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Modelling income distributions based
on theoretical distributions derived
from normal distributions

Piotr Sulewski,® Marcin Szymkowiak®

Abstract. In income modelling studies, such well-known distributions as the Dagum, the
lognormal or the Zenga distributions are often used as approximations of the observed
distributions. The objective of the research described in the article is to verify the possibility of
using other type of distributions, i.e. asymmetric distributions derived from normal distribution
(ND) in the context of income modelling. Data from the 2011 EU-SILC survey on the monthly
gross income per capita in Poland were used to assess the most important characteristics
of the discussed distributions. The probability distributions were divided into two groups:
| — distributions commonly used for income modelling (e.g. the Dagum distribution) and
Il - distributions derived from ND (e.g. the SU Johnson distribution). In addition to the visual
evaluation of the usefulness of the analysed probability distributions, various numerical criteria
were applied: information criteria for econometric models (such as the Akaike Information
Criterion, Schwarz's Bayesian Information Criterion and the Hannan-Quinn Information
Criterion), measures of agreement, as well as empirical and theoretical characteristics, including
a measure based on quantiles, specifically defined by the authors for the purposes of this
article. The research found that the SU Johnson distribution (Group II), similarly to the Dagum
distribution (Group 1), can be successfully used for income modelling.

Keywords: income modelling, EU-SILC, normal distribution, SU Johnson distribution, Dagum
distribution

JEL: C13, C15, C55, D31

Modelowanie rozktadu dochodow
z wykorzystaniem rozktadéw teoretycznych
wywodzacych sie z rozktadu normalnego

Streszczenie. W badaniach nad modelowaniem dochodéw do aproksymacji ich rozkladéw
bardzo czesto wykorzystuje sie takie znane rozkitady, jak Daguma, log-normalny czy Zengi.
Celem badania omawianego w artykule jest sprawdzenie mozliwosci postuzenia sie innymi
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typami rozktaddw, tj. rozktadami asymetrycznymi wywodzacymi sie z rozktadu normalnego
(ND), w kontekscie modelowania dochoddw. Najwazniejsze charakterystyki rozpatrywanych
rozktadéw okreslono na podstawie danych z badania EU-SILC 2011 dotyczacych miesiecznego
dochodu brutto na mieszkarica w Polsce. Rozktady prawdopodobienstwa podzielono na dwie
grupy: | - rozktady powszechnie stosowane do modelowania dochodéw (np. rozktad Daguma)
i Il - rozktady wywodzace sie z ND (np. rozktad SU Johnsona). Oprécz wizualnej oceny przydat-
nosci analizowanych rozktadéw prawdopodobienstwa zastosowano kryteria liczbowe, takie jak:
kryteria informacyjne dla modeli ekonometrycznych (Akaike Information Criterion, Schwarz's
Bayesian Information Criterion oraz Hannan-Quinn Information Criterion), miary zgodnosci oraz
charakterystyki empiryczne i teoretyczne, w tym specjalnie zdefiniowana na potrzeby artykutu
autorska miara wykorzystujgca kwantyle. Jak wynika z badania, rozktad SU Johnsona (Il grupa),
moze by¢ - tak jak rozktad Daguma (I grupa) - z powodzeniem wykorzystany do modelowania
dochodow.

Stowa kluczowe: modelowanie dochoddéw, EU-SILC, rozktad normalny, rozktad SU Johnsona,
rozktad Daguma

1. Introduction

Finding a proper model of income distribution and, consequently, examining and
explaining income inequality, has been a task undertaken by economists since the
times of Pareto. One of the main directions of research in the area of income
distribution is the search for a theoretical model describing empirical income
distributions.

Firstly, a theoretical model simplifies the analysis. When a small number of
parameters is used, the estimation of different characteristics of the distribution and
studying the properties of these characteristics expressed as the functions of certain
parameters of the theoretical distribution become possible. Secondly, a well-fitted
theoretical model allows the prediction of income distributions across different
domains, both in time and space. It can be used e.g. in small area estimation as part
of the model-based approach (Pratesi, 2016). Thirdly, approximations of empirical
income distributions based on appropriately chosen theoretical distributions can
compensate for irregularities resulting from the data collection method.

Many authors who study income distribution propose a set of economic,
econometric, stochastic and mathematical properties considered as criteria used to
select a particular mathematical model of income distribution. The final choice of
the model depends on the degree to which it is capable of satisfying these criteria
(Jedrzejczak & Trzcinska, 2018).

Aitchison and Brown (1957) defined the fundamental properties that form the
most representative model of any stochastic process that generates an income
distribution. The same issue was analysed by Dagum (1977) and Metcalf (1972). The
suggested properties characterise a desirable income distribution model, including
its foundation, interpretation, flexibility and inferential properties (Jedrzejczak,
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2006). Among the most important features is the convergence to the Pareto principle
for high income groups, a small number of finite moments of a distribution (heavy
tails), goodness-of-fit (GoF) for the whole range of a distribution, a simple
interpretation of parameters, and simplicity (or a small number of parameters).
Normal distribution (ND) is certainly the best known representative of the family
of distributions used in statistical theory and practice to model distributions of
phenomena defined as positive or non-negative, characterised as symmetric (e.g.
people’s weight, height, etc.). Obviously, ND is not used to model income
distributions, which are asymmetric, i.e. most values are clustered around the left
tail, whereas the right tail is considerably longer (a positively skewed distribution).
The objective of the study is to verify the possibility of using asymmetric
distributions derived from ND in the context of income distribution modelling.

