓𝑓𝑁𝑁(𝜃𝜃, 𝑦𝑦, 𝑥𝑥)�

  

≤ 𝐵𝐵1 + 𝐵𝐵2 + 𝐵𝐵3. 
 
 As the first and the third term can be treated in the same manner, we deal only 
with the first term. By (H3)-(i), which in particular implies that H is a Hölder 
continuous with order one, we can write: 
 

𝐵𝐵1 ≤
1

𝑛𝑛𝑔𝑔𝑛𝑛𝑛𝑛�𝐾𝐾1(𝜃𝜃,𝑥𝑥)�
𝑠𝑠𝑢𝑢𝑝𝑝
𝑦𝑦∈𝑆𝑆ℝ

∑ 𝛿𝛿𝑖𝑖�𝐻𝐻𝑖𝑖(𝑦𝑦)−𝐻𝐻𝑖𝑖�𝑚𝑚𝑦𝑦��𝑛𝑛
𝑖𝑖=1 𝐾𝐾𝑖𝑖(𝜃𝜃, 𝑥𝑥) ≤  

≤ 𝐶𝐶
𝑛𝑛𝑔𝑔𝑛𝑛𝑛𝑛�𝐾𝐾1(𝜃𝜃,𝑥𝑥)�

𝑠𝑠𝑢𝑢𝑝𝑝
𝑦𝑦∈𝑆𝑆ℝ

�𝑦𝑦−𝑚𝑚𝑦𝑦�
𝑔𝑔𝑛𝑛

× ∑ 𝛿𝛿𝑖𝑖𝐾𝐾𝑖𝑖(𝜃𝜃, 𝑥𝑥)𝑛𝑛
𝑖𝑖=1 ≤ 𝐶𝐶𝑙𝑙𝑛𝑛

𝑛𝑛𝑔𝑔𝑛𝑛2𝑛𝑛�𝐾𝐾1(𝜃𝜃,𝑥𝑥)�
× ∑ 𝛿𝛿𝑖𝑖𝐾𝐾𝑖𝑖(𝜃𝜃,𝑥𝑥)𝑛𝑛

𝑖𝑖=1 . 

 
 Using 𝑛𝑛𝑓𝑓D(𝜃𝜃, 𝑥𝑥) = 𝑝𝑝(𝑥𝑥,𝜃𝜃), (H3)-(i) and lim

𝑛𝑛→∞
𝑛𝑛𝛽𝛽𝑔𝑔𝑛𝑛 =∞, it follows that 

 
𝐵𝐵1 𝑛𝑛→∞

�⎯⎯� ∞ . 
 

 Thus, for n large enough, we have 
 

𝐵𝐵1 = 𝒪𝒪𝑎𝑎.𝑐𝑐𝑐𝑐. ��
𝑙𝑙𝑐𝑐𝑔𝑔𝑛𝑛

𝑛𝑛𝑔𝑔𝑛𝑛2𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)�. 

 
 Following similar arguments, we can have 
 

𝐵𝐵3 ≤ 𝐵𝐵1. 
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 Concerning 𝐵𝐵2, let us consider 𝜀𝜀 = 𝜀𝜀0�
𝑙𝑙𝑐𝑐𝑔𝑔𝑛𝑛

𝑛𝑛𝑔𝑔𝑛𝑛2𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)
, for all 𝜀𝜀0 > 0, we have 

 

ℙ�𝑠𝑠𝑢𝑢𝑝𝑝
𝑦𝑦∈𝑆𝑆ℝ

�𝑓𝑓𝑁𝑁�𝜃𝜃,𝑚𝑚𝑦𝑦,𝑥𝑥� − 𝑛𝑛𝑓𝑓𝑁𝑁�𝜃𝜃,𝑚𝑚𝑦𝑦,𝑥𝑥�� > 𝜀𝜀� ≤ 

≤ ℙ� max
𝑗𝑗∈{1,⋯,𝜏𝜏𝑛𝑛}

�𝑓𝑓𝑁𝑁�𝜃𝜃,𝑚𝑚𝑦𝑦,𝑥𝑥� − 𝑛𝑛𝑓𝑓𝑁𝑁�𝜃𝜃,𝑚𝑚𝑦𝑦,𝑥𝑥�� > 𝜀𝜀� ≤ 

≤ 𝜏𝜏𝑛𝑛 ℙ��𝑓𝑓𝑁𝑁�𝜃𝜃,𝑚𝑚𝑦𝑦,𝑥𝑥� − 𝑛𝑛𝑓𝑓𝑁𝑁�𝜃𝜃,𝑚𝑚𝑦𝑦,𝑥𝑥�� > 𝜀𝜀�. 
 

 Applying Berstain’s exponential inequality to 
 

Π𝑖𝑖 =
1

𝑔𝑔𝑛𝑛𝑛𝑛�𝐾𝐾1(𝜃𝜃,𝑥𝑥)�
�𝛿𝛿𝑖𝑖𝐾𝐾𝑖𝑖(𝜃𝜃,𝑥𝑥)𝐻𝐻𝑖𝑖�𝑚𝑚𝑦𝑦� − 𝑛𝑛 �𝛿𝛿𝑖𝑖𝐾𝐾𝑖𝑖(𝜃𝜃, 𝑥𝑥)𝐻𝐻𝑖𝑖�𝑚𝑚𝑦𝑦���. 

 
 Firstly, it follows from the fact that kernels 𝐾𝐾 and 𝐻𝐻 are bounded that we get 
 

ℙ��𝑓𝑓𝑁𝑁�𝜃𝜃,𝑚𝑚𝑦𝑦,𝑥𝑥� − 𝑛𝑛𝑓𝑓𝑁𝑁�𝜃𝜃,𝑚𝑚𝑦𝑦 ,𝑥𝑥�� > 𝜀𝜀� ≤ ℙ �1
𝑛𝑛

|∑ Π𝑖𝑖𝑛𝑛
𝑖𝑖=1 | > 𝜀𝜀� ≤ 2𝑛𝑛−𝐶𝐶𝜀𝜀02 . 

 
 Finally, by choosing 𝜀𝜀0 large enough, the proof can be concluded by the use of the 
Borel-Cantelli lemma, and the result can be easily deduced. 
 
LEMMA 3: Under hypotheses (H1) and (H4)–(H5), we have, as n → ∞, 

(i)  𝑠𝑠𝑢𝑢𝑝𝑝
𝑦𝑦∈𝑆𝑆ℝ

�𝑓𝑓D(𝜃𝜃,𝑥𝑥)− 𝑛𝑛𝑓𝑓D(𝜃𝜃, 𝑥𝑥)� = 𝒪𝒪𝑎𝑎.𝑐𝑐𝑐𝑐. ��
𝑙𝑙𝑐𝑐𝑔𝑔𝑛𝑛

𝑛𝑛𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)
�. 

(ii) ∑ ℙ�𝑓𝑓D(𝜃𝜃, 𝑥𝑥) < 1 2⁄ �𝑛𝑛≥1 < ∞. 

PROOF: For the demonstration of the first part of this lemma, we use the same 
arguments as the previous lemma, the only change is in Δ𝑖𝑖(𝜃𝜃, 𝑥𝑥), where 
 

𝑓𝑓D(𝜃𝜃, 𝑥𝑥)− 𝑛𝑛𝑓𝑓D(𝜃𝜃, 𝑥𝑥) = 1
𝑛𝑛𝑛𝑛�𝐾𝐾1(𝜃𝜃,𝑥𝑥)�

∑ Δ𝑖𝑖(𝜃𝜃, 𝑥𝑥)𝑛𝑛
𝑖𝑖=1 , 

 
with Δ𝑖𝑖(𝜃𝜃,𝑥𝑥) = 𝛿𝛿𝑖𝑖𝐾𝐾𝑖𝑖(𝜃𝜃,𝑥𝑥)− 𝑛𝑛𝛿𝛿𝑖𝑖𝐾𝐾𝑖𝑖(𝜃𝜃,𝑥𝑥). 
 
 All the calculus previously made with the variables Π𝑖𝑖(𝜃𝜃, 𝑥𝑥) remains valid for the 
variables Δ𝑖𝑖(𝜃𝜃,𝑥𝑥), and we obtain 
 

ℙ��𝑓𝑓D(𝜃𝜃, 𝑥𝑥)− 𝑛𝑛𝑓𝑓D(𝜃𝜃, 𝑥𝑥)� > 𝜀𝜀�
𝑙𝑙𝑐𝑐𝑔𝑔𝑛𝑛

𝑛𝑛𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)� ≤ 2𝑛𝑛−𝐶𝐶′𝜀𝜀2 < ∞. 
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 For the proof of the second part of this lemma, we only need to establish 
𝑛𝑛𝑓𝑓D(𝜃𝜃,𝑥𝑥)

𝑛𝑛→∞
�⎯⎯�𝑝𝑝(𝑥𝑥, 𝜃𝜃) 𝑎𝑎. 𝑐𝑐𝑙𝑙. 

 By the properties of the conditional expectation and the mechanism of MAR and 
(H5), it follows that 
 

𝑛𝑛𝑓𝑓D(𝜃𝜃, 𝑥𝑥) =
1

𝑛𝑛𝑛𝑛�𝐾𝐾1(𝜃𝜃, 𝑥𝑥)�
�𝑛𝑛�𝛿𝛿𝑖𝑖𝐾𝐾𝑖𝑖(𝜃𝜃, 𝑥𝑥)�
𝑛𝑛

𝑖𝑖=1

 =
1

𝑛𝑛𝑛𝑛�𝐾𝐾1(𝜃𝜃,𝑥𝑥)�
�𝑛𝑛[𝑛𝑛(𝛿𝛿𝑖𝑖| <  𝜃𝜃,𝑋𝑋𝑖𝑖 >)𝐾𝐾𝑖𝑖(𝜃𝜃,𝑥𝑥)]
𝑛𝑛

𝑖𝑖=1

 =
�𝑝𝑝(𝑥𝑥,𝜃𝜃) + 𝑙𝑙(1)�
𝑛𝑛𝑛𝑛�𝐾𝐾1(𝜃𝜃, 𝑥𝑥)�

�𝑛𝑛�𝐾𝐾𝑖𝑖(𝜃𝜃,𝑥𝑥)�
𝑛𝑛→∞
�⎯⎯�𝑝𝑝(𝑥𝑥, 𝜃𝜃) 𝑎𝑎. 𝑐𝑐𝑙𝑙

𝑛𝑛

𝑖𝑖=1

 

 
 Therefore (ii) of Lemma 3 follows from (i), and because 𝑓𝑓D(𝜃𝜃,𝑥𝑥)

𝑛𝑛→∞
�⎯⎯�𝑝𝑝(𝑥𝑥,𝜃𝜃) 𝑎𝑎. 𝑐𝑐𝑙𝑙. 

