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Some asymptotic results of the estimators
for conditional mode for functional data
in the single index model missing data at random

Souad Mekkaoui,® Nadia Kadiri,®? Abbes Rabhi¢

Abstract. In this work, we consider the problem of non-parametric estimation of a regression
function, namely the conditional density and the conditional mode in a single functional index
model (SFIM) with randomly missing data. The main result of this work is the establishment of
the asymptotic properties of the estimator, such as almost complete convergence rates.
Moreover, the asymptotic normality of the constructs is obtained under certain mild conditions.
We finally discuss how to apply our result to construct confidence intervals.
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1. Introduction

The Single Index Model (SIM) is a popular framework used for reducing
dimensionality and modelling complex relationships between covariates and
responses in a simplified way. When dealing with functional data, where each
observation is a curve or a function, the SIM is extended to handle functional
predictors and responses. When dealing with missing data in the SIM framework,
the missingness is assumed to be at random (MAR). This means that the probability
of missing values is related to the observed data but not to the missing values
themselves. The key idea is that, given the observed data, the missingness
mechanism is unrelated to the values that are missing. It is important to note that
the choice of approach depends on the specifics of your data, the extent of the
missingness, and the assumptions you are willing to make. A careful consideration
of the nature of your data and consulting domain experts when handling missing
data in the SIM or any other modeling framework is always recommended.
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The asymptotic properties of semi-parametric estimators of the conditional mode
for functional data in the Single Index Model (SIM) with data missing at random
(MAR) are an active area of research, and specific results may depend on the
particular assumptions and estimation methods employed. However, this work
provides a general overview of some relevant concepts and approaches in this
context. In the SIM framework, functional data refers to observations that are
functions rather than scalar values. The goal is to estimate the conditional mode of
a functional-response variable given a set of functional predictors and a single-index
variable.

To establish the asymptotic properties of the semi-parametric estimators of the
conditional mode for functional data in the SIM with data missing at random,
various theoretical conditions need to be satisfied. These conditions often involve
assumptions about the functional data, the missing data mechanism, and the model
specification. Some common conditions include consistency and efficiency. Specific
results in this area may depend on the assumptions and estimation techniques
employed in each study. Therefore, it is important to refer to the literature and
research articles that focus on the specific estimation method and assumptions one is
interested in to obtain more detailed and precise asymptotic properties of the
estimators.

One of the most common problems in non-parametric statistics is forecasting. In
some situations, regression is the best forecasting tool. Sometimes, however, e.g. in
the case where the conditional density is asymmetrical or multimodal, this tool is
inadequate. Therefore, the conditional quantile predicts the impact of the variable of
interest Y on the explanatory variable X more efficiently. There is scarce literature
investigating the statistical properties of a functional non-parametric regression
model for missing data when the explanatory variable is infinite dimensional or it is
of a functional nature. Recently, Ferraty et al. (2013) proposed to estimate the mean
of a scalar response based on an independent and identically distributed (i.i.d)
functional sample in which explanatory variables were observed for every subject,
and a part of the responses were missing at random (MAR) for some of them. It
generalised the results in Cheng (1994) to the case where the explanatory variables
are of a functional nature.

To the best of our knowledge, the estimation of a non-parametric conditional
distribution in the functional single index structure combining missing data and
stationary processes of a functional nature has not yet been studied in statistical
literature. Therefore, in this work we investigate a conditional quantile estimation
when the data are MAR. Our aim is to develop a functional methodology for dealing
with MAR samples in non-parametric problems (namely in the conditional quantile
estimation). Then, the asymptotic properties of the estimator are obtained under



22 Przeglad Statystyczny. Statistical Review 2023 | 2

some mild conditions. Our study considers a model in which the response variable is
missing.

2. Literature review

Therefore, within this framework, the independence of the variables was assumed.
As far as we know, the estimation of a conditional quantile combining censored
data, an independent theory and functional data with single-index structure has not
been studied in statistical literature yet. Our paper extends the work of Ling et al.
(2015, 2016) and Mekki et al. (2021) to the functional single-index model case.

For the above-mentioned theoretical and application reasons, the statistical
community has displayed a great interest in estimating conditional quantiles,
especially the conditional median function, as an interesting, alternative predictor to
the conditional mean (thanks to its robustness to the presence of outliers) (see
Chaudhuri et al., 1997). The estimation of the conditional mode of a scalar response
given a functional covariate has attracted the attention of many researchers. Ferraty
et al. (2005) introduced a non-parametric estimator of the conditional quantile,
defined as the inverse of the conditional distribution function when data are
dependent. Ezzahrioui and Ould-Said (2008) established the asymptotic normality of
the kernel conditional mode estimator. In the censored case, Ould-Said and Cai
(2005) established a uniform strong consistency of the kernel estimator for the
conditional mode function. In this context, we recommend referring to Lemdani et
al. (2009) for the estimation of conditional quantiles. Other authors have been
interested in the estimation of conditional models when the observations were
censored or truncated, eg. Hamri et al. (2022), Liang and de Ufa-Alvarez (2010),
Ould-Said and Tatachak (2011), Ould-Said and Yahia (2011), Rabhi et al. (2021), etc.