2. Literature review

As mentioned in the Introduction, there are many probability distributions
describing non-negative or positive variables that can be used to approximate
income distributions. This family includes the following distributions: lognormal
(LOG), defined by Gaddum (1945), Birnbaum-Saunders (BS), defined by Birnbaum
and Saunders (1969), Dagum (DA), defined by Dagum (1977), beta prime (BPr) and
inverse gamma (IG), defined by Johnson et al. (1995), Singh-Maddala (SM), defined
by Singh and Maddala (1976), Zenga (Z), defind by Zenga (2010), Pareto type IV
(PIV), defined by Pareto (1895), generalised gamma (GG), defined by Stacy (1962)
and generalised beta of the second kind (GB2), defined by McDonald (1984). For
more information on the PIV, GG and GB2 distribution families, see the Appendix.

Distributions such as Pareto, lognormal, gamma or Dagum were used to
approximate income distributions in the Polish population (see e.g. Kordos, 1968,
1973; Kot, 1999, 2000; Lange, 1967; Vielrose, 1960; Wisniewski, 1934). Research on
income and wage distribution in Poland has confirmed that the Dagum, Singh-
Maddala and Zenga distributions are particularly well-fitted to empirical data (see
e.g. Brzezinski, 2013; Jedrzejczak, 1993, 2006; Jedrzejczak & Trzcinska, 2018;
Lukasiewicz & Orfowski, 2004; Ostasiewicz, 2013; Salamaga, 2016; Trzcinska, 2020,
2022; Walega & Walega, 2021).

To achieve the aim of this article, a competitive family of distributions based on
ND is needed. For this purpose, ND can be ‘plasticised’ by adding a ‘plasticising’
parameter to the cumulative distribution function (CDF) of the ND, by “plasticising’
the formula located in the exponential function or through a combination of
distributions.

The first way was introduced by Azzalini (1985), who added a skewness
parameter to the CDF of ND and initiated a very interesting family of ND-derived
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distributions. This family includes distributions such as: skew-normal (SN), defined
by Azzalini (1985), skew-generalised normal (SGN), defined by Arellano-Valle et al.
(2004), flexible skew-normal (FSN), defined by Ma and Genton (2004), two-piece
skew-normal (TPSN), defined by Kim (2005), power-normal (PN), defined by Gupta
and Gupta (2008), generalised Balakrishnan skew-normal (GBSN), defined by
Yadegari et al. (2008), Balakrishnan skew-normal (BSN), defined by Sharafi and
Behboodian (2008), extended skew-generalised normal (ESGN1), defined by
Choudhury and Abdul (2011), extended skew-generalised normal (ESGN2), defined
by Venegas et al. (2011), skew-flexible normal (SFN), defined by Goémez et al. (2011),
Kumaraswamy-normal (KN), defined by Cordeiro and de Castro (2011), flexible
skew-generalised normal (FSGN1), defined by Nekoukhou et al. (2013), extended
skew-generalised normal (ESGN3), defined by Kumar and Anusree (2015), flexible
skew-generalised normal (FSGN2), defined by Bahrami and Qasemi (2015) and
shape skew-generalised normal (SSGN), defined by Rasekhi et al. (2017).

The second approach is to ‘plasticise’ the formula in the exponential function of
the ND. A family derived in this way includes the following distributions defined in
a real domain: symmetrical sinh-normal (S-N), defined by Rieck and Nedelman
(1991), SU defined by Johnson (1949), SC and expnormal (EN), defined by Sulewski
(in press).

The third way involves a combination of at least two normal distributions which
can fit more characteristics that the sample data might contain. Behboodian (1970)
describes the conditions under which a combination of two normal distributions,
called the compound normal (CN) distribution, is unimodal.

3. Income modelling - theoretical probability distributions

In the study, theoretical probability distributions used for income modelling are
divided into two groups: Group I - consisting of distributions strictly dedicated to
income modelling and Group II - mainly including ND-derived distributions, with
ND being their special case. This group also consists of three distributions from the
Johnson family, namely: SU, SC and EN. Some parameter values of these
distributions are very similar to ND, but ND is not a special case of these
distributions. It is possible to calculate the measure of the similarity of ND with the
@ (x; u,0) PDF (probability density function) to the distribution with the g(x; @)
PDF, where 0 is the vector of parameters. This similarity measure (Sy) is provided
by Sulewski (2019):

Su(w0,0) = [* min[p(;u,0), g(x; 0)]dx. (1)
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As mentioned above, the main objective of the study is to verify the possibility of
using asymmetric distributions derived from ND in the context of income
distribution modelling (Group II) and to compare it with the properties of well-
known distributions strictly intended for this purpose (Group I).