 Concerning the last part, we have 
 

⇒
�𝑓𝑓D(𝜃𝜃,𝑥𝑥) < 𝑝𝑝(𝑥𝑥, 𝜃𝜃) 2⁄ � ⊆ ��𝑓𝑓D(𝜃𝜃, 𝑥𝑥)− 𝑝𝑝(𝑥𝑥, 𝜃𝜃)� > 𝑝𝑝(𝑥𝑥,𝜃𝜃) 2⁄ � ⇒
ℙ�𝑓𝑓D(𝜃𝜃,𝑥𝑥) < 𝑝𝑝(𝑥𝑥, 𝜃𝜃) 2⁄ � ≤ ℙ��𝑓𝑓D(𝜃𝜃,𝑥𝑥)− 𝑝𝑝(𝑥𝑥,𝜃𝜃)� > 𝑝𝑝(𝑥𝑥, 𝜃𝜃) 2⁄ �

 ≤ ℙ��𝑓𝑓D(𝜃𝜃, 𝑥𝑥)− 𝑛𝑛𝑓𝑓D(𝜃𝜃,𝑥𝑥)� > 1 2⁄ �,
≤  

 
and because lim

𝑛𝑛→∞
𝑓𝑓D(𝜃𝜃, 𝑥𝑥) = 𝑝𝑝(𝑥𝑥,𝜃𝜃), we show that 

 

�ℙ�𝑓𝑓D(𝜃𝜃,𝑥𝑥) < 𝑝𝑝(𝑥𝑥, 𝜃𝜃) 2⁄ �
𝑛𝑛≥1

< ∞. 

 
 We conclude the proof of the Theorem 1 by making use of Inequality (1), in 
conjunction with Lemma 1, Lemma 2 and Lemma 3. 

4.2. Conditional mode estimation 

In this section, we will study the rate of convergence of our conditional mode 
estimator 𝑀𝑀�𝜃𝜃(𝑥𝑥). Obviously, obtaining these results will require more sophisticated 
technical developments than those presented so far. To ensure a good readability of 
this paragraph, we introduce conditions related to the flatness of the cond-df𝑓𝑓(𝜃𝜃, . ,𝑥𝑥) 
around the conditional quantile 𝑀𝑀𝜃𝜃(𝑥𝑥). 
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 Then a natural estimator of the conditional mode 𝑀𝑀𝜃𝜃(𝑥𝑥) is defined as: 
 

𝑀𝑀�𝜃𝜃(𝑥𝑥) = arg 𝑠𝑠𝑢𝑢𝑝𝑝
𝑦𝑦∈𝒮𝒮ℝ

𝑓𝑓(𝜃𝜃,𝑦𝑦,𝑥𝑥), 

 
where 𝑀𝑀𝜃𝜃(𝑥𝑥) = arg 𝑠𝑠𝑢𝑢𝑝𝑝

𝑦𝑦∈𝒮𝒮ℝ
𝑓𝑓(𝜃𝜃, 𝑦𝑦, 𝑥𝑥), 𝒮𝒮ℝ is a fixed compact subset of ℝ. 

 
 But a complementary way to take this local shape constraint into account is to 
suppose that: 
(H6) The conditional density 𝑓𝑓(𝜃𝜃, . , 𝑥𝑥) satisfies 

(i)  ∃𝜖𝜖0, such that 𝑓𝑓(𝜃𝜃, . ,𝑥𝑥) is strictly increasing on �𝑀𝑀𝜃𝜃(𝑥𝑥)− 𝜖𝜖0,𝑀𝑀𝜃𝜃(𝑥𝑥)� and 
strictly decreasing on (𝑀𝑀𝜃𝜃(𝑥𝑥),𝑀𝑀𝜃𝜃(𝑥𝑥) + 𝜖𝜖0), with respect to 𝑥𝑥. 

(ii) 𝑓𝑓(𝜃𝜃, 𝑦𝑦, 𝑥𝑥) is twice continuously differentiable around the point 𝑀𝑀𝜃𝜃(𝑥𝑥) with 
𝑓𝑓(1)(𝜃𝜃,𝑀𝑀𝜃𝜃(𝑥𝑥),𝑥𝑥) = 0 and 𝑓𝑓(2)(𝜃𝜃, . ,𝑥𝑥) is uniformly continuous on 
𝑆𝑆ℝ, such that 𝑓𝑓(2)(𝜃𝜃,𝑀𝑀𝜃𝜃(𝑥𝑥),𝑥𝑥)  ≠  0, where 𝑓𝑓(𝑗𝑗)(𝜃𝜃, . ,𝑥𝑥) (j = 1,2) is the j-th 
order derivative of the conditional density 𝑓𝑓(𝜃𝜃,𝑦𝑦,𝑥𝑥). 

(H7) ∀ε >0, ∃η >0, ∀𝜑𝜑|𝑀𝑀𝜃𝜃(𝑥𝑥) –  𝜑𝜑(𝑥𝑥)| ≥ 𝜀𝜀 ⇒ |𝑓𝑓(𝜃𝜃,𝜑𝜑(𝑥𝑥),𝑥𝑥)− 𝑓𝑓(𝜃𝜃,𝑀𝑀𝜃𝜃(𝑥𝑥),𝑥𝑥)| ≥ 𝜂𝜂. 
 The difficulty of the problem is naturally linked to the flatness of function 
𝑓𝑓(𝜃𝜃,𝑦𝑦,𝑥𝑥) around mode 𝑀𝑀𝜃𝜃. This flatness can be controlled by the number of 
vanishing derivatives at point 𝑀𝑀𝜃𝜃, and this parameter will also have a significant 
influence on the asymptotic rates of our estimates. More precisely, we introduce the 
following additional smoothness condition. 
(H8) There exists some integer 𝑗𝑗 > 1, such that ∀ 𝑥𝑥 and the function 𝑓𝑓(𝜃𝜃, . , 𝑥𝑥) is  

𝑗𝑗-times continuously differentiable w.r.t 𝑦𝑦 on 𝑆𝑆ℝ with 
 

�
𝑓𝑓(𝑗𝑗)(𝜃𝜃,𝑀𝑀𝜃𝜃(𝑥𝑥),𝑥𝑥) = 0, 𝑖𝑖𝑓𝑓; 1 ≤ 𝑗𝑗 < 𝑙𝑙 

𝑓𝑓(𝑗𝑗)(𝜃𝜃, . , 𝑥𝑥) 𝑖𝑖𝑠𝑠 𝑢𝑢𝑛𝑛𝑖𝑖𝑓𝑓𝑙𝑙𝑢𝑢𝑚𝑚𝑙𝑙𝑦𝑦 𝑐𝑐𝑙𝑙𝑛𝑛𝑡𝑡𝑖𝑖𝑛𝑛𝑢𝑢𝑙𝑙𝑢𝑢𝑠𝑠 𝑙𝑙𝑛𝑛 𝑆𝑆ℝ
𝑠𝑠𝑢𝑢𝑐𝑐ℎ 𝑡𝑡ℎ𝑎𝑎𝑡𝑡 𝑓𝑓(𝑗𝑗)(𝜃𝜃,𝑀𝑀𝜃𝜃(𝑥𝑥),𝑥𝑥) ≠ 0.

 

 
PROPOSTION 1: Suppose that the hypotheses (H1), (H3)–(H8) are satisfied if ∃β >
0, nβgn n→∞

�⎯⎯�∞, and if 
 

𝑙𝑙𝑖𝑖𝑚𝑚
𝑛𝑛→∞

𝑙𝑙𝑐𝑐𝑔𝑔𝑛𝑛
𝑛𝑛𝑔𝑔𝑛𝑛2𝑙𝑙𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)

= 0, 

 
then we have 

�𝑀𝑀�𝜃𝜃(𝛾𝛾,𝑥𝑥)−𝑀𝑀𝜃𝜃(𝛾𝛾, 𝑥𝑥)� = 𝒪𝒪 ��ℎ𝑛𝑛
𝛼𝛼1 + 𝑔𝑔𝑛𝑛

𝛼𝛼2�
1
𝑗𝑗�+ 𝒪𝒪𝑎𝑎.𝑐𝑐𝑐𝑐. ��

𝑙𝑙𝑐𝑐𝑔𝑔𝑛𝑛
𝑛𝑛𝑔𝑔𝑛𝑛2𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)

�
1
2𝑗𝑗
�. 
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PROOF: The proof is based on the Taylor expansion of 𝑓𝑓(𝜃𝜃, . ,𝑥𝑥). In the 
neighborhood of 𝑀𝑀𝜃𝜃(𝛾𝛾, 𝑥𝑥), we get 
 

𝑓𝑓�𝜃𝜃,𝑀𝑀�𝜃𝜃(𝑥𝑥),𝑥𝑥� = 𝑓𝑓(𝜃𝜃,𝑀𝑀𝜃𝜃(𝑥𝑥),𝑥𝑥) + 𝑓𝑓(𝑗𝑗)�𝜃𝜃,𝑀𝑀𝜃𝜃
∗ (𝑥𝑥),𝑥𝑥�

𝑗𝑗!
�𝑀𝑀�𝜃𝜃(𝑥𝑥)−𝑀𝑀𝜃𝜃(𝑥𝑥)�

𝑗𝑗
, 

 
where 𝑀𝑀𝜃𝜃

∗(𝑥𝑥) is between 𝑀𝑀𝜃𝜃(𝑥𝑥) and 𝑀𝑀�𝜃𝜃(𝑥𝑥), combining the last equality with the fact 
that 
 

�𝑓𝑓�𝜃𝜃,𝑀𝑀�𝜃𝜃(𝑥𝑥),𝑥𝑥� −  𝑓𝑓(𝜃𝜃,𝑀𝑀𝜃𝜃(𝑥𝑥),𝑥𝑥)� ≤ 2 𝑠𝑠𝑢𝑢𝑝𝑝
𝑦𝑦∈𝑆𝑆ℝ

�𝑓𝑓(𝜃𝜃, 𝑦𝑦, 𝑥𝑥)−  𝑓𝑓(𝜃𝜃,𝑦𝑦,𝑥𝑥)�, 

 
which makes it possible to write: 
 

�𝑀𝑀𝜃𝜃(𝑥𝑥)−𝑀𝑀�𝜃𝜃(𝑥𝑥)�𝑗𝑗 ≤
𝑗𝑗!