For instance, Ait-Saidi et al. (2008) were interested in using SFIM to estimate the
regression operator, and suggested using a cross-validation procedure allowing the
estimation of the unknown link function as well as the unknown functional index.
Attaoui (2014) and Attaoui and Ling (2016) studied, respectively, the estimation of
the conditional density and the conditional cumulative distribution function based
on a SFIM with the assumption that the data satisfy a strong mixing condition.
Kadiri et al. (2018) studied the asymptotic properties of the kernel-type estimator of
the conditional quantiles when the response was right-censored and the data was
sampled from a strong mixing process.

The remaining part of the paper is arranged in the following way: in Section 3, we
present the non-parametric estimator of the functional conditional model when the
data are MAR. In Section 4, we make assumptions for the theoretical study.
The point-wise almost-complete convergence and the uniform almost-complete
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convergence of the kernel estimator for our models (with rates) are established in
Section 5.

3. Model and estimator

3.1. The functional non-parametric framework

Consider a random pair (X,Y), where Y is valued in R and X is valued in some
infinite dimensional Hilbertian space H with a scalar product <., - >. Let the
(Xi,Y;)i=1,.n be the statistical sample of pairs which are identically distributed
like (X,Y), but not necessarily independent. Henceforward, X will be called
functional random variable f.r.v. Let x be fixed in Hand let F(6,y,x) be the
conditional cumulative distribution function (cond-cdf) of T given <6,X> =
< 6,x >, specifically:

Vy ER, F (6,y,x) = P(Y < y|<60,X> = <0, x>).

By the above, we are implicitly assuming the existence of a regular version of the
conditional distribution Y, given <8, X> = <6, x>.

In our infinite dimensional purpose, we use the ‘functional non-parametric’ term,
where the word ‘“functional’ refers to the infinite dimensionality of the data, and the
word ‘non-parametric’ denotes the infinite dimensionality of the model. Such
‘functional non-parametric’ statistics is also called ‘doubly infinite dimensional’ (see
Ferraty & Vieu, 2003, for more details). We also use the ‘operational statistics’ term,
since the target object to be estimated (the cond-df f(6,.,x)) can be viewed as
a non-linear operator.

3.2. The estimators
In the case of complete data, the kernel estimator fn(B, ., x)of £(6,.,x) is presented

as follows:

. _gnt 3 K(hit (<x-x,0>D)H (g7 -Y)
f6,6x) = ", K(het (<x-X16>))

>
i=1

where K and H are kernel functions, and h,(resp. g,) is a sequence of positive real
numbers. Note that using similar ideas, Roussas (1969) introduced some related
estimates, but in the special case where X was real, while Samanta (1989) produced
an earlier asymptotic study on the subject.
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Meanwhile, in an incomplete case with data missing at random for the response
variable, we observe (X;, Y;, §;)1<i<n, where X; is observed completely, and §; = 1 if
Y; and §; = 0 otherwise. We define the Bernoulli random variable § by

P(5 =1{(X,0) =(x,0),Y =y) =P(6 = 1|(X,0) = (x,0)) = p(x,8),

where p(x, 8) is a functional operator which is conditional only on X.

Therefore, the estimator of f(6,y,x) in the single-index model with response
MAR is presented as

971 T 8K (hat (<x-X,0>D)H(g7* G-YD)  fy(6.yx)
51, 8K (hy (<x-X,,0>)) AN

f(O, t,x) =

where K;(6,x): = K(hy'|< x — X;,0 >).H;(y) = H(gz*(y = Y))),

Z?=1 SiKi(e:x)

nE(K, (6,x)) ,and fy(6,y,x) = ‘

ngnIE(Kl(G,x))

fD(e,X) =

3.3. Assumptions on the functional variable

Let N, be a fixed neighborhood of x in # and let By(x,h) be a ball of center x and
radius h, namely Bo(x,h) = { Y€H: 0 <| <x — x,0 >| < h}, do(x, X)) = | < x —X;,0>|
denote a random variable such that its cumulative distribution function is given by
Po. (W) = P(dp(x, X)) < u) = P(X; € By(x,w)).

Now, let us consider the following basic assumptions that are necessary in
deriving the main result of this paper.
(H1) IP(X € Be(x' hn)) = ¢0,x(hn) > 0; ¢6,x(hn) — 0Oash, = 0.

3.4. The non-parametric model

As is usually the case in non-parametric estimation, we suppose that the
cond-dff (0,.,x) verifies some smoothness constraints. Let @; and @, be two
positive numbers, such that
(H2) ¥(x1,x2) € Ny X Ny, V(y1,¥2) € Sg X Sg

@) 1f(8,y1,x1) = f(0,y2,x2)| < Cox(llxy — x2[1%* + [yy — ¥1*2)

(i) [ yf(6,y,x)dy < oo forall 8,x € H.
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4. Asymptotic study

The objective of this paragraph is to adapt the above-mentioned ideas to the
framework of a functional explanatory variable, and to construct a kernel-type
estimator of the conditional distribution function F(6,y,x) adjusted to MAR
response samples. We establish an almost complete convergence' of our kernel
estimator F (6, ¥, x) when we consider a model in which the response variable is
missing. The presented results are accompanied by the data on the rate of
convergence. In what follows, C and C’ denote generic, strictly positive real
constants, and h,, (resp. g,) is a sequence which tends to 0 with n.