When analysing the structure and properties of distributions, one can group them
into systems. The systems for income distributions include the Dagum, Pearson,
D’Addairo, Burr and Johnson distribution. However, these systems are not always
separate. For example, the lognormal distribution belongs to the D’Addairo and
Johnson systems, while the gamma distribution to the Pearson and D’Addairo
systems, the Dagum distribution belongs to the Dagum, Pearson and Burr systems
and the Pareto distribution to the Dagum and D’Addairo systems;, whereas the
Singh-Maddala distribution to the Dagum and Burr systems (Jedrzejczak &
Pekasiewicz, 2020).

There is no need to select all distribution systems for a Monte Carlo simulation to
assess their properties; only certain members need to be chosen. The use of
distributions which happen to be special cases of other distributions is also
convenient. PIV, GG and GB2 are examples of such distribution groups, with the
exception of SM, which is a special case of GB2 and, as mentioned earlier,
recommended for income modelling.

Group I distributions includes the LOG as a member of the D’Addairo and
Johnson systems, BS as a member of the Johnson system, BPr and IG as members of
the Pearson system, DA as a member of the Dagum system, SM as a member of the
Dagum and Burr systems, Z as the youngest distribution in this group and the PIV,
GG and GB2 families.

Group I distributions intentionally includes not only the most popular
distributions for income modelling (e.g. Dagum, Singh-Maddala, Zenga), but also
distributions never or very rarely used for income modelling (e.g. BS, BPr, IG).

Distributions derived from ND (Group II) include SN, SGN, ESGN1, ESGN2,
ESGN3, SSGN, PN, SEN, FSN, FSGN1, FSGN2, KN, BSN, and GBSN. The Johnson
system distributions, such as SU, SC and EN also belong to ND-derived
distributions, because their measure of similarity to ND calculated with (1), as
shown in the Appendix, exceeds 96%.

Let ¢(x) and @(x) be PDF and CDF of N (0, 1), respectively. Let u € R be the
position parameter, ¢ > 0 the scale parameter and a, 5,y the shape parameters.
Probability distributions are described by PDF and CDF. The appropriate formulas
for the probability distributions (either PDF or CDF were presented depending on
the distribution and their simplicity) included in the empirical part of the article are
presented in the Appendix.
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Group II distributions, after eliminating distributions that are special cases of
other ones, includes: ESGN1, ESGN2, ESGN3, SSGN, PN, FSGNI, FSGN2, KN,
GBSN, TPSN, SU, and EN.

In summary, 22 distributions (10 from Group I and 12 from Group II) were used
in the empirical study to model income.

4, Goodness-of-fit measures

In order to select the best theoretical models described in Section 3 and in the
Appendix for income modelling, the authors assessed them in a two-step procedure.
In the first step, the GoF measures were applied to assess the consistency of the
estimated models with the empirical data from the EU-SILC. In the second step, the
very popular theoretical characteristics of models selected in the first step were
compared with the empirical characteristics computed for the EU-SILC data (see
Section 5 for more details and Table 5 for comparison).

It is a well-known problem in studies of income distribution that in the case of
large samples, GoF statistical tests lead to the rejection of the null hypothesis, even if
the studied model describes the empirical distributions very well (Kunte & Gore,
1992). Therefore, to assess the properties of the distributions used for income
modelling, the authors decided not to use statistical tests, but rather to apply other
numerical measures: the information criteria, GoF measures, as well as empirical
and theoretical characteristics, including a specifically defined measure using
quantiles.

Let M(0) be a model with a @ vector of parametersused for describing the
distribution of income. Let f3;(x; @) and Fy;(x; @) be the respective PDF and CDF
of this model. Let x(1), X(,), ..., X(y) be a sample of size n. Our goal is to estimate the
unknown values of parameters @ by using the maximum likelihood estimation
(MLE) method. The likelihood function is given by

n
1© = | [ s @
i=1
Then the log-likelihood function is defined as

() = 1n(L(8)) = ) Inlfyy(x;; O)] 3)
i=1
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Formulas of derivatives dl/d@ have complex forms. In practice, it is not
necessary to calculate them. It is better to maximise the log-likelihood function using
mathematical software instead of struggling with a system of complicated non-linear
equations that may have extraneous roots.

To avoid any local maxima of the log-likelihood function, the optimisation
routine is run repeatedly each time from different starting values that are widely
scattered in the parameter space. The maximum likelihood estimates of parameters
O can be easily calculated, e.g. in the R software (R Core Team, 2021) using the
fitdistr function (package MASS), or in Mathcad. Information criteria, such as the
Akaike Information Criterion (AIC), the Bayesian Information Criterion (BIC) and
the Hannan-Quinn Information Criterion (HQIC) are used for the model
comparisons. Let us recall that:

AIC = =21+ 2p, BIC =-2l+pIn(n), HQIC = -2l + 2pIn(In(n)), 4)
where [ is the log-likelihood function (3), n is the sample size and p is the number of
model parameters.