𝑓𝑓(𝑗𝑗)�𝜃𝜃,𝑀𝑀𝜃𝜃
∗(𝑥𝑥),𝑥𝑥�

𝑠𝑠𝑢𝑢𝑝𝑝
𝑦𝑦∈𝑆𝑆ℝ

�𝑓𝑓(𝜃𝜃, 𝑦𝑦, 𝑥𝑥)−  𝑓𝑓(𝜃𝜃, 𝑦𝑦, 𝑥𝑥)�. 

 
 Using the second part of (H8), we obtain  
 

∃𝛿𝛿 > 0,�ℙ�𝑓𝑓(𝑗𝑗)(𝜃𝜃,𝑀𝑀𝜃𝜃
∗(𝑥𝑥),𝑥𝑥) ≥ 𝛿𝛿� < ∞.

𝑛𝑛≥1

 

 
 So, we have 
 

�𝑀𝑀�𝜃𝜃(𝛾𝛾,𝑥𝑥)−𝑀𝑀𝜃𝜃(𝛾𝛾, 𝑥𝑥)�𝑗𝑗 = 𝒪𝒪𝑎𝑎.𝑐𝑐𝑐𝑐. �𝑠𝑠𝑢𝑢𝑝𝑝
𝑦𝑦∈𝑆𝑆ℝ

�𝑓𝑓(𝜃𝜃, 𝑦𝑦, 𝑥𝑥)−  𝑓𝑓(𝜃𝜃,𝑦𝑦,𝑥𝑥)��. 

 
 Finally, Proposition 1 can be deduced from Theorem 1. 
 
COROLLARY 1: Under hypotheses of Theorem 1, we have 
 

𝑀𝑀�𝜃𝜃(𝑥𝑥)−𝑀𝑀𝜃𝜃(𝑥𝑥)
𝑛𝑛→∞
�⎯⎯� 0,𝑎𝑎. 𝑐𝑐𝑙𝑙. 

 
PROOF: The proof is based on the point-wise convergence of  𝑓𝑓� (𝜃𝜃, . , 𝑥𝑥), and the 
Lipschitz property introduced in (H3)-(i) and hypothesis (H7), 𝑓𝑓(𝜃𝜃, 𝑡𝑡, 𝑥𝑥) is  
a continuous. We therefore have: 
 
∀ 𝜖𝜖 > 0,∃𝜂𝜂(𝜖𝜖) > 0, such that 
 

�𝑓𝑓(𝜃𝜃, 𝑦𝑦, 𝑥𝑥)− 𝑓𝑓(𝜃𝜃,𝑀𝑀𝜃𝜃(𝑥𝑥),𝑥𝑥)� ≤  𝜂𝜂(𝜖𝜖)  ⇒ |𝑦𝑦 −  𝑀𝑀𝜃𝜃(𝑥𝑥)| ≤ 𝜖𝜖. 
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 Therefore, for 𝑦𝑦 = 𝑀𝑀�𝜃𝜃(𝑥𝑥), 
 
ℙ��𝑀𝑀�𝜃𝜃(𝑥𝑥)−𝑀𝑀𝜃𝜃(𝑥𝑥)� >  𝜖𝜖� ≤ ℙ�� 𝑓𝑓�𝜃𝜃,𝑀𝑀�𝜃𝜃(𝑥𝑥),𝑥𝑥� − 𝑓𝑓(𝜃𝜃,𝑀𝑀𝜃𝜃(𝑥𝑥),𝑥𝑥)� ≥ 𝜂𝜂(𝜖𝜖)�. (2) 

 
 Then, according to the theorem, 𝑀𝑀�𝜃𝜃 −𝑀𝑀𝜃𝜃 go almost completely to 0, as 𝑛𝑛 goes to 
infinity. 

5. Asymptotic normality 

The asymptotic normality of the semi-parametric estimators of the conditional 
mode for functional data in the Single Index Model (SIM) with missing data at 
random (MAR) is an important property that establishes the limiting distribution of 
the estimators as the sample size increases. Although specific results might vary 
depending on the assumptions and estimation methods used, it allows us to 
construct confidence intervals and hypothesis tests for the estimated mode. In this 
Section, the asymptotic normality of the estimator 𝑓𝑓(𝜃𝜃, . , 𝑥𝑥) in the single functional 
index model is established. 

(N1) There exists a function βθ,x(·), such that lim
𝑛𝑛→∞

𝜙𝜙𝜃𝜃,𝑥𝑥(𝑠𝑠ℎ𝑛𝑛)
𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛) = 𝛽𝛽𝜃𝜃,𝑥𝑥(𝑠𝑠), for ∀s∈ [0,1]. 

(N2) The bandwidth ℎ𝑛𝑛and 𝑔𝑔𝑛𝑛, small ball probability 𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛) satisfying 

(i)  𝑛𝑛𝑔𝑔𝑛𝑛3𝜙𝜙𝜃𝜃,𝑥𝑥
3 (ℎ𝑛𝑛) ⟶  0 and 𝑛𝑛𝑔𝑔𝑛𝑛

3𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛) log𝑛𝑛
log2 𝑛𝑛

⟶ ∞, 𝑎𝑎𝑠𝑠𝑛𝑛 → ∞. 

(ii) 𝑛𝑛𝑔𝑔𝑛𝑛2𝜙𝜙𝜃𝜃,𝑥𝑥
3 (ℎ𝑛𝑛) ⟶  0,𝑎𝑎𝑠𝑠𝑛𝑛 → ∞. 

(N3) The conditional density f(θ,y,x) satisfies: ∃𝛼𝛼 > 0, ∀(y1,𝑦𝑦2)  ∈ 𝑆𝑆ℝ × 𝑆𝑆ℝ, 
 

�𝑓𝑓(𝑗𝑗)(𝜃𝜃, 𝑦𝑦1,𝑥𝑥1) − 𝑓𝑓(𝑗𝑗)(𝜃𝜃,𝑦𝑦2,𝑥𝑥2)� ≤ 𝐶𝐶(|𝑦𝑦1 − 𝑦𝑦2|𝛼𝛼), 𝑗𝑗 = 1,2. 
 

THEOREM 2: Under the assumptions of Theorem 1 and (N1)–(N3) for all x ∈ℋ, 
and if 
 

�𝑛𝑛𝑔𝑔𝑛𝑛𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)�ℎ𝑛𝑛
𝛼𝛼1 + 𝑔𝑔𝑛𝑛

𝛼𝛼2�
𝑛𝑛→∞
�⎯⎯� 0, 

 
then we have 
 

�𝑛𝑛𝑔𝑔𝑛𝑛𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)
𝜎𝜎2(𝜃𝜃,𝑦𝑦,𝑥𝑥)

�𝑓𝑓(𝜃𝜃,𝑦𝑦,𝑥𝑥)− 𝑓𝑓(𝜃𝜃, 𝑦𝑦, 𝑥𝑥)�
 𝒟𝒟 
��𝒩𝒩(0,1), 

 
where  𝜎𝜎2(𝜃𝜃,𝑦𝑦,𝑥𝑥) = 𝑀𝑀2(𝜃𝜃,𝑥𝑥)

(𝑀𝑀1(𝜃𝜃,𝑥𝑥))2
𝑓𝑓(𝜃𝜃,𝑦𝑦,𝑥𝑥)
𝑝𝑝(𝜃𝜃,𝑥𝑥) ∫𝐻𝐻

2(𝑢𝑢)𝑑𝑑𝑢𝑢 with 𝑀𝑀𝑙𝑙(𝜃𝜃,𝑥𝑥) = 𝐾𝐾𝑙𝑙(1)− 

−∫ (𝐾𝐾𝑙𝑙)′(𝑢𝑢)1
0 𝛽𝛽𝜃𝜃,𝑥𝑥(𝑢𝑢)𝑑𝑑𝑢𝑢, 𝑙𝑙 = 1, 2.  
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PROOF: In order to establish the asymptotic normality of 𝐹𝐹�(𝜃𝜃, 𝑡𝑡,𝑥𝑥), we need further 
notations and definitions. First we consider the following decomposition: 
 

𝑓𝑓(𝜃𝜃,𝑦𝑦,𝑥𝑥)− 𝑓𝑓(𝜃𝜃,𝑦𝑦,𝑥𝑥) = �̂�𝑓𝑁𝑁(𝜃𝜃,𝑦𝑦,𝑥𝑥)
�̂�𝑓D(𝜃𝜃,𝑥𝑥) − 𝑀𝑀1(𝜃𝜃,𝑥𝑥)𝑓𝑓(𝜃𝜃,𝑦𝑦,𝑥𝑥)

𝑀𝑀1(𝜃𝜃,𝑥𝑥)  = 

= 1
�̂�𝑓D(𝜃𝜃,𝑥𝑥) �𝑓𝑓𝑁𝑁(𝜃𝜃, 𝑦𝑦, 𝑥𝑥)− 𝔼𝔼𝑓𝑓𝑁𝑁(𝜃𝜃, 𝑦𝑦, 𝑥𝑥)�+ 

− 1
�̂�𝑓D(𝜃𝜃,𝑥𝑥) �𝑀𝑀1(𝜃𝜃,𝑥𝑥)𝑓𝑓(𝜃𝜃,𝑦𝑦,𝑥𝑥)− 𝔼𝔼𝑓𝑓𝑁𝑁(𝜃𝜃, 𝑦𝑦, 𝑥𝑥)�+ 

+ 𝑓𝑓(𝜃𝜃,𝑦𝑦,𝑥𝑥)
�̂�𝑓D(𝜃𝜃,𝑥𝑥) �𝑀𝑀1(𝜃𝜃,𝑥𝑥)− 𝔼𝔼𝐹𝐹�𝐷𝐷(𝜃𝜃, 𝑥𝑥)� −𝑓𝑓(𝜃𝜃,𝑦𝑦,𝑥𝑥)