4.1. Point-wise almost-complete convergence

Besides the assumptions introduced in Section 3.4, we will need additional
conditions. The assumptions we will need later, concerning the parameters of our
estimator, i.e. K,H, h,, and g,,, are not very restrictive. Indeed, on the one hand they
are rather inherent in the estimation problem of f(6,y,x), and on the other they
correspond to the assumptions usually made in the context of non-functional
variables. More precisely, we will introduce the following conditions to ensure the

performance of the estimator (6, ., x):

(H3) Kernel H is a positive bounded function such that
() YO, ¥2) €R? IH(y) —HY)I < Clys —y,l, [lyI®H()dy <o and

[yH()dy = 0.
(ii) H® and H® are bounded with [ (H(l)(t))2 dt < oo.

(H4) K is a positive bounded kernel function with the support of [0,1]: Vu € (0,1),
0 < K(u), and the derivative K’ exists on [0,1] with K'(t) < Ofor all t €
[0,1] and fol(Kj),(t)dt < ooforj=1,2.

(H5) p(x, 6) is continuous in the neighbourhood of x: 0 < p(x,0) < 1.

THEOREM 1: Suppose that hypotheses (H1)-(H5) are satisfied if3f > 0,nk In

—> 00, and if
n—oo

logn

T h N 0
ngn¢9,x(hn) n—co

TWe say that a sequence (S,)neny COnverges almost completely to S if and only if, for any € > 0, we have
ZnlP(IS, =S| > €) <.
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then we have

ry _ — a; logn
fgsﬁlf(e'y' ) =Sy = 0(hn' + %) + Oaco (\]ngﬁdaa,x(hn))'

PROOF: The proof is based on the following decomposition, valid for any y € Sg:

SUP|f(9:y,x)—f(9»y,x)|—f(e SuplfN(B ylx) IEfN(Bﬂylx)|+

sup|Efy (6,7,) = @, y,x)|+§((g’“jsup|fn(e x) ~ Efp (8, )].

7 fD(9 X) te

Finally, the proof of this theorem is a direct consequence of the following
intermediate results:

LEMMA 1: Suppose that hypotheses (H1)-(H3) and (H5) are satisfied, then we have

sup|Efy(8,y,%) — £(8,y,%)| = O(hs + gp2).
YESR

PROOF: We have

IZIEfN(e'}’,x)—f(‘g»y,x)= (mz?lal((e X)H(y))
. = ey Lot BUBGH ORI 0% 2D = £(0,7.3) =

mm(”(" 0)K, (6, x)]E(H1(}’))) f(6,y,x).

Moreover, by changing variables and using the fact that H is a df and uses a double
conditioning with respect to Y3, we can easily obtain

E(H(g2' 0 = W)I< 6,%,>) = [ H (22) (6,1 Xp)du =
= [xHW)f(6,y — vgy X1)dv =
= g Jg HO)(F(6,y — vgn, X1) — £(6,u,%))dv + gnf (6,u,x) [ Hw)dv.

We can write, because of (H2) and (H3):

=g E ((x OK0,3) [ H)(F(O.y =90, %) ~ O, y.x))dv>

< Cox(p(x,0) + o(1))f HW)(hy + [v]%2g,2)dv < O(hyt + gn2).
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Finally, the proof is achieved.

LEMMA 2: Under hypotheses of Theorem 1, we have, asn — oo,

; — Ef, = [toan
;gsln)alf w63 ) = Efu(6,3. )] 0‘”"-( ng%qbe,x(hn))‘

PROOF: Using the compactness of Sk, we can write that Sp C U (z] Lo,z +
+1,), with I, and 7, which can be chosen such that [, = C‘L’n ~Cn=$71/2,

Takingm, = arg {min }| y—m; | Thus, we have the following decomposition:
]E Zi""rzrn

SuplfN(9 y,x) — Efy (6, y,x)| < SuP|fN(9 t,x) — fN(9 my:x)l
YESR
+ sup |fN (6, my, x) - IEfN (9, my,x)|
YESR
+ sup|]EfN(9, my, x) —Efy(6,y, x)|
YESR
< B; + B, + Bs.
As the first and the third term can be treated in the same manner, we deal only

with the first term. By (H3)-(i), which in particular implies that H is a Holder
continuous with order one, we can write:

B = ngnm(xl(ex)) Ma Yty 6;|H(v) — H;(my)| K; (6, %) <

Cc Cl,
—ngnIE(Kl(e,x))yé‘}’ o X 2= 6K, < ar G

Using Efp (8, x) = p(x,0), (H3)-(i) and lim nf g,, = oo, it follows that
n—-oo
By — 0.

Thus, for n large enough, we have

logn
B1=Oaco. (\/ng%m(hn))‘

Following similar arguments, we can have

B; < B;.
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. . ’ [
Concerning B, let us consider € = ¢, %, for all ¢y > 0, we have
n®Po,x\Uln

IP’(sup|fN(6,my,x) - ]EfN(B,my,x)| > s) <
YESR

<1t ]P’(|fN(9,my,x) - IEfN(B, my,x)| > e).

