Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


2020 | 24 | 3 | 147-160

Article title

Thermal stress in the northern Carpathians and air circulation

Content

Title variants

Languages of publication

Abstracts

EN
In mountain areas, air circulation plays a major role in the forming of the climate. This paper examines how it influences thermal stress in the northern Carpathians. The Niedźwiedź’s classification of air circulation was applied. Thermal stress was assessed by Universal Thermal Climate Index (UTCI). Daily meteorological and circulation data for the period 1986–2015 were used for 20 stations in Poland, Slovakia and Ukraine. Air circulation was found to have a significant impact on thermal stress. The highest UTCI values are observed at Ca+Ka (centre of the high and anticyclonic wedge or ridge of high pressure) and the lowest values at N+NE and W+NW circulation; at the Southward stations, UTCI is higher than in the Northward ones; thermoneutral days are more frequent on the southward than on the northward slopes; during N+NE, E+SE and W+NW circulation and for heat stress days, the greatest thermal privilege of the southward slopes is observed at E+SE, S+SW, Ca+Ka and Cc+Bc (centre of low and through of low pressure) types of circulation.

Year

Volume

24

Issue

3

Pages

147-160

Physical description

Dates

published
2020

Contributors

  • Polish Academy of Sciences, Institute of Geography and Spatial Organization, Climate Impacts Laboratory, Poland
  • Earth Science Institute of Slovak Academy of Science, Slovakia
author
  • Faculty of Geography and Regional Studies,University of Warsaw, Poland
  • Faculty of Geography and Regional Studies,University of Warsaw, Poland
  • Ukrainian Hydrometeorological Institute, Ukraine
  • National University of Life and Environmental Sciences of Ukraine, Ukraine
  • Polish Academy of Sciences, Institute of Geography and Spatial Organization, Climate Impacts Laboratory, Poland
  • Slovak Hydrometeorological Institute, Slovakia