�̂�𝑓D(𝜃𝜃,𝑥𝑥) �𝐹𝐹�𝐷𝐷(𝜃𝜃, 𝑥𝑥)− 𝔼𝔼𝐹𝐹�𝐷𝐷(𝜃𝜃, 𝑥𝑥)� =  

= 1
�̂�𝑓D(𝜃𝜃,𝑥𝑥)𝐴𝐴𝑛𝑛(𝜃𝜃, 𝑦𝑦, 𝑥𝑥) + 𝐵𝐵𝑛𝑛(𝜃𝜃,𝑦𝑦,𝑥𝑥), 

 
where: 
 

𝐴𝐴𝑛𝑛(𝜃𝜃,𝑦𝑦,𝑥𝑥) = 1
𝑛𝑛𝑔𝑔𝑛𝑛𝔼𝔼�𝐾𝐾1(𝜃𝜃,𝑥𝑥)�

∑ ��𝐻𝐻𝑖𝑖(𝑡𝑡)− 𝑔𝑔𝑛𝑛𝑓𝑓(𝜃𝜃,𝑦𝑦,𝑥𝑥)�𝛿𝛿𝑖𝑖𝐾𝐾𝑖𝑖(𝜃𝜃, 𝑥𝑥)𝑛𝑛
𝑖𝑖=1   

−𝔼𝔼��𝐻𝐻𝑖𝑖(𝑡𝑡)− 𝑔𝑔𝑛𝑛𝑓𝑓(𝜃𝜃, 𝑦𝑦,𝑥𝑥)�𝛿𝛿𝑖𝑖𝐾𝐾𝑖𝑖(𝜃𝜃, 𝑥𝑥)�� = 1
𝑛𝑛𝑔𝑔𝑛𝑛𝔼𝔼�𝐾𝐾1(𝜃𝜃,𝑥𝑥)�

∑ 𝑁𝑁𝑖𝑖𝑛𝑛
𝑖𝑖=1 (𝜃𝜃, 𝑡𝑡,𝑥𝑥)  

 
and  
 

𝐵𝐵𝑛𝑛(𝜃𝜃, 𝑦𝑦, 𝑥𝑥) = 𝑀𝑀1(𝜃𝜃, 𝑥𝑥)𝑓𝑓(𝜃𝜃, 𝑦𝑦, 𝑥𝑥)−  𝔼𝔼𝑓𝑓𝑁𝑁(𝜃𝜃, 𝑦𝑦, 𝑥𝑥) + 𝑓𝑓(𝜃𝜃,𝑦𝑦,𝑥𝑥) 
�𝑀𝑀1(𝜃𝜃, 𝑥𝑥)− 𝔼𝔼𝑓𝑓𝐷𝐷(𝜃𝜃,𝑥𝑥)�. 

 
 It follows that, 
 

𝑛𝑛𝑔𝑔𝑛𝑛𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)𝑉𝑉𝑎𝑎𝑉𝑉�𝐴𝐴𝑛𝑛(𝜃𝜃, 𝑦𝑦,𝑥𝑥)� =
𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)

𝑔𝑔𝑛𝑛𝔼𝔼2�𝐾𝐾1(𝜃𝜃, 𝑥𝑥)�
𝑉𝑉𝑎𝑎𝑉𝑉�𝑁𝑁1(𝜃𝜃, 𝑦𝑦, 𝑥𝑥)� =

 = 𝑉𝑉𝑛𝑛(𝜃𝜃, 𝑦𝑦, 𝑥𝑥).
 

 
 Then, the proof of Theorem 2 can be deduced from the following Lemmas. 
 
LEMMA 4: Under assumptions of Theorem 2, we have 
 

�𝑛𝑛𝑔𝑔𝑛𝑛𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)𝐴𝐴𝑛𝑛(𝜃𝜃, 𝑦𝑦, 𝑥𝑥)
𝒟𝒟
→𝒩𝒩�0,𝜎𝜎2(𝜃𝜃,𝑦𝑦,𝑥𝑥)�. 

 
PROOF: 
 

𝑉𝑉𝑛𝑛(𝜃𝜃, 𝑦𝑦, 𝑥𝑥) =
𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)

𝑔𝑔𝑛𝑛𝔼𝔼2�𝐾𝐾1(𝜃𝜃, 𝑥𝑥)�
𝔼𝔼 �𝛿𝛿1𝐾𝐾12(𝜃𝜃, 𝑥𝑥)�𝐻𝐻1(𝑦𝑦)− 𝑔𝑔𝑛𝑛𝑓𝑓(𝜃𝜃,𝑦𝑦,𝑥𝑥)�2� 
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𝑉𝑉𝑛𝑛(𝜃𝜃,𝑦𝑦,𝑥𝑥) =  

=
𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)

𝑔𝑔𝑛𝑛𝑛𝑛2�𝐾𝐾1(𝜃𝜃,𝑥𝑥)�
𝑛𝑛 �𝐾𝐾12(𝜃𝜃, 𝑥𝑥)𝑛𝑛�𝛿𝛿1 �𝐻𝐻1(𝑦𝑦)− 𝑔𝑔𝑛𝑛𝑓𝑓(𝜃𝜃, 𝑦𝑦, 𝑥𝑥)�2� 〈𝜃𝜃,𝑋𝑋1〉�� 

(3) 

 
 Using the definition of conditional variance, we have 
 

𝑛𝑛�𝛿𝛿1 �𝐻𝐻1(𝑡𝑡)− 𝑔𝑔𝑛𝑛𝑓𝑓(𝜃𝜃,𝑦𝑦,𝑥𝑥)�2� 〈𝜃𝜃,𝑋𝑋1〉� = 𝐽𝐽1𝑛𝑛 + 𝐽𝐽2𝑛𝑛, 
 

𝐽𝐽1𝑛𝑛 = 𝑉𝑉𝑎𝑎𝑢𝑢(𝛿𝛿1𝐻𝐻1(𝑦𝑦)|〈𝜃𝜃,𝑋𝑋1〉),𝐽𝐽2𝑛𝑛 = [𝑛𝑛(𝐻𝐻1(𝑦𝑦)|〈𝜃𝜃,𝑋𝑋1〉)− 𝑔𝑔𝑛𝑛𝑓𝑓(𝜃𝜃,𝑦𝑦,𝑥𝑥)]2. 
 

 Concerning 𝐽𝐽1𝑛𝑛, 
 

𝐽𝐽1𝑛𝑛 = 𝑛𝑛�𝐻𝐻2 �𝑦𝑦−𝑌𝑌1
𝑔𝑔𝑛𝑛

�� 〈𝜃𝜃,𝑋𝑋1〉� − �𝑛𝑛 �𝛿𝛿1 𝐻𝐻1 �
𝑦𝑦−𝑌𝑌1
𝑔𝑔𝑛𝑛

�� 〈𝜃𝜃,𝑋𝑋1〉��
2

= 𝒥𝒥1 + 𝒥𝒥2. 

 
 As for 𝒥𝒥1, by the property of double conditional expectation, we obtain 
 

𝒥𝒥1 = 𝑛𝑛�𝛿𝛿1𝐻𝐻2 �𝑦𝑦−𝑌𝑌1
𝑔𝑔𝑛𝑛

�� 〈𝜃𝜃,𝑋𝑋1〉� = 𝑝𝑝(𝑥𝑥,𝜃𝜃)∫𝐻𝐻2 �𝑦𝑦−𝑣𝑣
𝑔𝑔𝑛𝑛
�𝑓𝑓(𝜃𝜃, 𝑣𝑣,𝑋𝑋1)𝑑𝑑𝑣𝑣  

= 𝑝𝑝(𝑥𝑥,𝜃𝜃)�𝐻𝐻2(𝑢𝑢)𝑑𝑑𝐹𝐹(𝜃𝜃, 𝑦𝑦 − 𝑢𝑢𝑔𝑔𝑛𝑛,𝑋𝑋1). 

 
 On the other hand, under assumptions (H2)–(H3), we have 
 

𝒥𝒥1 = �𝐻𝐻2(𝑢𝑢)𝑑𝑑𝐹𝐹(𝜃𝜃,𝑦𝑦 − 𝑢𝑢𝑔𝑔𝑛𝑛,𝑋𝑋1) = ℎ𝑛𝑛 �𝐻𝐻2(𝑢𝑢)𝑓𝑓(𝜃𝜃, 𝑦𝑦 − 𝑢𝑢𝑔𝑔𝑛𝑛,𝑋𝑋1)𝑑𝑑𝑢𝑢 ≤ 

≤ 𝑔𝑔𝑛𝑛 �𝐻𝐻2(𝑢𝑢)�𝑓𝑓(𝜃𝜃, 𝑦𝑦 − 𝑢𝑢𝑔𝑔𝑛𝑛,𝑋𝑋1)− 𝑓𝑓(𝜃𝜃,𝑦𝑦,𝑥𝑥)�𝑑𝑑𝑢𝑢 + 

+𝑔𝑔𝑛𝑛 �𝐻𝐻2(𝑢𝑢)𝑓𝑓(𝜃𝜃, 𝑦𝑦, 𝑥𝑥)𝑑𝑑𝑢𝑢 ≤ 

≤ 𝑔𝑔𝑛𝑛 �𝐶𝐶𝜃𝜃,𝑥𝑥 �𝐻𝐻2(𝑢𝑢)�ℎ𝑛𝑛
𝛼𝛼1 + |𝑣𝑣|𝛼𝛼2𝑔𝑔𝑛𝑛

𝛼𝛼2�𝑑𝑑𝑢𝑢 + 𝑓𝑓(𝜃𝜃,𝑦𝑦,𝑥𝑥)�𝐻𝐻2(𝑢𝑢)𝑑𝑑𝑢𝑢� = 

= 𝒪𝒪�ℎ𝑛𝑛
𝛼𝛼1 + 𝑔𝑔𝑛𝑛

𝛼𝛼2�+ 𝑔𝑔𝑛𝑛𝑓𝑓(𝜃𝜃, 𝑦𝑦, 𝑥𝑥)�𝐻𝐻2(𝑢𝑢)𝑑𝑑𝑢𝑢. 