Applying Berstain’s exponential inequality to

I;

= m [61Ki(9, xX)H;(m,) — E ((S‘iKl-(G, X)Hi(my))].

Firstly, it follows from the fact that kernels K and H are bounded that we get
]P’(|fN(9, my, x)— ]EfN(G,my, x)| >e)<P (% X, 0] > 5) < 2n7Css,

Finally, by choosing &, large enough, the proof can be concluded by the use of the
Borel-Cantelli lemma, and the result can be easily deduced.

LEMMA 3: Under hypotheses (H1) and (H4)-(H5), we have, asn — oo,

: £ 7 _ logn
0 ggsﬁVD(e' )~ Efp@,)] = Oaco (\In¢a,x(hn))'
(i) Zns1 P(fp (6, %) < 1/2) < oo,

PROOF: For the demonstration of the first part of this lemma, we use the same
arguments as the previous lemma, the only change is in A; (6, x), where

fo®,2) = Bfp(6,x) = oo s Sy 846, ),

with Ai(e, X) = SiKi(G, X) - ]ESiKi(G, X).

All the calculus previously made with the variables I1; (6, x) remains valid for the
variables A; (6, x), and we obtain

7 _mf logn —C'&?
P<|fD(9' *) —Efp(®, x)| > € n¢9,x(hn)) =2n < o
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For the proof of the second part of this lemma, we only need to establish
Efp (6, x) mp(x, 0) a.co.

By the properties of the conditional expectation and the mechanism of MAR and
(H5), it follows that

R 1 -
Efp(6,x) = W; E(6;K;(6,x))
- nIE(K1 (6,x))

B (p(x, 0) + 0(1))
B nIE(Kl(H, x))

D BB < 6,X; >)Ki(6,0)]
i=1

Z IE(Ki(G, x)) T:)Op(x, 6)a.co
i=1

Therefore (ii) of Lemma 3 follows from (i), and because fD (8,x) -2 p(x, 0) a.co.

Concerning the last part, we have

{fo(6,x) <p(x,0)/2} < {|fp(6,x) — p(x,0)| > p(x,6)/2} =
= ]P’{fD(B,x) < p(x,@)/Z} < ]P’{|fD(9,x) — p(x,9)| > p(x,@)/Z} <
< P{|fp(6,x) —Efp(8,%)| > 1/2},

and because lim fp(6,x) = p(x, 8), we show that
n—oo

Z P(f5(6,x) < p(x,6)/2) < o.

nz1

We conclude the proof of the Theorem 1 by making use of Inequality (1), in
conjunction with Lemma 1, Lemma 2 and Lemma 3.

4.2. Conditional mode estimation

In this section, we will study the rate of convergence of our conditional mode
estimator Mg (x). Obviously, obtaining these results will require more sophisticated
technical developments than those presented so far. To ensure a good readability of
this paragraph, we introduce conditions related to the flatness of the cond-dff (6, ., x)
around the conditional quantile Mg (x).
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Then a natural estimator of the conditional mode Mg (x) is defined as:

My(x) = arg sup f(@, Y, X),
YESR

where Mg (x) = arg sup f(0,y,x), Sg is a fixed compact subset of R.
YESR

But a complementary way to take this local shape constraint into account is to
suppose that:

(H6) The conditional density f (6, ., x) satisfies
(i) J€y, such that f(,.,x) is strictly increasing on (Mg (x) — €9, My (x)) and
strictly decreasing on (Mg (x), Mg (x) + €,), with respect to x.
(ii) f(6,y, x) is twice continuously differentiable around the point Mg (x) with
fOO,M0(x),x) =0 and f@(6,.,x)is uniformly continuous on
S, such that f®) (6, MA(x),x) # 0, where f(8,.,x) (j = 1,2) is the j-th
order derivative of the conditional density (6, y, x).
(H7) Ve >0, 37 50, Y | M () - ()] 2 £ = (8, p(x),x) — F(8, Mg(x), )| 2 1.
The difficulty of the problem is naturally linked to the flatness of function
f(8,y,x) around mode My. This flatness can be controlled by the number of
vanishing derivatives at point My, and this parameter will also have a significant
influence on the asymptotic rates of our estimates. More precisely, we introduce the
following additional smoothness condition.
(H8) There exists some integer j > 1, such thatV x and the function f(6,.,x) is
j-times continuously differentiable w.r.t y on Sg with

OO, My(x),x) =0,if;1<j<I
90, ., x) is uniformly continuous on Sg
such that f9(8, My (x),x) # 0.

PROPOSTION 1: Suppose that the hypotheses (H1), (H3)-(HS8) are satisfied if 33 >
0, ntn —> o0, and if

n—-oo
logn

lim ——"——=
n—-oo ngrzll¢9,x(hn)

>

then we have

a0 = 50,0 =0 (05 + 95+ Oue  (225) )

n9721¢9,x(hn)
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PROOF: The proof is based on the Taylor expansion of f(6,.,x). In the
neighborhood of My (y, x), we get

7(6,75(0,x) = £(8, Mg(),2) + 72D (7, ) — w1y (),

where M; (x) is between Mg (x) and My (x), combining the last equality with the fact
that

|f(9,M9(X),X) - f(Q,Mg(X),X)l <2 nglf(gr}"x) - f(gly'x)l)
YEor
which makes it possible to write:

J! R
FO6,My 00 x)seb 6.y, = £(6,5,2)].