Let k be the number of intervals in which n individual values are grouped. Let n;
and 7i; (i = 1, 2, ..., k) be the observed and the estimated counts of the i-th interval,
respectively, then w; =n;/n and w; = f;/n (i =1, 2,...,k) represent empirical
and theoretical frequencies. Estimated counts 71; are given by

R {nFM(xl-; 0) i=1 5)

P [Py (x; @) — Fy(xi-1;0)] i=2,3,..,k,
wherex; (i =1, 2,...,k — 1), x;, = oo are the upper bounds of the k intervals.

The first GoF measure, proposed by Egon Vielrose, a Polish economist,
demographer and statistician, is calculated using the following simple formula
(Vielrose, 1960):

K
W, = Z min(w;, W;). (6)
i=1

The higher the value of W},, the better the consistency of the compared distributions.
The second and the third GoF measures are Mortara’s A; index and quadratic
Pearson’s A, index defined as (Zenga et al., 2012)
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(7)

respectively.

The smaller the value of 4; (i = 1,2), the better the consistency of the compared
distributions.

The fourth GoF measure takes into account a coefficient based on the relative
difference between the mean value of empirical distribution X and the expected
value of theoretical distribution E (X) (Jedrzejczak & Pekasiewicz, 2020):

X - EQO)
= —————-100%. 8
3 500 % (8)
The smaller the A3 value, the better the consistency of the compared distributions.

The fifth GoF measure, relative error RE, calculated by comparing the theoretical
and empirical characteristics, TCH and ECH is expressed as follows:

|TCH — ECH|
F=r———"""

-100%. )
TCH %

The smaller the RE value, the better the consistency of the compared distributions.

A number of characteristics can be selected: the mean (4), the lower quartile (Q),
the median (Q,), the upper quartile (Q3), the standard deviation (SD) or the
coefficient of variation (CoV). A model is considered to be well-fitted if the
differences between empirical and theoretical characteristics are less than 5%.

Let x; and x, (0 <p<1) be empirical and theoretical p-th quantiles,
respectively. The last GoF measure, specifically defined for the purpose of this study,
is the QM given by

19
QM = Z|xo.05i — X005l (10)
i=1

The smaller the QM value, the better the consistency of the compared distributions.

The GoF measures listed above can be divided into three classes. The first class
includes information criteria (IC) (4), the second one the GoF coefficients (GOFC)
(6)-(8), and the third one the characteristics (CH) represented by classic measures
from A to CoV, plus the new measure proposed by the authors (10).



P. SULEWSKI, M. SZYMKOWIAK Modelling income distributions based on theoretical distributions... 9

5.Data

The empirical analysis is based on data for gross monthly income per capita in
Poland from the 2011 edition of the EU Statistics on Income and Living Conditions
(EU-SILC) survey. EU-SILC is a non-obligatory, representative questionnaire of
individual households, where the data are collected in face-to-face interviews. The
main objective of the survey is to supply the European Union with comparable data
on the living conditions of the population.

EU-SILC is the basic source of information used for the calculation of indicators,
including those related to income, poverty and social exclusion for the EU member
states. Data from the survey are used to produce various income statistics, such as
the average yearly equivalised disposable income per capita, selected measures of the
diversification of the average disposable income (e.g. the Gini coefficient, $80/520),
at-risk-of-poverty thresholds, the relative at-risk-of-poverty rate or selected
measures of average disposable income distribution in the Polish regions (Gtéwny
Urzad Statystyczny [GUS], 2021).

6. Results

Figures 1 and 2 show histograms and estimated PDFs for the analysed models from
Group I and Group II, respectively. In order to improve their legibility, only income
values below PLN 3,000 are displayed.

Estimated PDFs for the BPr and IG models are almost identical (see Figure 1A).
The situation is similar for the DA, SM and GB2 models (see Figure 1B). The above
is also confirmed by the results presented in Tables 1 and 3.

The estimated PDFs for the ESGN1 and SSGN models are almost identical (see
Figure 2B), which is also confirmed by the results provided in Tables 2 and 4.

When the estimated PDFs are very similar in shape, additional numerical
measures are necessary. The first group of numerical measures consists of the values
of information criteria AIC, BIC and HQIC (4). Tables 1 and 2 display values of the
MLEs and the information criteria for the Group I and Group II of models,
respectively. These models are sorted by AIC values (the first three models in
appropriate tables are in bold).
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Figure 1. Histograms and probability density functions of distributions from Group |
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Z - Zenga, SM - Singh-Maddala.
Source: authors’ work based on EU-SILC data.
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Figure 2.
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As the figures above indicate, the DA, SM and GB2 models stand out in the
Group I distribution. The SU, FSGN2 and EN stand out in the Group II distribution.
According to the information criteria, SU and FSGN2 (which are ND-derived
distributions) produce better models of income distribution than DA, SM and GB2,
which are typically used for this purpose. The AIC ranking in both distribution
groups is the same as the BIC and HQIC rankings.