(4) 

 
 
 As for 𝐽𝐽2, 𝒥𝒥2′ = 𝑛𝑛(𝛿𝛿1𝐻𝐻1(𝑦𝑦)|〈𝜃𝜃,𝑋𝑋1〉) = 𝑝𝑝(𝑥𝑥, 𝜃𝜃)∫𝐻𝐻 �𝑦𝑦−𝑣𝑣𝑔𝑔𝑛𝑛

�𝑓𝑓(𝜃𝜃,𝑦𝑦,𝑋𝑋1)𝑑𝑑𝑣𝑣. 
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 Moreover, by changing variables, we obtain: 
 

𝒥𝒥′2 = ℎ𝑛𝑛 �𝐻𝐻(𝑢𝑢)�𝑓𝑓(𝜃𝜃, 𝑦𝑦 − 𝑢𝑢𝑔𝑔𝑛𝑛,𝑥𝑥)− 𝑓𝑓(𝜃𝜃, 𝑦𝑦, 𝑥𝑥)�𝑑𝑑𝑢𝑢 +𝑔𝑔𝑛𝑛𝑓𝑓(𝜃𝜃, 𝑦𝑦, 𝑥𝑥)�𝐻𝐻(𝑢𝑢)𝑑𝑑𝑢𝑢. 

 
 The last equality is due to the fact that 𝐻𝐻 is a probability density, thus we have 
 

𝒥𝒥′2 = 𝒪𝒪�ℎ𝑛𝑛
𝛼𝛼1 + 𝑔𝑔𝑛𝑛

𝛼𝛼2�+ 𝑔𝑔𝑛𝑛𝑓𝑓(𝜃𝜃, 𝑦𝑦, 𝑥𝑥). 
 

 Finally, we get 𝐽𝐽2 𝑛𝑛→∞�⎯⎯�∞. As for J2n, by (H1)–(H3), we obtain 𝐽𝐽2𝑛𝑛 𝑛𝑛→∞
�⎯⎯�∞. 

 Meanwile, from (H1)–(H3), it follows that 
 

𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)𝑛𝑛𝐾𝐾12(𝜃𝜃,𝑥𝑥)
𝑛𝑛2�𝐾𝐾1(𝜃𝜃,𝑥𝑥)� 𝑛𝑛→∞

�⎯⎯� 𝑀𝑀2(𝜃𝜃,𝑥𝑥)
(𝑀𝑀1(𝜃𝜃,𝑥𝑥))2, 

 
which leads to combining equations (3) and (4): 
 

𝑉𝑉𝑛𝑛(𝜃𝜃, 𝑡𝑡,𝑥𝑥)
𝑛𝑛→∞
�⎯⎯� 𝑀𝑀2(𝜃𝜃,𝑥𝑥)𝑓𝑓(𝜃𝜃,𝑦𝑦,𝑥𝑥)

(𝑀𝑀1(𝜃𝜃,𝑥𝑥))2𝑝𝑝(𝑥𝑥,𝜃𝜃)
 . 

 
LEMMA 5: If the assumptions (H1)–(H7) are satisfied, we have 
 

�𝑛𝑛𝑔𝑔𝑛𝑛𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)𝐵𝐵𝑛𝑛(𝜃𝜃, 𝑡𝑡,𝑥𝑥)→ 0, in probability. 
 

PROOF: We have 
 

�𝑛𝑛𝑔𝑔𝑛𝑛𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)𝐵𝐵𝑛𝑛(𝜃𝜃, 𝑡𝑡, 𝑥𝑥) =
�𝑛𝑛𝑔𝑔𝑛𝑛𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)

𝑓𝑓𝐷𝐷(𝜃𝜃,𝑥𝑥)
�𝑛𝑛𝑓𝑓𝑁𝑁(𝜃𝜃, 𝑦𝑦, 𝑥𝑥)−𝑀𝑀1(𝜃𝜃,𝑥𝑥)𝑓𝑓(𝜃𝜃,𝑦𝑦,𝑥𝑥)

 +𝑓𝑓(𝜃𝜃, 𝑦𝑦, 𝑥𝑥) �𝑀𝑀1(𝜃𝜃,𝑥𝑥)− 𝑛𝑛𝑓𝑓𝐷𝐷(𝜃𝜃, 𝑥𝑥)� .
 

 
 Firstly, it can be observed that, as 𝑛𝑛 → ∞, 
 

 1
𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)𝑛𝑛 �𝐾𝐾

𝑙𝑙 �〈𝜃𝜃,𝑥𝑥−𝑋𝑋𝑖𝑖〉
ℎ𝑛𝑛

�� → 𝑀𝑀𝑙𝑙(𝜃𝜃,𝑥𝑥), for 𝑙𝑙 = 1,2, (5) 

 
 𝑛𝑛𝑓𝑓𝐷𝐷(𝜃𝜃, 𝑥𝑥) → 𝑀𝑀1(𝜃𝜃, 𝑥𝑥)𝑝𝑝(𝑥𝑥,𝜃𝜃) 𝑎𝑎𝑛𝑛𝑑𝑑 𝑛𝑛𝑓𝑓𝑁𝑁(𝜃𝜃, 𝑦𝑦, 𝑥𝑥) → 𝑀𝑀1(𝜃𝜃, 𝑥𝑥)𝑓𝑓(𝜃𝜃, 𝑦𝑦, 𝑥𝑥), (6) 

 
can be proved in the same way as in Ezzahrioui and Ould-Saïd (2008), 
corresponding to their Lemmas 5.1 and 5.2, and then their proofs are omitted. 
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 Secondly, using (5) and (6), we have, on the one hand, as 𝑛𝑛 → ∞, 
 
�𝑛𝑛𝑓𝑓𝑁𝑁(𝜃𝜃, 𝑦𝑦, 𝑥𝑥)−𝑀𝑀1(𝜃𝜃,𝑥𝑥)𝑓𝑓(𝜃𝜃,𝑦𝑦,𝑥𝑥) + 𝑓𝑓(𝜃𝜃,𝑦𝑦,𝑥𝑥) �𝑀𝑀1(𝜃𝜃, 𝑥𝑥)− 𝑛𝑛𝑓𝑓𝐷𝐷(𝜃𝜃,𝑥𝑥)�� → 0. 

 
 On the other hand, 
 

�𝑛𝑛𝑔𝑔𝑛𝑛𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)
�̂�𝑓D(𝜃𝜃,𝑥𝑥) = �𝑛𝑛𝑔𝑔𝑛𝑛𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)�̂�𝑓(𝜃𝜃,𝑦𝑦,𝑥𝑥)

�̂�𝑓D(𝜃𝜃,𝑥𝑥)�̂�𝑓(𝜃𝜃,𝑦𝑦,𝑥𝑥) = �𝑛𝑛𝑔𝑔𝑛𝑛𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)�̂�𝑓(𝜃𝜃,𝑦𝑦,𝑥𝑥)
�̂�𝑓𝑁𝑁(𝜃𝜃,𝑦𝑦,𝑥𝑥) . 

 
 Because 𝐾𝐾 and 𝐻𝐻 are continuous with the support on [0,1], then from (H3)  
and (H4) ∃𝑚𝑚 = min

[0,1]
𝐾𝐾(𝑡𝑡)𝐻𝐻(𝑡𝑡), it follows that 

 
𝑓𝑓𝑁𝑁(𝜃𝜃,𝑦𝑦,𝑥𝑥) ≥ 𝑚𝑚

𝑔𝑔𝑛𝑛𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)
 , 

 
which yields 
 

�𝑛𝑛𝑔𝑔𝑛𝑛𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)
�̂�𝑓𝑁𝑁(𝜃𝜃,𝑦𝑦,𝑥𝑥) ≤

�𝑛𝑛𝑔𝑔𝑛𝑛3𝜙𝜙𝜃𝜃,𝑥𝑥
3 (ℎ𝑛𝑛)

𝑚𝑚
. 

 
 Finally, (N2)–(i) completes the proof of Lemma 5. 

5.1. Application: The conditional mode in functional single-index model 

The main objective of this part of our work is to establish the asymptotic normality 
of the conditional mode estimator of 𝑌𝑌, given < 𝜃𝜃,𝑋𝑋 >=< 𝜃𝜃, 𝑥𝑥 > denoted by 
𝑀𝑀𝜃𝜃(𝑥𝑥).  
 
COROLLARY 2: Under the assumptions of Theorem 2, and if (H6) holds true, and 
in addition if 
 

𝑛𝑛𝑔𝑔𝑛𝑛3𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)
𝑛𝑛→∞
�⎯⎯� 0,  

 
then we have, as 𝑛𝑛 → ∞, 
 

�𝑛𝑛𝑔𝑔𝑛𝑛3𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)�𝑀𝑀�𝜃𝜃(𝑥𝑥)−𝑀𝑀𝜃𝜃(𝑥𝑥)�
 𝒟𝒟 
��𝒩𝒩�0,𝜚𝜚2(𝜃𝜃,𝑀𝑀𝜃𝜃(𝑥𝑥),𝑥𝑥)�, 

 
where 
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𝜚𝜚2(𝜃𝜃,𝑀𝑀𝜃𝜃(𝑥𝑥),𝑥𝑥) = 𝑀𝑀2(𝜃𝜃,𝑥𝑥)𝑓𝑓(𝜃𝜃,𝑀𝑀𝜃𝜃(𝑥𝑥),𝑥𝑥)

𝑝𝑝(𝜃𝜃,𝑥𝑥)�𝑀𝑀1(𝜃𝜃,𝑥𝑥)𝑓𝑓(2)(𝜃𝜃,𝑀𝑀𝜃𝜃(𝑥𝑥),𝑥𝑥)�
2

 . 