Mg (x) — Mo ()|’ <
Using the second part of (H8), we obtain

36> 0, P(FO(0,M;(0), %) 2 6) < oo,

n=1

So, we have

|M9(y,x) - Mg(]/,x)|j = Oa.CO. (Sgsplf(eﬂyl .X') - f(e,ylx)|>

Finally, Proposition 1 can be deduced from Theorem 1.
COROLLARY 1: Under hypotheses of Theorem 1, we have

Mg(x) — Mg(x) - 0, a. co.

PROOF: The proof is based on the point-wise convergence of f(8,.,x), and the
Lipschitz property introduced in (H3)-(i) and hypothesis (H7), f(6,t,x)is
a continuous. We therefore have:

Ve > 0,3an(e) > 0, such that

£ (6,y,x) = £(6,Mg(x), )| < n(e) = |y — My(x)| <e.
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Therefore, for y = Mg (x),

P(|M(x) — Mg(x)| > €) < u»(| £(6,Mg(x),x) — (6, Mg (x),%)| = r](e)). )

Then, according to the theorem, My — Mg go almost completely to 0, as n goes to
infinity.

5. Asymptotic normality

The asymptotic normality of the semi-parametric estimators of the conditional
mode for functional data in the Single Index Model (SIM) with missing data at
random (MAR) is an important property that establishes the limiting distribution of
the estimators as the sample size increases. Although specific results might vary
depending on the assumptions and estimation methods used, it allows us to
construct confidence intervals and hypothesis tests for the estimated mode. In this
Section, the asymptotic normality of the estimator f(8,.,x) in the single functional

index model is established.

bo,x(shn)
;“—;h) Bo.x (), for Vse [0,1].

(N2) The bandwidth h,and g,,, small ball probablhty ¢g x(hy,) satisfying

(i) ngids.(hy) — 0an d% o, asn — oo.

(ii) ng,zld)g‘x(hn) — 0,asn - oo,
(N3) The conditional density f(6,y,x) satisfies: 3a > 0, V(y1,y,) € Sg X Sg»

(N1) There exists a function fBg.(-), such that llm

|f(j)(9, Y1, X1) _f(j)(g, y2,x2)| < C(yy —y219.j = 1,2

THEOREM 2: Under the assumptions of Theorem 1 and (N1)-(N3) for all x €%,
and if

vV ngnd’G,x(hn)(hal + gn ) —) 0

then we have

ngn¢9x(hn)
nonbon) (709, ,x) ~ £(6,,3)) > N (0.1),

M, (6, 0.y, .
where GZ(B,y,x)=ﬁf;(;x’;) [H2(Wdu with M(8,x) = K'(1) —

— [AKYY (W) Bp (W, L = 1,2
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PROOF: In order to establish the asymptotic normality of F (6,t,x), we need further
notations and definitions. First we consider the following decomposition:

n@yx)  Mi(60)f(6,yx) _
f(g Y»x) f(e Y;x) f(Gx) Ml(ex) -

% (Gx) (fN(g v,x) — Efy (6, y.x))
— 55 (M6, (6,7, — Efu(6,7,))+
+’;(9(;’;‘)) (M1(6 2 IEFD @, )) _];(G(g.x)) (ﬁu (6,x) — EFp(6, x)) -
=———A,(0,y,%) + B,(0,y,%),

f (9 x)
where:
A, (8,y,x) = mx? A(H;(®) — guf(6,7,%))8:K; (8, %)
—E[(H;(t) — gnf(6,7,%))8:K;(6,)]} = mz 1N; (6,t,x)
and
Ba(6,y,%) = My (6,x)f(6,y,x) — Efy(6,y,%) + f(6,y,)
(M.(6,%) — Efp(6,1)).
It follows that,
X h?’l
ngnd’@,x(hn)var(An(Gv Y X)) = #((e)x))var(]vl(gv Y x)) =
n 100,
=1,(0,y,%).

Then, the proof of Theorem 2 can be deduced from the following Lemmas.
LEMMA 4: Under assumptions of Theorem 2, we have

vV ngnd)ex(hn)An(el Y x) _D) N(O: 02(91 Y, x))

PROOF:

¢9,x (hn)

_roxvm 2 _ 2
B (06, 0) PO D) 9,703, 0)]

V,(0,y,x) =
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V. (0,y,x) =
¢9,x (hn)

= 2 (3)
= mﬁ K26, 0)E (8, (H,(») — 9. £(8,7,20)°| (6, X))

Using the definition of conditional variance, we have
2
E (8, (Hy(6) = 9uf (8,5,2))°| (8, X1)) = Jun + Jom

Jin = Var(8,H; ()0, X1)).J2n = [E(H, ()10, X1)) — gnf (6,5, )12

Concerning J;,,

Jin = E (17 (X2) 0.5))| =+ .

(0, %2)) = [E (8 Hy (52

)

As for Jy, by the property of double conditional expectation, we obtain
1 =E (511'12 (y_Y1

(0,X1)) =p(x,0) [H? 22) £(6,v, Xy)dv
g In

= p(x,0) f H2(u) dF (8, y — ugy, X).