Table 1. Values of maximum likelihood estimation and information criteria -
Group | distributions

Model Estimates of @ AlIC BIC HQIC
6 = 550.3921, a@ = 3.2984, /? = 1.0904 143,925.1 | 143,946.8 | 143,9324
6 = 549.6120, a@ = 3.5085, /? =0.9129 143,925.4 | 143,947.1 | 143,932.8
6 =3.3767, @& =549.0722, [? = 1.0574, 7 =0.9639 | 143,926.9 | 143,955.8 | 143,936.7
b =0.4787, ¢ =6.4631, 4 = —58.4635 144,226.5 | 144,248.1 | 144,233.8
B = 665.4616, @ = 6.1377, 7 = 7.6694 144,305.7 | 144,327.4 | 144,313.1
6 =1.9195, &= 0.4740, f = 15.4100 144,465.5 | 144,487.2 | 144,472.8
@ =0.4757, 6 = 674.6981, [i = —85.2903 144,508.8 | 144,530.5 | 144,516.1
.| A =24.7489, 6 =2,147.9490, ¥ = 0.5191, @ = 8.9888 | 145,390.3 | 145,419.2 | 145,400.1
a =2,219.1921, [? =3.3177, 6 = 0.7331 145,816.2 | 145,837.9 | 145,823.6
a =3.3021, 6 =1,617.5991 145,832.9 | 145,847.4 | 145,837.8

Note. As in Figure 1.
Source: authors’ work based on EU-SILC data.

Table 2. Values of maximum likelihood estimation and information criteria -
Group Il distributions

Model Estimates of @ AlIC BIC HQIC
11 V ¢ =—1.5371, §= 1.2759, a = 275.6729, b = 188.6396 | 143,805.7 | 143,834.6 | 143,8155
FSGN2...... A =329.8192, 6 =2,744.0519, @ = 27.6787,

B =97.1796, = 7.7981 143,825.0 | 143,861.1 | 143,837.2
EN ..o d, = 1,249, b, = 701.716, 4, = 10.747, b, = —1.187,
¢ =2.582 144,159.0 | 144,195.1 | 144,171.2
SSGN ... i =226.1337, 6 = 618.5770, & = 14.9750,
[? =2.1659, y = —0.1215 146,141.2 | 146,177.3 | 146,153.4
FSGNT1 ... [ =227.8910, 6 = 617.1702, @ = 7.3362,
B =1.8201, 7 =6.2170 146,142.6 | 146,178.7 | 146,154.8
ESGN1 ... [ =228.2867, 6 =617.0445, & = 7.3236,
B =0.0312, 7 = 0.0028 146,142.6 | 146,178.7 | 146,154.9
GBSN ... 4 =97.382, 6=480.465 & = 1954, § = 4.315,
¥ =0.015 147,061.6 | 147,097.7 | 147,073.9
ESGN3 ... 4 =200.929, 6 =639.164, @ =98.292,
[? = 2,468.553, ¥ = —286.549 147,164.7 | 147,200.8 | 147,176.9
PN e [ =-—278.3487, 6 =594.8178, @ = 11.2871 147,842.2 | 147,863.9 | 147,849.5
KN e 4 =109.364, 6 =339.288, a@ = 4.928, ﬁ =0.703 148,116.5 | 148,114.1 | 148,111.1
ESGN2 ... i =278.806, 6 =42631, @ =5.819, f=1.076,
y =3.825 149,350.3 | 149,386.4 | 149,362.6
TPSN ... 4 =535.082, 6 =270.331, @ =1.633, ﬁ = 1.687 153,299.6 | 153,328.5| 153,309.4

Note. As in Figure 2.
Source: authors’ work based on EU-SILC data.
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Tables 3 and 4 present the values of the W, and A; (i =1, 2, 3) measures
described in Section 4, with rankings for Group I and II distributions, respectively.
The analysed models are sorted according to the values of final ranking R, which is
based on the sum of sub-rankings R().

As can be seen in Tables 3 and 4, models based on DA, GB2 and Z stand out in the
Group I distribution. The SU, FSGN2 and EN stand out in the Group II distribution.
According to the GoF measures, the best (highest) values of W}, were obtained for the
FSGN2, LOG and SU models. The best (lowest) values of A; are achieved for the
LOG, FSGN2 and SU models. The best (lowest) values of A, are archived for the DA,
GB2 and SM models. The best (lowest) values of A5 are for the Z, BS and SU models.

Table 3. The final ranking R of GoF measures — Group | distributions

Model w, R(W,) Ay R(4,) A, R(4,) A R(4;) R

0.983 3 0.033 3 0.066 1 0.145 3 1
0.983 3 0.034 4 0.067 2 0.239 4 2
0.983 3 0.034 4 0.134 6 0.024 1 3
0.994 1 0.013 1 5.863 7 0.766 8 4
0.983 3 0.035 7 0.068 3 0.308 5 5
0.983 3 0.034 4| >1.000 10 0.043 2 6
0.987 2 0.027 2 2516 8 0.492 7 7
0.979 8 0.041 8 0.106 4 5.200 9 8

| C TP 0.979 8 0.042 9 0.107 5 5.290 10 9

PIV e 0.968 10 0.063 10| 391.900 9 0.440 6 10

Note. As in Figure 1.