 
PROOF: By the first-order Taylor expansion for 𝑓𝑓(1)(𝜃𝜃, 𝑦𝑦, 𝑥𝑥) at point 𝑀𝑀𝜃𝜃(𝑥𝑥), and 
the fact that 𝑓𝑓� (1)�𝜃𝜃,𝑀𝑀�𝜃𝜃(𝑥𝑥),𝑥𝑥� = 0, it follows that 
 

�𝑛𝑛𝑔𝑔𝑛𝑛3𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)�𝑀𝑀�𝜃𝜃(𝑥𝑥)−𝑀𝑀𝜃𝜃(𝑥𝑥)� = −�𝑛𝑛𝑔𝑔𝑛𝑛3𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛) �̂�𝑓
(1)(𝜃𝜃,𝑀𝑀𝜃𝜃(𝑥𝑥),𝑥𝑥)

�̂�𝑓(2)�𝜃𝜃,𝑀𝑀𝜃𝜃
∗ (𝑥𝑥),𝑥𝑥�

 , 

 
where 𝑀𝑀𝜃𝜃

∗(𝑥𝑥) is between 𝑀𝑀�𝜃𝜃(𝑥𝑥) and 𝑀𝑀𝜃𝜃(𝑥𝑥). Similarly to the proof of Theorem 2, it 
follows that 
 

 −�𝑛𝑛𝑔𝑔𝑛𝑛3𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)𝑓𝑓(1)(𝜃𝜃,𝑀𝑀𝜃𝜃(𝑥𝑥),𝑥𝑥)
 𝒟𝒟 
��𝒩𝒩�0,𝜚𝜚02(𝜃𝜃,𝑀𝑀𝜃𝜃(𝑥𝑥),𝑥𝑥)�, (7) 

 
where 

𝜚𝜚02(𝜃𝜃,𝑀𝑀𝜃𝜃(𝑥𝑥),𝑥𝑥) = 𝑀𝑀2(𝜃𝜃,𝑥𝑥)
(𝑀𝑀1(𝜃𝜃,𝑥𝑥))2

𝑓𝑓(𝜃𝜃,𝑀𝑀𝜃𝜃(𝑥𝑥),𝑥𝑥)
𝑝𝑝(𝜃𝜃,𝑥𝑥) ∫�𝐻𝐻′(𝑢𝑢)�2𝑑𝑑𝑢𝑢. 

 
 Thus, as above, similarly to Ferraty and Vieu (2006), we can obtain 𝑓𝑓(2)(𝜃𝜃,𝑦𝑦,𝑥𝑥)
ℙ
→ 𝑓𝑓(2)(𝜃𝜃, 𝑦𝑦,𝑥𝑥), as 𝑛𝑛 → ∞, which implies that 𝑀𝑀�𝜃𝜃(𝑥𝑥) → 𝑀𝑀𝜃𝜃(𝑥𝑥). Therefore, we get 
 

 𝑓𝑓(2)(𝜃𝜃,𝑀𝑀𝜃𝜃
∗(𝑥𝑥),𝑥𝑥)

𝑛𝑛 →∞
�⎯⎯� 𝑓𝑓(2)(𝜃𝜃,𝑀𝑀𝜃𝜃(𝑥𝑥),𝑥𝑥) ≠ 0. (8) 

 
 By (H3), (H6) and (N3), similarly to the proof of lemmas, Lemma 4 and Lemma 5, 
respectively, (7) follows directly. Then, the proof of Corollary 2 is completed. 

5.2. Confidence bands 

The asymptotic variances 𝜎𝜎2(𝜃𝜃, 𝑡𝑡,𝑥𝑥) and 𝜚𝜚2(𝜃𝜃,𝑀𝑀𝜃𝜃(𝑥𝑥),𝑥𝑥) in Theorem 2 and 
Corollary 2 depend on some unknown quantities including 𝑀𝑀1, 𝑀𝑀2, 𝜙𝜙(𝑢𝑢), 𝑀𝑀𝜃𝜃(𝑥𝑥), 
𝑝𝑝(𝜃𝜃,𝑥𝑥) and 𝑓𝑓(𝜃𝜃,𝑀𝑀𝜃𝜃(𝑥𝑥),𝑥𝑥). Therefore, 𝑝𝑝(𝜃𝜃, 𝑥𝑥),𝑀𝑀𝜃𝜃(𝑥𝑥), and 𝑓𝑓(𝜃𝜃,𝑀𝑀𝜃𝜃(𝑥𝑥),𝑥𝑥) can be 
estimated by 𝑃𝑃𝑛𝑛(𝜃𝜃, 𝑥𝑥), 𝑀𝑀�𝜃𝜃(𝑥𝑥) and 𝑓𝑓(𝜃𝜃,𝑀𝑀𝜃𝜃(𝑥𝑥),𝑥𝑥) and 𝑀𝑀�𝜃𝜃(𝑥𝑥), respectively. 
Moreover, using the decomposition given by the assumption (H1), one can estimate 
𝜙𝜙𝜃𝜃,𝑥𝑥(. ) by 𝜙𝜙�𝜃𝜃,𝑥𝑥(. ). Because the unknown functions 𝑀𝑀𝑗𝑗 ∶= 𝑀𝑀𝑗𝑗(𝜃𝜃, 𝑥𝑥) and 𝑓𝑓(𝜃𝜃, 𝑦𝑦, 𝑥𝑥) 
are intervening in the expression of the variance, we need to estimate the 
mode 𝑀𝑀1(𝜃𝜃, 𝑥𝑥), 𝑀𝑀2(𝜃𝜃, 𝑥𝑥) and 𝑓𝑓(𝜃𝜃, 𝑦𝑦, 𝑥𝑥), respectively.  
 From the assumptions (H1)–(H4), we know that 𝑀𝑀𝑗𝑗(𝜃𝜃,𝑥𝑥) can be estimated by 
𝑀𝑀�𝑗𝑗(𝜃𝜃,𝑥𝑥), which is defined as: 
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𝑀𝑀�𝑗𝑗(𝜃𝜃,𝑥𝑥) = 1
𝑛𝑛𝜙𝜙�𝜃𝜃,𝑥𝑥(ℎ)

∑ 𝐾𝐾𝑖𝑖
𝑗𝑗(𝜃𝜃, 𝑥𝑥), where 𝜙𝜙�𝜃𝜃,𝑥𝑥(ℎ) = 1

𝑛𝑛
𝑛𝑛
𝑖𝑖=1 ∑ 𝟏𝟏{|〈𝑥𝑥−𝑋𝑋𝑖𝑖,𝜃𝜃〉|<ℎ}

𝑛𝑛
𝑖𝑖=1 , 

 
with 𝟏𝟏{.} being the indicator function. Finally, the estimator of 𝑝𝑝(𝜃𝜃,𝑥𝑥) is denoted by: 
 

𝑃𝑃𝑛𝑛(𝜃𝜃,𝑥𝑥) =
∑ 𝛿𝛿𝑖𝑖𝐾𝐾�ℎ𝑛𝑛−1(<𝑥𝑥−𝑋𝑋𝑖𝑖,𝜃𝜃>)�𝑛𝑛
𝑖𝑖=1

∑ 𝐾𝐾�ℎ𝑛𝑛−1(<𝑥𝑥−𝑋𝑋𝑖𝑖,𝜃𝜃>)�𝑛𝑛
𝑖𝑖=1

 . 

 
 By applying the kernel estimator of 𝑓𝑓(𝜃𝜃, 𝑦𝑦, 𝑥𝑥) given above, the quantity 𝜎𝜎2(𝜃𝜃,𝑦𝑦,𝑥𝑥) 
can be estimated by: 
 

𝜎𝜎�2(𝜃𝜃, 𝑦𝑦, 𝑥𝑥) = 𝑀𝑀�2(𝜃𝜃,𝑥𝑥)
(𝑀𝑀�1(𝜃𝜃,𝑥𝑥))2

�̂�𝑓(𝜃𝜃,𝑦𝑦,𝑥𝑥)
𝑃𝑃𝑛𝑛(𝜃𝜃,𝑥𝑥) ∫𝐻𝐻

2(𝑢𝑢)𝑑𝑑𝑢𝑢. 

 
 Finally, in order to show the asymptotic (1− 𝜉𝜉) confidence interval of 𝑀𝑀𝜃𝜃(𝑥𝑥), we 
need to consider the estimator of 𝜚𝜚2(𝜃𝜃,𝑀𝑀𝜃𝜃(𝑥𝑥),𝑥𝑥), as follows: 
 

𝜚𝜚�2(𝜃𝜃,𝑀𝑀𝜃𝜃(𝑥𝑥),𝑥𝑥) = 𝑀𝑀�2(𝜃𝜃,𝑥𝑥)
(𝑀𝑀�1(𝜃𝜃,𝑥𝑥))2

�̂�𝑓(𝜃𝜃,𝑀𝑀�𝜃𝜃(𝑥𝑥),𝑥𝑥)

𝑃𝑃𝑛𝑛(𝜃𝜃,𝑥𝑥)��̂�𝑓(2)(𝜃𝜃,𝑀𝑀�𝜃𝜃(𝑥𝑥),𝑥𝑥)�
2 ∫�𝐻𝐻′(𝑢𝑢)�2𝑑𝑑𝑢𝑢, 

 
so we can derive the corollary below. 
 
COROLLARY 3: Under the assumptions of Theorem 2, K′and (K2)′are integrable 
functions, then we get, as n → ∞, 
 

(a) �𝑛𝑛𝑔𝑔𝑛𝑛𝜙𝜙�𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)
𝜎𝜎�2(𝜃𝜃,𝑦𝑦,𝑥𝑥) �𝑓𝑓(𝜃𝜃,𝑦𝑦,𝑥𝑥)− 𝑓𝑓(𝜃𝜃, 𝑦𝑦, 𝑥𝑥)�

𝒟𝒟
→𝒩𝒩(0,1). 

(b) � 𝑛𝑛𝑔𝑔𝑛𝑛3𝜙𝜙�𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)
𝜚𝜚�2(𝜃𝜃,𝑀𝑀𝜃𝜃(𝑥𝑥),𝑥𝑥) �𝑀𝑀�𝜃𝜃(𝑥𝑥)−𝑀𝑀𝜃𝜃(𝑥𝑥)�

𝒟𝒟
→𝒩𝒩(0,1). 