On the other hand, under assumptions (H2)-(H3), we have

9y = [ H*@) dF O,y = ugn %) = hu [ H2G) 0,y = ugn, X)du <
< gn [ H2GO(£O,y = ugn X) = £(6,7,))du +
+gn [ H20) £0,y,2)du < @
< g, (Ce,x J H? (W) (h® + [v]® g% )du + £(6,, %) f H2(w) du) -

= 0(hy" +95°) +gnf(9.y,x)fH2(u) du.

Asfor J5, J3 = B Hy (00, X1)) = p(x,0) [ H (52) £(6,, X)dv.
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Moreover, by changing variables, we obtain:

92 =l [ HGO(F©,y = ugn ) = £(6,7,)du + gaf 0,3, [ H@d
The last equality is due to the fact that H is a probability density, thus we have

2 :0(}1“1 +gn )+gnf(9 y!x)

Finally, we get J, 2 As for Jo,, by (H1)-(H3), we obtain J,, —2
Meanwile, from (H1)-(H3), it follows that

Do, (hn)EKZ(8,x) M, (6,x)
E2(K1(8,x)) n—oo (M1(8,x))%’

which leads to combining equations (3) and (4):

M, (8,x)f(8,y.x)
AChZ x)n Soo (M1(8,%)2p(x,0)°

LEMMA 5: If the assumptions (H1)-(H7) are satisfied, we have

VG Po x (hp)Bn(6,t,x) = 0, in probability.

PROOF: We have

/ngn¢ex(hn)8 6,t,x)="> ?”Z;“g {Efy(6,y,%) — My (8,x)f(8,y,x)
D

+£(6,9,2) (M1(6,) — Ef» (6, %))

Firstly, it can be observed that, asn — oo,

WE[K (=2 X’)] - M,(6,%), for | = 1,2, (5)

Efp(8,x) > My(6,)p(x,0) and Efy(8,y,x) > My(6,x)f(0,y,x),  (6)

can be proved in the same way as in Ezzahrioui and Ould-Said (2008),
corresponding to their Lemmas 5.1 and 5.2, and then their proofs are omitted.
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Secondly, using (5) and (6), we have, on the one hand, asn — oo,

{Ef(6,7,2) = My(6,0£(8,y,2) + £(8,7,2) (My(8,%) — Efp(6,) )} - 0.

On the other hand,

\/ngn(pﬂ,x(hn) — \/ngnd)e,x(hn)f(er%x) — N ngn(pﬂ,x(hn)f(er%x)
fo(6.%) fo(8.)F(6,y.x) fn(6,y.%) '

Because K and H are continuous with the support on [0,1], then from (H3)
and (H4) 3m = 1[13i1r]1K(t)H(t), it follows that

£ > m
In®.y,x) = Inbox(hn)’

which yields

fn@yx) m

Finally, (N2)-(i) completes the proof of Lemma 5.

5.1. Application: The conditional mode in functional single-index model

The main objective of this part of our work is to establish the asymptotic normality
of the conditional mode estimator of Y, given < 68,X >=<0,x > denoted by
M@ (.X')

COROLLARY 2: Under the assumptions of Theorem 2, and if (H6) holds true, and
in addition if

n9731¢9,x (hn) r:)o 0,

then we have, asn — oo,

Ing206.(ha) (M () — Ma(x)) 5 3 (0,028, M (), ),

where
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M (8,%)f (6.Mg(x),%)

QZ(G,MQ(X),X) = 2
p(6.3)(M1(8.x)f @ (8,Mp(x)x))

PROOF: By the first-order Taylor expansion for FD(6,y,x) at point Mg (x), and
the fact that f (M (6, Mg(x),x) = 0, it follows that

i F(6,Mp(x),%)
g o) (Fp () — My () = = [ngih () Fey oo,

where M}, (x) is between Mg (x) and My (x). Similarly to the proof of Theorem 2, it
follows that

T ’ngr31¢9,x (hn)f(l) (91 MG (X), X) B) N(O, Q(Z) (Gv MG (X), X)), (7)

2 _ M(8x) f(O.Mg(x)x) , 2
Qo(e.Mg(x),x)—(Ml(M)2 ) J(H'(w) du.

where

Thus, as above, similarly to Ferraty and Vieu (2006), we can obtain f @)(8,y,x)
P _
- f@(0,y,x),asn — oo, which implies that Mg (x) = My (x). Therefore, we get

F@0,M500), %) — f (6, M (x), %) # 0. (8)

By (H3), (H6) and (N3), similarly to the proof of lemmas, Lemma 4 and Lemma 5,
respectively, (7) follows directly. Then, the proof of Corollary 2 is completed.

5.2. Confidence bands

The asymptotic variances g2(8,t,x) and 02%(6,My(x),x)in Theorem 2 and
Corollary 2 depend on some unknown quantities including My, M,, ¢ (u), Mg(x),
p(0,x) and f(68, Mg(x),x). Therefore, p(8,x),Mg(x), and f(6, My(x),x) can be
estimated by P,(6,x), My(x) and f(6,Mg(x),x) and My(x), respectively.
Moreover, using the decomposition given by the assumption (H1), one can estimate
$9.x(.) by Pg(.). Because the unknown functions M; := M;(8,x) and f (6, y, x)
are intervening in the expression of the variance, we need to estimate the
mode M, (6, x), M,(6,x) and f (0, y, x), respectively.