Source: authors’ work based on EU-SILC data.

Table 4. The final ranking R of GoF measures — Group Il distributions

Model w, R(W,) Ay R(4,) A, R(4,) A R(43) R

0.990 2 0.020 1 0.128 1 0.060 1 1
0.994 1 0.020 1 0.292 2 0.604 2 1
0.973 3 0.049 3 2.029 5 4.910 5 3
0.943 5 0.114 4 1.072 3 9.450 10 4
0.927 6 0.146 5 1.478 4 6.940 6 5
0.927 6 0.147 6| >1.000 8 7.030 7 6
0.926 8 0.147 6| >1.000 8 7.070 8 7
0.970 4 0.601 11 >1.000 8 1.270 3 8
0.916 10 0.153 8| 20.204 6 4.480 4 9
0.920 9 0.154 9| >1.000 8| 14.295 11 10
0.865 11 0.266 10| >1.000 8| 19.060 12 1
0.120 12 0.880 12| 180.361 7 8.199 9 12

Note. As in Figure 2.
Source: authors’ work based on EU-SILC data.
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Tables 5 and 6 show numerical characteristics, i.e. the mean (4), the lower
quartile (Q4), the median (Q,), the upper quartile (Q3), the standard deviation (SD)
and the coefficient of variation (CoV/) calculated for the top five models according to
the numerical measures presented in Tables 1 and 3 (Group I distributions) and in
Tables 2 and 4 (Group II distributions). These empirical characteristics are
compared with the theoretical ones using percentage relative errors RE. The
analysed models are sorted according to the value of final ranking R based on the
sum of sub-rankings R(). The top three models are in bold.

The results presented in Tables 5 and 6 indicate that models based on DA, GB2
and SM stand out in the Group I distribution, while those based on SU, EN and
FSGN2 stand out in the Group II distribution. The best model for the mean are Z,
SU and DA, for the lower quartile are Z, LOG and SU, for the median are DA, GB2
and SM, for the upper quartile are EN, FSGN2 and SU, for the standard deviation
are DA, SU and GB2, for the coefficient of variation are SU, DA and GB2.

Table 7 shows the values of the last GoF measure (10), specifically defined for this
study, calculated for the models from Tables 6 and 7. The models are sorted
according to the values of the proposed QM measure. The models that stand out in
relation to the QM values are DA, GB2 and SM.

Table 5. Empirical (ECH) and theoretical characteristics with sub-rankings R()
and final ranking R - Group | distributions

Specification ECH DA GB2 Z SM LOG
A e 665.46 666.43 667.06 665.30 667.52 660.40
(0.14) (0.24) (0.02) (0.31) (0.76)
P20} [— . 2 3 1 4 5
[0 400.53 413.63 413.83 404.05 414.12 405.69
(3.27) (3.32) (0.88) (3.39) (1.29)
{029 - . 3 4 1 5 2
[0 570.76 570.51 570.28 572.02 570.06 582.58
(0.04) (0.08) (0.22) (0.12) (2.07)
({0 J— . 1 2 4 3 5
[0 2 801.06 791.34 790.72 842.23 789.64 826.88
(1.21) (1.29) (5.14) (1.43) (3.22)
. 1 2 5 3 4
435.26 452.94 458.17 372.25 464.27 364.81
(4.06) (5.26) (14.47) (6.66) (16.19)
. 1 2 4 3 5
0.65 0.68 0.69 0.56 0.70 0.55
(4.61) (5.69) (13.85) (7.08) (15.08)
1 2 4 3 5
1 2 3 4 5

Note. Theoretical characteristic with RE values (in %) in parentheses. A — the mean, Q; - the lower quartile,
Q: - the median, Qs - the upper quartile, SD - the standard deviation, CoV - the coefficient of variation.

Source: authors’ work based on EU-SILC data.
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Table 6. Empirical (ECH) and theoretical characteristics with sub-rankings R()
and the final ranking R — Group Il distributions

Specification ECH SU EN FSGN2 GBSN SSGN
Y S 665.46 664.99 643.64 660.90 608.83 715.09
(0.08) (3.28) (0.69) (8.51) (7.45)
. 1 3 2 5 4
400.53 413.15 420.52 413.49 413.19 423.10
(3.16) (5.00) (3.24) (3.17) (5.64)
. 1 4 3 2 5
570.76 562.03 583.38 562.06 574.29 643.42
(1.54) (2.20) (1.53) (0.61) (12.72)
. 3 4 2 1 5
801.06 792.82 795.83 794.45 769.52 937.81
(1.03) (0.66) (0.83) (3.94) (17.06)
. 3 1 2 4 5
435.26 414.21 354.56 348.04 272.39 378.89
(4.84) (18.55) (20.05) (37.42) (12.96)
. 1 3 4 5 2
0.65 0.62 0.55 0.53 0.45 0.53
(4.15) (15.23) (18.92) (31.23) (18.46)
1 2 4 5 3
1 2 2 4 5

Note. As in the Table 5.
Source: authors’ work based on EU-SILC data.