 
PROOF: Observe that 
 

(a) Σ(𝜃𝜃, 𝑦𝑦, 𝑥𝑥) = 𝑀𝑀�1
𝑀𝑀1
�𝑀𝑀2
𝑀𝑀�2
�𝑛𝑛𝑔𝑔𝑛𝑛𝜙𝜙�𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)𝑃𝑃𝑛𝑛(𝜃𝜃,𝑥𝑥)𝑓𝑓(𝜃𝜃,𝑦𝑦,𝑥𝑥)

𝑝𝑝(𝜃𝜃,𝑥𝑥)�̂�𝑓(𝜃𝜃,𝑦𝑦,𝑥𝑥)𝑛𝑛𝑔𝑔𝑛𝑛𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛) × 

                   × 𝑀𝑀1

�𝑀𝑀2
�𝑛𝑛𝑔𝑔𝑛𝑛𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)

𝜎𝜎2(𝜃𝜃,𝑦𝑦,𝑥𝑥) �𝑓𝑓(𝜃𝜃,𝑦𝑦,𝑥𝑥)− 𝑓𝑓(𝜃𝜃,𝑦𝑦,𝑥𝑥)�, 

 

where Σ(𝜃𝜃,𝑦𝑦,𝑥𝑥) = �𝑛𝑛𝑔𝑔𝑛𝑛𝜙𝜙�𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)
𝜎𝜎�2(𝜃𝜃,𝑦𝑦,𝑥𝑥) �𝑓𝑓(𝜃𝜃, 𝑦𝑦, 𝑥𝑥)− 𝑓𝑓(𝜃𝜃, 𝑦𝑦, 𝑥𝑥)�, by Theorem 2, we have, as 

𝑛𝑛 → ∞, 
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�𝑛𝑛𝑔𝑔𝑛𝑛𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)
𝜎𝜎2(𝜃𝜃,𝑦𝑦,𝑥𝑥) �𝑓𝑓(𝜃𝜃,𝑦𝑦,𝑥𝑥)− 𝑓𝑓(𝜃𝜃,𝑦𝑦,𝑥𝑥)�

𝒟𝒟
→𝒩𝒩(0,1). 

 
 In order to prove (a), we need to show that 
 

𝑀𝑀�1
𝑀𝑀1
�𝑀𝑀2
𝑀𝑀�2
�𝑛𝑛𝑔𝑔𝑛𝑛𝜙𝜙�𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)𝑃𝑃𝑛𝑛(𝜃𝜃,𝑥𝑥)𝑓𝑓(𝜃𝜃,𝑦𝑦,𝑥𝑥)

𝑝𝑝(𝜃𝜃,𝑥𝑥)�̂�𝑓(𝜃𝜃,𝑦𝑦,𝑥𝑥)𝑛𝑛𝑔𝑔𝑛𝑛𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛) �𝑓𝑓(𝜃𝜃, 𝑦𝑦, 𝑥𝑥)− 𝑓𝑓(𝜃𝜃, 𝑦𝑦, 𝑥𝑥)�
ℙ
→𝒩𝒩(0,1), 

 
using the result given by Laib and Louani (2010), we have 
 

𝑀𝑀�1
ℙ
→𝑀𝑀1,𝑀𝑀�2

ℙ
→𝑀𝑀2 and 𝜙𝜙�𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)

�𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)

ℙ
→1 as 𝑛𝑛 → ∞. 

 
 On the other hand, from Proposition 2 in Laib and Louani (2010), it follows that 
 

𝑃𝑃𝑛𝑛(𝜃𝜃,𝑥𝑥)
𝑛𝑛→∞
�⎯⎯�𝑛𝑛(𝛿𝛿|〈𝑋𝑋, 𝜃𝜃〉 = 〈𝑥𝑥, 𝜃𝜃〉) = ℙ(𝛿𝛿 = 1|〈𝑋𝑋,𝜃𝜃〉 = 〈𝑥𝑥, 𝜃𝜃〉) = 𝑝𝑝(𝑥𝑥,𝜃𝜃). 

 
 In addition, from Theorem 1, we have 𝑓𝑓(𝜃𝜃, 𝑦𝑦, 𝑥𝑥) ⟶ 𝑓𝑓(𝜃𝜃,𝑦𝑦,𝑥𝑥), as 𝑛𝑛 → ∞. This 
yields the proof for the first part of Corollary 3. 
 

(b) 𝑀𝑀�1�̂�𝑓(2)(𝜃𝜃,𝑀𝑀�𝜃𝜃(𝑥𝑥),𝑥𝑥)
�𝑀𝑀�2

�𝑛𝑛𝑔𝑔𝑛𝑛3𝜙𝜙�𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)𝑃𝑃𝑛𝑛(𝜃𝜃,𝑥𝑥)
�̂�𝑓(𝜃𝜃,𝑀𝑀�𝜃𝜃(𝑥𝑥),𝑥𝑥) �𝑀𝑀�𝜃𝜃(𝑥𝑥)−𝑀𝑀𝜃𝜃(𝑥𝑥)� =

= 𝑀𝑀�1�𝑀𝑀2

𝑀𝑀1�𝑀𝑀�2
�𝑛𝑛𝑔𝑔𝑛𝑛3𝜙𝜙�𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)𝑃𝑃𝑛𝑛(𝜃𝜃,𝑥𝑥)𝑓𝑓(𝜃𝜃,𝑀𝑀𝜃𝜃(𝑥𝑥),𝑥𝑥)

𝑛𝑛𝑔𝑔𝑛𝑛3𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)𝑝𝑝(𝜃𝜃,𝑥𝑥)
�̂�𝑓(2)(𝜃𝜃,𝑀𝑀�𝜃𝜃(𝑥𝑥),𝑥𝑥)
𝑓𝑓(2)(𝜃𝜃,𝑀𝑀𝜃𝜃(𝑥𝑥),𝑥𝑥) ×

× 𝑀𝑀1

�𝑀𝑀2
�𝑛𝑛𝑔𝑔𝑛𝑛3𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)𝑝𝑝(𝜃𝜃,𝑥𝑥)

𝑓𝑓(𝜃𝜃,𝑀𝑀𝜃𝜃(𝑥𝑥),𝑥𝑥) 𝑓𝑓(2)(𝜃𝜃,𝑀𝑀𝜃𝜃(𝑥𝑥),𝑥𝑥) �𝑀𝑀�𝜃𝜃(𝑥𝑥)−𝑀𝑀𝜃𝜃(𝑥𝑥)�.  

  

 
 Applying Corollary 2, we obtain 
 

𝑀𝑀1

�𝑀𝑀2
�𝑛𝑛𝑔𝑔𝑛𝑛3𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)𝑝𝑝(𝜃𝜃,𝑥𝑥)

𝑓𝑓(𝜃𝜃,𝑀𝑀𝜃𝜃(𝑥𝑥),𝑥𝑥)
𝑓𝑓(2)(𝜃𝜃,𝑀𝑀𝜃𝜃(𝑥𝑥),𝑥𝑥) �𝑀𝑀�𝜃𝜃(𝑥𝑥)−𝑀𝑀𝜃𝜃(𝑥𝑥)�⟶𝒩𝒩(0,1). 

 
 Further, by considering Lemma 5, (2) and (8), we obtain, as 𝑛𝑛 → ∞, 
 

𝑀𝑀�1�𝑀𝑀2

𝑀𝑀1�𝑀𝑀�2
�𝑛𝑛𝑔𝑔𝑛𝑛3𝜙𝜙�𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)𝑃𝑃𝑛𝑛(𝜃𝜃,𝑥𝑥)𝑓𝑓(𝜃𝜃,𝑀𝑀𝜃𝜃(𝑥𝑥),𝑥𝑥)

𝑛𝑛𝑔𝑔𝑛𝑛3𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)𝑝𝑝(𝜃𝜃,𝑥𝑥)
�̂�𝑓(2)(𝜃𝜃,𝑀𝑀�𝜃𝜃(𝑥𝑥),𝑥𝑥)
𝑓𝑓(2)(𝜃𝜃,𝑀𝑀𝜃𝜃(𝑥𝑥),𝑥𝑥)

ℙ
→1. 

 
 Hence, the proof is completed. 
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REMARK 1: Thus, following Corollary 3, the asymptotic (1− 𝜉𝜉) confidence interval 
of the conditional density 𝑓𝑓(𝜃𝜃,𝑦𝑦,𝑥𝑥), and the conditional mode 𝑀𝑀𝜃𝜃(𝑥𝑥), respectively, 
are expressed as follows: 
 

𝑓𝑓(𝜃𝜃,𝑦𝑦,𝑥𝑥) ± 𝜂𝜂𝛾𝛾/2�
𝜎𝜎�2(𝜃𝜃,𝑦𝑦,𝑥𝑥)

𝑛𝑛𝑔𝑔𝑛𝑛𝜙𝜙�𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛) and𝑀𝑀�𝜃𝜃(𝑥𝑥) ± 𝜂𝜂𝛾𝛾/2�
𝜚𝜚�2(𝜃𝜃,𝑀𝑀𝜃𝜃(𝑥𝑥),𝑥𝑥)
𝑛𝑛𝑔𝑔𝑛𝑛3𝜙𝜙�𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛) , 

 
where 𝜎𝜎� 2(𝜃𝜃,𝑦𝑦,𝑥𝑥) and 𝜚𝜚�2(𝜃𝜃,𝑀𝑀𝜃𝜃(𝑥𝑥),𝑥𝑥) are defined in Section 5.2, and 𝜂𝜂𝛾𝛾/2 is the 
upper 𝛾𝛾/2 quantile of the normal distribution 𝒩𝒩(0,1). 