From the assumptions (H1)-(H4), we know that M;(6,x) can be estimated by
M]- (6, x), which is defined as:
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—~ 1 i ~ 1
M;(6,x) = Bon( 1 K{ (6,x), where ¢g . (h) = ~Xi=1 L(x—x,0)<np

with 1, being the indicator function. Finally, the estimator of p(6, x) is denoted by:

3R 8k (Rt (<x-X,,6>))
Fa(0,%) =3 K(hpt(<x-Xy6>))

i=1

By applying the kernel estimator of £ (6, y, x) given above, the quantity (6, y, x)
can be estimated by:

2 _ M6 f6yx) [ o
526,37 ) = G oy patom | 1 (W

Finally, in order to show the asymptotic (1 — &) confidence interval of My (x), we
need to consider the estimator of 0%(8, Mg (x), x), as follows:

A2 9’ M (x X)) = /I:WZ(G'X) f(evMB(x)vx) Hl(u Zdu)
0 ( ’] ) ) (M1(9.x))2 Pn(G,X)(f(Z)(G,Mg(x),x))z J.( ))

so we can derive the corollary below.

COROLLARY 3: Under the assumptions of Theorem 2, K'and (K?)'are integrable
functions, then we get, asn — oo,

nA x(hn) 7 D

(@) [Late2® (7(6,y,) — £(6,,2)) > N (0,1,
ng?z‘/ﬁe,x(hn) =5 _ D

©) [Fomgea (Mo () = Ma()) = N (O

PROOFE: Observe that
_ M /& ngn®a,x(ha)Pr(6,X)f(6,,)
(@)2(6,y,x) = My | M, \/ p0,X)f(0,y,)ngndex(hy) %

My [ngndox(hn) (2 _
X m(f(ﬁ,y,x) f(9,y,x)),

where 2(0,y,x) = ’% (f(B, v,x) — f(6,y, x)), by Theorem 2, we have, as

n — oo,
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n¢ ,x(hn) ad D
[rnboxa) (£(g,y,2) = £(6,9,2)) > N (0,0).

In order to prove (a), we need to show that

M; P(B,x)f(e,y,x)ngn¢o,x(hn)

My My [ngn@ox(hn)Pn(02)f(0.y.) ( 2 _ P
_\/1‘71:2\/ (f(G,y.x) f(9,y,x))—>N(0,1),

using the result given by Laib and Louani (2010), we have

_ P _ P s P
M; - My, M, - M, and %*"—(h")elasn—)oo.

Y ¢9,x(hn)

39

On the other hand, from Proposition 2 in Laib and Louani (2010), it follows that

P.(8,%) — E(5I(X, 0) = (x,0)) = P(§ = 1|{X, 0) = (x,0)) = p(x,6).

In addition, from Theorem 1, we have f(6,y,x) — f(6,y,x), asn = co. This

yields the proof for the first part of Corollary 3.

b) i, 7@ (. 2P V7
(b) #,/ DO (%) [ngRPox(tn)Pu(6.1) (Mg () — Mg(x)) =

Vi, £(6,Mg(x),%)
— Ml\/M_Z ng%@e,x(hn)Pn(G,x)f(G,Me(x),x) f(z)(G,IVIg(x),x)
M\, ng;Pex(hy)p(6,%) F@(6,Mg(x),x)

M1 [ngidex(h)p(0.X) (2) o B
X i a0 Mo (), (flg () = Mo ()

Applying Corollary 2, we obtain

My [ngide(hn)p(6.x)
M, £(0.Mg(x).x)

F (0, Mg (), ) (g (x) = Mg(x)) — N (0,1).

Further, by considering Lemma 5, (2) and (8), we obtain, asn — oo,

My M, [ngidex(hn)Pp(0.X)f(0.Mg(x),x) fP)(0,Mg(x)x) P
- 1.
MM, ng3be x(ha)p(6,x) £@(6,Mg(x),x)

Hence, the proof is completed.
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REMARK 1: Thus, following Corollary 3, the asymptotic (1 — &) confidence interval
of the conditional density f(0,y, x), and the conditional mode Mgy (x), respectively,
are expressed as follows:

2 G%(8,y.x) 7 02%(6,Mg(x),x)
1(6.y,%) % 77}//2\] ngndox(hn) andM, (x) £ 7]]//2\] ngidex(hn)’

where 32(6,y,x) and §2(6, Mg(x),x) are defined in Section 5.2, and 7, , is the
upper y/2 quantile of the normal distribution N°(0,1).

6. Simulation study on finite samples

6.1. A numerical study

In this Section, we will consider simulated data studied to assess the finite sample
performance of the proposed estimator and compare it to the competing estimator.
For studying the behavior of our estimators, and in order to illustrate our results, we
evaluate the performance of our estimation approach using a single-index
dimensional reduce model in order to prove the effectiveness of our model. More
precisely, we will compare the finite sample behavior of estimator f with the
complete functional data and the estimator funder functional data with MAR.
Furthermore, some tuning parameters have to be specified. The kernel K(.) is

chosen to be the quadratic function defined as K =§(1 —u?)1[p,4] and the

cumulative distribution function (cdf)

H@w) = fuoo%(l — 29114y (2)dz.