Table 7. Values of the GoF measure QM - Group | and Group Il distributions

Specification DA GB2 SM SU | FSGN2 z LOG EN GBSN | SSGN

[CTL oIV o | | | Il Il | | Il Il Il

QM oo, 182.02 | 187.07 | 195.64 | 198.94 | 251.08 | 304.73 | 320.95 | 382.42 | 763.28 |1,386.41

Note. As in Figure 1 and Figure 2.
Source: authors’ work based on EU-SILC data.

The final collective model ranking, taking into account the results presented in
Tables 1-7, is provided in Table 8. The final collective ranking of models is based on
information criteria (4), GoF coefficients (6)-(8) and analysed characteristics
including (9) and the measure proposed by the authors (10). It is worth noting that
among the top three distributions are two ND-derived distributions, i.e. SU and
FSGN2; the SU is slightly better than the Dagum distribution in terms of the
analysed measures. ND-derived distributions (Group II), especially SU, can be
a good alternative to well-known distributions, which are typically used to model
income (Group I).
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Table 8. Collective model ranking list for information criteria (IC), GoF coefficients (GOFC)
and characteristics (CH) — Group | and Group Il distributions

Specification Group IC GOFC CH Sum R

13
15
16
22
22
26
29

—_

W OONIMOWOWULNW=
OOV N—_UNDdW
OO NVUOWhh=N
O VOWNNOULTPEANN=

—_
—_
—_

Note. As in Figure 1 and Figure 2.
Source: authors’ work based on EU-SILC data.

7. Conclusion

As far as the authors have been able to establish, this article is the first attempt to
apply ND-derived distributions with real domain to the problem of model income.

The results obtained in this study confirm what has often been documented in the
literature, namely that the Dagum model is particularly useful for income modelling
(see e.g. Jedrzejczak, 1993, 2006; Trzcinska, 2020). However, as the authors have
demonstrated with real income data and by applying different numerical measures,
the family of income models with ND-derived distributions (Group II) can compete
with distributions typically used for this purpose (Group I). As evidenced by the
collective model ranking in Table 8, the SU Johnson distribution, representing the
group of ND-derived distributions, can serve as an interesting alternative for income
modelling. It is also worth emphasizing that the SU distribution can be an
interesting model for variables with positive and negative values (e.g. corporate
profits), which cannot be modelled with the common distributions (e.g. Dagum).

It is also worth noting that a longer series of income data from EU-SILC could
help capture the dependencies between errors resulting from the use of certain
families of distributions to approximate the characteristics of the empirical
distribution depending on the phases of the business cycle. This could provide
a more systematic assessment of a given family of distributions. Moreover the
ND-derived distributions, especially SU and FSGN2, could be used to model income
of more homogeneous groups, with a negligible distribution asymmetry, e.g. people
with disabilities. These issues will be the subject of a study the authors plan to
undertake in the nearest future.
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Appendix

Let B(x,y) =T'(x)I'(y)/T'(x +y) be the beta function defined by the gamma
function and
v(x; B k) = {O.SW/ﬂk(l — k) x> x € [Bk,B/k]
0 otherwise.

The PDF or CDF for Group I distributions are as follows:
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a
fGG(xl o,Q, ﬁ) - Uf(ﬁ)
a x af—-1 x
fGBZ(x' 0»’:0:.3:]/) _m(;) [1+(;

Special cases of PIV, GG and GB2 are presented in Tables A1-A3, respectively.

Table A1. Special cases of PIV

O en[-()] w2050,
ay—(B+y)
T

(x=20; a,8,y>0).

Name

Pareto type: | ....

Source: authors’ work based on Jedrzejczak and Pekasiewicz (2020).

Table A2. Special cases of GG

Name

Exponential ..........coeeenmeeeernecrrnnnees
Gamma
Weibull
Chi-SQUAIE ...cooereeeeeerseesisseessseeenns
Chi
Rayleigh
Maxwell-Boltzmann ..ot

2

V2
ov2
ov2

Source: authors’ work based on Stacy and Mihram (1965).

Table A3. Special cases of GB2

—_
=

0.5n, n€N
0.5n, n€N

NN NN
_

1.5

Name

Singh-Maddala (Burr XIl)
Dagum (Burr ll)

Beta type Il
Standard Burr XII

Standard Burr Il

Standard Beta type Il
Fisk (log-logistic)

Lomax (Pareto type Il)
Inverse Lomax

Paralogistic

Inverse paralogistic

Fisher

Source: authors’ work based on Mead et al. (2018).
Let a4, a,, by, b, be multipurpose parameters, ¢ the semi-fraction parameter then

viu

1

1
1
h
a
2

u/

v/2 1

21



22 Wiadomosci Statystyczne. The Polish Statistician 2023 | 6

-0.5h?(1+x2)

T(ha) = f” dx (h,a € R).