6. Simulation study on finite samples 

6.1. A numerical study 

In this Section, we will consider simulated data studied to assess the finite sample 
performance of the proposed estimator and compare it to the competing estimator. 
For studying the behavior of our estimators, and in order to illustrate our results, we 
evaluate the performance of our estimation approach using a single-index 
dimensional reduce model in order to prove the effectiveness of our model. More 
precisely, we will compare the finite sample behavior of estimator 𝑓𝑓 �with the 
complete functional data and the estimator 𝑓𝑓under functional data with MAR. 
 Furthermore, some tuning parameters have to be specified. The kernel 𝐾𝐾(. ) is 
chosen to be the quadratic function defined as 𝐾𝐾 = 3

2
(1− 𝑢𝑢2)𝟏𝟏[0;1] and the 

cumulative distribution function (cdf) 
 

𝐻𝐻(𝑢𝑢) = ∫ 3
4

𝑢𝑢
−∞ (1 − 𝑧𝑧2)𝟏𝟏[−1;1](𝑧𝑧)𝑑𝑑𝑧𝑧. 

 
 The semi-metric 𝑑𝑑(. , . ) will be specified according to the choice of the functional 
space ℋdiscussed in the scenarios below. It is well known that some of the crucial  
𝐻𝐻 parameters in semi-parametric models are the smoothing parameters which are 
involved in defining the shape of the link function between the response and the 
covariate. 
 Now, for simplifying the implementation of our methodology, we take the 
bandwidths  ℎ𝐾𝐾~ℎ𝐻𝐻 = ℎ, where ℎ will be chosen by the cross-validation method on 
the 𝑘𝑘-nearest neighbors (see [12], p. 102). 
 Let us consider the following regression model, where the covariate is a curve and 
the response is a scalar: 
 

𝑌𝑌𝑖𝑖 = 𝑅𝑅(〈𝜃𝜃,𝑋𝑋𝑖𝑖〉) + 𝜖𝜖𝑖𝑖;      𝑖𝑖 = 1, … ,𝑛𝑛 = 300, 
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where 𝜖𝜖𝑖𝑖 is the error supposed to be generated by autoregressive model defined by: 
 

𝜖𝜖𝑖𝑖 = 1
√2

(𝜖𝜖𝑖𝑖−1 + 𝜂𝜂𝑖𝑖),      𝑖𝑖 = 1,⋯ ,𝑛𝑛,  
 
with (𝜂𝜂𝑖𝑖)𝑖𝑖 is a sequence of i.i.d. random variables normally distributed with  
a variance equal to 0.1. 
 
 The functional covariate 𝑋𝑋 is assumed to be a diffusion process defined on [0,1] 
and generated by the following equation: 
 

𝑋𝑋(𝑡𝑡) = Ω(2− cos(𝜋𝜋Υ𝑡𝑡)) + (1− Ω) cos(𝜋𝜋Υ𝑡𝑡) ,     𝑡𝑡 ∈ [0,1], 
 
where Υ is generated from a standard normal distribution, and Ω is Bernoulli’s law 
𝔅𝔅(0.5). 
 
 Let us take into account the smoothness of curves 𝑋𝑋𝑖𝑖(𝑡𝑡) (see Figure 1).We choose 
the distance 𝑑𝑑𝑑𝑑𝑢𝑢𝑖𝑖𝑣𝑣1 (the semi-metric based on the first derivatives of the curves) 
in ℋ as: 
 

𝑑𝑑(𝜒𝜒1,𝜒𝜒2) = �∫ (𝜒𝜒1′(𝑡𝑡)− 𝜒𝜒2′ (𝑡𝑡))2𝑑𝑑𝑡𝑡1
0 �

1/2
  

 
as semi-metric. Then, we consider a non-linear regression function defined as: 
 

𝑅𝑅(𝑋𝑋) = 4𝑑𝑑𝑥𝑥𝑝𝑝� 1

2+∫ 𝑋𝑋2(𝑡𝑡)𝑑𝑑𝑡𝑡𝜋𝜋 2⁄
0

�. 

 
Figure 1. A sample of 300 curves 𝑋𝑋𝑖𝑖=1,…,300(𝑡𝑡𝑗𝑗), 𝑡𝑡𝑗𝑗=1,…,300 ∈ [0,1] 

 

Source: authors’ work. 
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 The missing mechanism is similar to that in Ferraty et al. (2013): 
 

𝑝𝑝(𝑥𝑥) = ℙ(𝛿𝛿 = 1|𝑋𝑋 = 𝑥𝑥) = 𝑑𝑑𝑥𝑥𝑝𝑝 𝑖𝑖𝑡𝑡 �2𝛼𝛼 ∫ 𝑥𝑥2(𝑡𝑡)𝑑𝑑𝑡𝑡1
0 �, 

 
where 𝑑𝑑𝑥𝑥𝑝𝑝 𝑖𝑖𝑡𝑡(𝑣𝑣) = 𝑑𝑑𝑣𝑣 (1 + 𝑑𝑑𝑣𝑣)⁄  for 𝑣𝑣 ∈ ℝ, and the degree of dependency between 
the functional covariate 𝑋𝑋 and the missing variable 𝛿𝛿 is controlled by parameter 𝛼𝛼 
(where we compare three missing rates: strong, medium and weak cases, with 
𝛼𝛼=0.05, 𝛼𝛼 = 0.5 and 𝛼𝛼 = 3 respectively). The missing proportions are quantified by 
the following benchmark: 
 

𝛿𝛿̅ = 1 −
1
𝑛𝑛
�𝛿𝛿𝑖𝑖

𝑛𝑛

𝑖𝑖=1

. 

 
 In practice, this parameter can be selected by a cross-validation approach  
(see [2]). It might be that one selected the real-valued function 𝜃𝜃(𝑡𝑡) from among the 
eigenfunctions of the covariance operator 𝑛𝑛[(𝑋𝑋′ − 𝑛𝑛𝑋𝑋′)〈𝑋𝑋′, . 〉ℋ], where 𝑋𝑋(𝑡𝑡) is  
a diffusion process defined on a real interval [𝑎𝑎,𝑏𝑏], and 𝑋𝑋′(𝑡𝑡) is its first derivative  
(see [3]). So for a chosen training sample ℒ, by applying the principal component 
analysis (PCA) method, the computation of the eigenvectors of the covariance 
operator estimated by its empirical covariance operator 1

ℒ
∑ (𝑋𝑋𝑖𝑖′ − 𝑛𝑛𝑋𝑋𝑖𝑖′)𝑡𝑡𝑖𝑖∈ℒ (𝑋𝑋𝑖𝑖′ −

𝑛𝑛𝑋𝑋𝑖𝑖′) will be the best approximation of our functional parameter 𝜃𝜃. Now, let us 
denote 𝜃𝜃∗ the first eigenfunction corresponding to the first higher eigenvalue of the 
empirical covariance operator which will replace 𝜃𝜃 during the simulation step. 
 In our simulation, the sample size is 𝑛𝑛 = 300. We divide it into two parts: one is  
a learning sample of 250 observations, and the other 50 observations are a test 
sample. 
 The first one from 1 to 250 will be used to make the simulation, and the second, 
from 251 to 300, will serve for the prediction. We then perform the following steps: 
• Step 1: Compute the inner product:  〈𝜃𝜃∗,𝑋𝑋1〉, … , 〈𝜃𝜃∗,𝑋𝑋300〉,   generate 

independently variables 𝜖𝜖1, … , 𝜖𝜖300, then simulate response variables 𝑌𝑌𝑖𝑖 =
𝑢𝑢(〈𝜃𝜃∗,𝑋𝑋𝑖𝑖〉) + 𝜖𝜖𝑖𝑖, where 𝑢𝑢(〈𝜃𝜃∗,𝑋𝑋𝑖𝑖〉) = 𝑑𝑑𝑥𝑥𝑝𝑝�10(〈𝜃𝜃∗,𝑋𝑋𝑖𝑖〉 − 0.05)�, and generate 
independently variables 𝜖𝜖1, … , 𝜖𝜖300. 

• Step 2: For each 𝑗𝑗 in, the test sample 𝒥𝒥 = 251, … , 300, we compute: 𝑌𝑌�𝑗𝑗 =
𝑀𝑀�𝜃𝜃∗�𝑋𝑋𝑗𝑗� and 𝑌𝑌�𝑗𝑗 = 𝑀𝑀�𝜃𝜃∗�𝑋𝑋𝑗𝑗�, where: 

 
𝑀𝑀�𝜃𝜃(𝜒𝜒) = arg 𝑠𝑠𝑢𝑢𝑝𝑝

𝑦𝑦∈𝒮𝒮ℝ
𝑓𝑓 �(𝜃𝜃, 𝑦𝑦,𝜒𝜒). 
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• Step 3: Finally, we show the results by juxtaposing the true values and the 
predicted values for the MSE, both for the option of having complete data and the 
option of having a MAR response. 

 
𝐶𝐶𝑀𝑀𝑆𝑆𝐶𝐶 = 1

50
∑ �𝑌𝑌𝑗𝑗 − 𝑌𝑌�𝑗𝑗�

2300
𝑗𝑗=251    𝑎𝑎𝑛𝑛𝑑𝑑    𝑀𝑀𝑀𝑀𝑆𝑆𝐶𝐶 = 1

50
∑ �𝑌𝑌𝑗𝑗 − 𝑌𝑌�𝑗𝑗�

2.300
𝑗𝑗=251   

 
Figure 2. Complete data case Figure 3. MAR with 𝛼𝛼 = 2  

  

Source: authors’ work.  
 

Figure 4. MAR with 𝛼𝛼 = 1.5 Figure 5. MAR with 𝛼𝛼 = 0.5 

  
Source: authors’ work.  
  

 In the MAR responses, the proportion 𝛿𝛿 �of missing response data is the key 
parameter which is shown by 𝛼𝛼. In Figures 2–5, we can see that when 𝛿𝛿 � is small (or 
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𝛼𝛼 is big), the 𝑀𝑀�𝜃𝜃(𝑥𝑥) of the MAR response works almost as efficiently as if we had  
a complete data set and used 𝑀𝑀�𝜃𝜃(𝑥𝑥). In this case, when one has missing response 
data, the estimator 𝑀𝑀�𝜃𝜃(𝑥𝑥) is not useful, but the 𝑀𝑀�𝜃𝜃(𝑥𝑥) is a benchmark analysis, and 
the fact that 𝑀𝑀�𝜃𝜃(𝑥𝑥) is almost as effective as 𝑀𝑀�𝜃𝜃(𝑥𝑥) is what one is really expecting. 
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