The semi-metric d(.,.) will be specified according to the choice of the functional
space H discussed in the scenarios below. It is well known that some of the crucial
H parameters in semi-parametric models are the smoothing parameters which are
involved in defining the shape of the link function between the response and the
covariate.

Now, for simplifying the implementation of our methodology, we take the
bandwidths hx~hy = h, where h will be chosen by the cross-validation method on
the k-nearest neighbors (see [12], p. 102).

Let us consider the following regression model, where the covariate is a curve and
the response is a scalar:

Y, = RU6,X;) +€; i=1,..,n=300,
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where ¢; is the error supposed to be generated by autoregressive model defined by:
1 .
€; zﬁ(ei—l +7h')' i=1-n

with (;); is a sequence of iid. random variables normally distributed with
a variance equal to 0.1.

The functional covariate X is assumed to be a diffusion process defined on [0,1]
and generated by the following equation:

X() = Q(2 — cos(mYt)) + (1 — Q) cos(mYt), te€[0,1],

where Y is generated from a standard normal distribution, and Q is Bernoulli’s law
B(0.5).

Let us take into account the smoothness of curves X;(t) (see Figure 1).We choose
the distance deriv, (the semi-metric based on the first derivatives of the curves)
in H as:

a0 = ([04® - xhnar)

as semi-metric. Then, we consider a non-linear regression function defined as:

1
R(X)=4 _
() exp 2+f:/2X2(t)dt

Figure 1. A sample of 300 curves X;—1 300 (tj), tj=1,..300 € [0,1]

=

Source: authors’ work.
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The missing mechanism is similar to that in Ferraty et al. (2013):
p(x) =P =1|X =x) =expit (Zafolxz(t)dt),

where exp it(v) = e”/(1 + e?) for v € R, and the degree of dependency between
the functional covariate X and the missing variable § is controlled by parameter «
(where we compare three missing rates: strong, medium and weak cases, with
a=0.05, @ = 0.5 and a = 3 respectively). The missing proportions are quantified by
the following benchmark:

In practice, this parameter can be selected by a cross-validation approach
(see [2]). It might be that one selected the real-valued function 6(t) from among the
eigenfunctions of the covariance operator E[(X' — EX')(X’,.)s ], where X(t) is
a diffusion process defined on a real interval [a, b], and X'(t) is its first derivative
(see [3]). So for a chosen training sample £, by applying the principal component
analysis (PCA) method, the computation of the eigenvectors of the covariance
operator estimated by its empirical covariance operator %ZieL(X{ —EX))t(X{ —
EX;) will be the best approximation of our functional parameter 6. Now, let us
denote 6" the first eigenfunction corresponding to the first higher eigenvalue of the
empirical covariance operator which will replace 8 during the simulation step.

In our simulation, the sample size isn = 300. We divide it into two parts: one is
a learning sample of 250 observations, and the other 50 observations are a test
sample.

The first one from 1 to 250 will be used to make the simulation, and the second,
from 251 to 300, will serve for the prediction. We then perform the following steps:

e Step1l: Compute the inner product: (0% X;),...,(0",X300), generate
independently variables €4, ...,€309, then simulate response variables Y; =
r({68%,X;)) + €;, where r((6%,X;)) = exp(lO((G*,Xi) — 0.05)), and generate
independently variables €4, ..., €39¢.

e Step2: For each j in, the test sample J = 251,...,300, we compute: 17] =
Mg*()(j) and 1?} = M@*(Xj), where:

Mo(x) = arg sup f (6,y, ).
YESR
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e Step 3: Finally, we show the results by juxtaposing the true values and the
predicted values for the MSE, both for the option of having complete data and the
option of having a MAR response.

_ 1 y300 2 300 AY
CMSE = =335, (Y, — V)" and MMSE = -33%,(Y - 1)
Figure 2. Complete data case Figure 3. MAR witha = 2
FSIM.Complete data Cond.Mode.: CMSE = 0.00841 Missing data Cond. Mode.: MIMSE=0.0121
B
k4 @
¢ 5
[=] o
(=N w
@ <4
g 8
= o
8 3
o o
Responses of testing sample
Responses of testing sample
Source: authors’ work.
Figure 4. MAR with ¢ = 1.5 Figure 5. MAR with ¢ = 0.5
Missing data Cond. Mode.: MMSE=0.0367 Missing data Cond. Mode.: NIMSE=0.0921
w
o~
(=)
o g o
w w
5 5
o o o
w w -
o o
8 g <= |
(=] (&) ~
5 T
ot ol
o o W
[=)
(=)
=
Responses of testing sample Responses of testing sample

Source: authors’ work.

In the MAR responses, the proportion § of missing response data is the key
parameter which is shown by a. In Figures 2-5, we can see that when & is small (or
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a is big), the Mg (x) of the MAR response works almost as efficiently as if we had
a complete data set and used My (x). In this case, when one has missing response
data, the estimator My (x) is not useful, but the My (x) is a benchmark analysis, and
the fact that My (x) is almost as effective as Mg (x) is what one is really expecting.
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