1+x2

The PDF or CDF for the distributions derived from ND are as follows:

fon @i o,0) =29 ()@ (a7F) (@€ R, SNG1,0,0) = N 0);

. _2 (x-u alx—p)
fSGN(x.#.U.a.ﬁ)—J(P( P )¢(m) (320; (XER)>

SGN(u,0,a,0) =SN(u,0,a), SGN(u,0,0,0) = N(u,0);

fESGNl(x.u'O-a.By)—_(p [\/ ;;"“ xu) (By=0, a €R),
1+

ESGN1(y,0,a,,0) = SGN(u,0,a,B), ESGN1(u,0,0,B,y) = N(u,0),
ESGN1(u,0,a,0,0) = SN(u, 0, a);

_ax=p)

x—u 2+ B(x— )2 JByt(x—p)
fESGNZ(x .U:Uaﬁy)—_(.o( )f “ (t) (W>dt’
a,y€R, =0, ESGN2(u,0,0,5,0) = N(u,o0),
ESGN2(u,0,a,0,y) = SN(u,0,a), ESGN2(u,0,a,B,0) = SGN(u,0,a, B);

_ a(x—p)
fesena (60,0, B,y) = U(y+2)‘l’( ){1+V [m]}’

B=0y=-1 a€R, ESGN3(uo0,a,B,0) =ESGN3(u,0,0,8,v) = N(u,o0);

x—p
2 - a—-
fsson(; 10,0, B,7) = ;‘P(%)‘D — (B=0, y#0, a €R),
42
B=0=y=1 a=0=p=0 y=1 SSGN(10,0,0,1) = N(y,0),
SSGN(u,0,,0,1) = SN(u,0,a), SSGN(u,0,a,B8,1) =SGN(u,0,a,B),
SSGN(u,0,a,B,2) = ESGN1(u, 0,a,0,y);

forn (i, 0,0,8) = oo (5 4 8) @ (a2E) (@ p e R),

SFN(u,0,0,0) = N(u,0), SFN(u,0,a,0) =SN(u,o,a);

fesn(op0,a,B) = %QD (x—_u)(p [OCX?T“+ B (?)3] (a,B €R),

g

FSN(u,0,0,0) = N(u,0), FSN(u,0,a,0) =SN(u,0,a);

a(x- u)+ 7(x—)3

—_ XTH
fFSGNl(xﬂlaa.By)_ <P( )(D[ m ] (CL)/ER, BZO),
FSGN]-(H:O-: 010: 0) - FSGN]-(,uIO-I Olﬂl 0) = N(#I 0))
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FSGN1(u,0,a,0,0) = SN(u,0,a), FSGN1(u,o0,a,B,0) = SGN(u,0,a,B),
FSGN1(y,0,a,0,y) = FSN(u, 0, a, B);

. _ 1 |x—pul a(x—u)
fFSGNZ(xl uo,a, ﬁ! V) - ol1-o()] (p( + y) \/m:l (ary € Rl B = 0)>
FSGN2(u,0,a,0,0) = SN(u,0,a), FSGN2(u,0,a,8,0) = SGN(u,0,a,B),

FSGN2(u,0,a,0,y) = SFN(u,0,a, B);

i) =20 () o (O] = [p(<A] @wr>0
|KN(p,0,1,1) = N(u,0), KN(u,0,2,1) = SN(u,0,1);

o()[e(«21)]” )
12 0(58) o) an (@€R f=12..)

BSN(u,0,a,0) = N(u,0), BSN(u,0,a,1) = SN(u, 0, a);

fBSN(x; ,Ll, g, avﬁ) =

xzn )] aM 61 @ x=p\1Y
w(P(:—B[ ( xl?]ﬁ[ ( :3]1’ (aER’ B’}/:l'zl"'))
Loo(FH) (@3] [1-a(3H)] ax
GBSN(u,0,a,B,0) = BSN(u,0,0,a,8), GBSN(u,0,2,0,0) = N(u, o),
GBSN(u,0,a,1,0) = SN(u, 0, a);
o(=2 0,1)0(afL+p]0,1)
0[1(0{>0)—2T( aB l)] (a,,g S R))

TPSN(8,5,0,0) = N(6,0);

Fsy(x;a,B,u,0) =@ [a +[)’asmh( ) 0, 1]
SU(0,3.223,0,2.939), according to (1), is similar to the N(0,0.916) in 98.66%;

fGBSN(x; wo,a, B' V) =

fTPSN(x; uwo,a, ﬂ) =

Foc(x; a,4,0) = [a + ZSlnh( ) 0, 1] (a €R),SC(0,u,0),
according to (1), is similar to the N(y, 0.50) in 96.66%;
Fgn(x; a4, by, a3, by, ) =

—Cb[c—exp( )+exp( 2)] (ay,a; €ER; by, by,c>0),

EN(a4,by,a4,bq,0), according to (1), is similar to the N(ay, 0.5b;) in 96.66%,
EN(ay, by, a4, by, ¢) = SC(ay, by, ©).






