Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


2004 | 11 | 151-160

Article title

The size of the basic unit in geographical analysis

Content

Title variants

Languages of publication

Abstracts

EN
In geographical analysis such as mathematical classification and modeling, the study area is divided into a network of basic (quasi-homogenous) units. A technique often used in the delimitation of the basic unit to be analyzed is the division of the study area into a network of uniform geometrical figures (block-centered grid). This article presents two objective methods for dividing the surface area of the study region into a network of basic units. The geometric method makes it possible to determine the optimal size of the basic unit, relative to the surface area being analyzed. This method may be used in analysis conducted on a regional scale, in which case the analysis and the results are characterized by a greater degree of generalization. Geostatistical methods (semivariance analysis and nearest-neighbor analysis) make it possible to determine the size of the cell in the grid of quasi-homogenous units, based on the spatial variation of elements in the natural environment and on the placement of data points. These methods can be recommended for the analysis of small areas (e.g. small drainage areas), when highly detailed data and results are required.

Year

Volume

11

Pages

151-160

Physical description

Dates

published
2004

Contributors

References

  • C a r r J.R., 1999, Classification of digital image texture using variograms, [in:] Atkinson P.M., Tate N. (ed.), Advances in remote sensing and GIS analysis. Chichester-New York, John Wiley and Sons Ltd.
  • G o o v a e r t s P., 1998, Geostatistical tools for characterising the spatial variability of microbiological and physico-chemical soil properties. Biol. Fertil. Soils, 27.
  • G o t t s c h a l k L., M o t o v i l o v Y., 2004, Process Of Spatial Parameterisation and Scale - Application Of Distributed Model to the Glomma River Basin, Norway. Geophysical Research Abstracts, 6.
  • Ilwis 2.1: Reference Guide, 1997, Intern. Inst. for Aerosp. Survey and Earth Sci., Enschede.
  • L i D., L i L., L a r r y W., 1994, A moving window semivariance estimator. Water Resour. Res., 30, 5.
  • L o g s t o n S.D., J a y n e s D.B., 1996, Spatial variability of hydraulic properties in a multilayered soil profile. Soil Sci. Soc. Am. J., 60.
  • M a g n u s z e w s k i A., 1999, GIS w geografii fizycznej [GIS in Physical Geography; in Polish]. Wyd. Nauk. PWN, Warsaw.
  • M a t h e r o n G., 1963, Principles of geostatistics. Econ. Geol., 58.
  • M c B r a t n e y A.B., W e b s t e r W., 1986, Choosing function for semi-variograms of soil properties and fitting them to sampling estimates. J. Soil Sci., 37, 4.
  • M e j i e r i n k A.M.J., d e B r o u w e r H.A.M., M a n n a e r t s C.M., Va l e n z u e l a C.R., 1994, Introduction to the use of Geographic Information Systems for practical hydrology. ITC Publ. No. 23, Enschede.
  • M u l l e r F., C o c h o n n e a u G., G u y o t J.-L., S e y l e r F., 2000, Watershed extraction using together DEM and drainage network: Application to the whole Amazonian basin. Proceedings of the 4th International Conference on Integrating GIS and Environmental Modeling (GIS/EM4): Problems, Prospects and Research Needs. Banff, Canada, September 2 - 8, 2000.
  • P o c i a s k - K a r t e c z k a J., 1995, Założenia metodyczne regionalizacji hydrologicznej na przykładzie dorzecza górnej Wisły [Methodical Foundations of Hydrological Regionalization, the Example of the Upper Vistula Drainage Basin; in Polish]. Rozpr. Habil. UJ [PostDoctoral Habilitation Dissertation, Jagiellonian University], 291.
  • R i c h l i n g A., 1992, Kompleksowa geografia fizyczna [Complex Physical Geography; in Polish]. Warsaw, Wyd. Nauk. PWN.
  • R o s s i J.P., L a v e l l e P., A l b r e c h t A., 1992, Geostatistical tools for modelling and interpreting ecological spatial dependence. Ecol. Monogr., 62, 2.
  • S i m m e r s I., 1984, A systematic problem-oriented approach to hydrological data regionalization. J. Hydrol., 73.
  • S o c z y ń s k a U., 1997, Hydrologia dynamiczna [Dynamic Hydrology; in Polish]. Warsaw, Wyd. Nauk. PWN.
  • S u c h o ż e b r s k i J., 2001, Warunki migracji zanieczyszczeń do wód podziemnych w nizinnej zlewni rolniczej (na przykładzie zlewni górnej Wilgi) [Conditions for the Migration of Contaminants into the Groundwater in Lowland, Agricultural Drainage Areas (The Example of the Upper Wilga Drainage Area); in Polish], [in:] Jaworski J., Szkutnicki J., Dynamika obiegu wody w zlewniach rzecznych [Water Circulation Dynamics in River Drainage Areas; in Polish]. IMGW, [The Polish Institute of Meteorology and Water Management] Warsaw.
  • Spatial analysis in ecology, 1999. Duke University, Landsape Ecol. Lab., Durham. (URL: http:/ /www.env.duke.edu/lel/env352.html).
  • Va n d e n P o l - v a n D a s s e l a a r A., C o r r é W.J., P r i e m é K., K l e m e d t s s o n Ĺ.K., W e s l i e n P., S t e i n A., K l e m e d t s s o n L., O e n e m a O., 1998, Spatial variability of methane, nitrous oxide, and carbon dioxide emission from drained grasslands. Soil Sci. Soc. Am. J., 62.
  • W e i s m a n M.L., S k a m a r o c k W.C., K l e m p J.B., 1997, The resolution dependence of explicitly modelled convective systems. Mon. Wea. Rev., 125.
  • Z a v a t t a r o L., J a r v i s N., P e r s s o n L., 1999, Use of similar media scaling to characterise spatial dependence of near saturated hydraulic conductivity. Soil Sci. Soc. Am. J., 63.

Document Type

Publication order reference

Identifiers

Biblioteka Nauki
2029388

YADDA identifier

bwmeta1.element.ojs-issn-0867-6046-year-2004-volume-11-article-9299c135-23e6-3f0c-91ff-090a68d32280
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.