References

  • Baranowski, J 1999, ‘Influence of relief and land cover on wind conditions in High Tatras, Hala Gąsienicowa example’ in Badania geoekologiczne w otoczeniu Kasprowego Wierchu, eds. A Kotarba & A Kozłowska, Prace Geograficzne IGiPZ PAN, vol. 174. pp. 105–120.
  • Baranowski, J 2003, ‘Absorbed solar radiation at Hala Gąsienicowa, Tatras’ in Postępy w badaniach klimatycznych i bioklimatycznych, eds K Błażejczyk, B Krawczyk & M Kuchcik, Prace Geograficzne IGiPZ PAN, vol. 188, pp. 131–144.
  • Bissolli, P & Dittmann, E 2001, ‘The objective weather type classification of the German Weather Service and its possibilities of application to environmental and meteorological investigations’, Met Zeit, vol. 10, no. 4, pp. 253–260.
  • Błażejczyk, K & Skrynyk, O 2019, ‘Principal features of Chornohora climate (Ukrainian Carpathians)’, Bulletin of Geography, Physical Geography Series, vol. 17, pp. 61–76.
  • Błażejczyk, K 2019, ‘Seasonal and multiannual variability of selected elements of climate in the Tatra and Karkonosze Mts. over the 1951–2015 period’, Przegląd Geograficzny, vol. 91, no. 1, pp. 59–80.
  • Błażejczyk, K, Baranowski, J, Błażejczyk, A & Szmyd, J 2013, ‘Climate and bioclimate of Hala Gąsienicowa’, in Dolina Suchej Wody w Tatrach. Środowisko i jego współczesne przemiany, eds Z Rączkowska & A Kotarba, Prace Geograficzne IGiPZ PAN, vol. 239. pp. 67–95.
  • Błażejczyk, K, Epstein, Y, Jendritzky, G, Staiger, H & Tinz, B 2012, ‘Comparison of UTCI to selected thermal indices’, International Journal of Biometeorolgy, vol. 56, 3, pp. 515– 535.
  • Błażejczyk, K, Nejedlik, P Skrynyk, O, Halaś, A, Skrynyk, O, Błażejczyk, A & Mikulova, K 2020, ‘Influence of geographical factors on thermal stress in northern Carpathians’, International Journal of Biometeorolgy (In press).
  • Błażejczyk, K, Twardosz, R & Kunert, A 2003, Variability of bio-thermal conditions in Cracow in 20th century and atmospheric circulation’ in Postępy w badaniach klimatycznych i bioklimatycznych, eds K Błażejczyk, B Krawczyk & M Kuchcik, Prace Geograficzne IGiPZ PAN, vol. 188, pp. 233–246.
  • Bokwa, A, Murzyn, P, Krzaklewski, P, Kukułka, W & Fijał, S 2019, ‘Climate change impact on bioclimatic stimuli intensity in the Polish Western Carpathians in summer’ in Zmienność klimatu Polski i Europy oraz jej cyrkulacyjne uwarunkowania, eds L Kolendowicz, E Bednorz & AM Tomczyk, Bogucki Wydawnictwo Naukowe, Poznań, pp. 71–86.
  • Bower, D, McGregor, GR, Hannah, DM & Sheridan, SC 2007, ‘Development of a spatial synoptic classification scheme for western Europe’, International Journal of Climatology, vol. 27, pp. 2017–2040.
  • Bröde, P, Fiala, D, Błażejczyk, K, Holmér, I, Jendritzky, G, Kampmann, B, Tinz, B & Havenith, G 2012, ‘Deriving the operational procedure for the Universal Thermal Climate Index (UTCI)’, International Journal of Biometeorology, vol. 56, no. 3, pp.481–494.
  • Cheval, S, Birsan, MV & Dumitrescu, A 2014. ‘Climate variability in the Carpathian Mountains Region over 1961–2010’, Global Planet Change, vol. 118. pp. 85–96.
  • Dąbrowska, K & Guzik M (eds.) 2015, Atlas of the Tatry Mountains. Abiotic nature, Tatra National Park, Zakopane.
  • Endler, Ch, Oehler, K & Matzarakis, A 2010, ‘Vertical gradient of climate change and climate tourism conditions in the Black Fores’t, International Journal of Biometeorology, vol. 54, pp. 45–61.
  • Epstein, Y & Moran, DS 2006, ‘Thermal comfort and heat stress indices’, Industrial Health, vol. 44, pp. 388–398.
  • de Freitas, CR & Grigorieva, EA 2017, ‘A comparison and appraisal of a comprehensive range of human thermal climate indices’, International Journal of Biometeorology, vol. 61 pp. 487–512.
  • Gajić-Čapka, M & Zaninović, K 1997, ‘Changes in temperature extremes and their possible causes at the SE boundary of the Alps’, Theoretical Applied Climatology, vol. 57, pp. 89– 94.
  • Hess, M 1965, ‘Vertical climate zones in the Polish Western Carpathians’, Zeszyty Naukowe UJ, Prace Geograficzne, vol. 11, pp. 1–267.
  • Huth, R, Beck, Ch, Philipp, A, Demuzere, M, Ustrnul, Z, Cahynov, M, Kysely, J & Tveito, OE 2008, ‘Classifications of atmospheric circulation patterns. Trends and directions in climate research’, Annals of the New York Academy of Sciences, vol. 1146, pp. 105–152.
  • Instytut Geografii i Przestrzennego Zagospodarowania PAN 2020, Bioklima. Available from: <https://www.igipz.pan.pl/ bioklima.html>. [15 March 2020].
  • Instytut Meteorologii i Gospodarki Wodnej Państwowy Instytut Badawczy 2020, Dane pomiarowo-obserwacyjne [Measurement and observation data]. Available from: <https:// dane.imgw.pl/data/dane_pomiarowo_obserwacyjne/>. [15 March 2020].
  • Jendritzky, G & de Dear, R 2008, ‘Adaptation and the thermal environment’ in Biometeorology for Adaptation to Climate Variability and Change: Research Frontiers and Perspectives, eds KL Ebi, I Burton & G McGregor, Springer, Heidelberg, pp. 9–32.
  • Kalkstein, LS & Nicholls, MC 1996, ‘A new spatial synoptic classification: application to air-mass analysis’, International Journal of Climatology, vol. 16, pp. 983–1004.
  • Kholiavchuk, D & Cebulska, M 2019, ‘The highest monthly precipitation in the area of the Ukrainian and the Polish Carpathian Mountains in the period from1984 to 2013’, Theoretical and Applied Climatology, vol. 138, pp. 1615– 1628.
  • Kolendowicz, L, Półrolniczak, M, Szyga-Pluta, K & Bednorz, E 2018, ‘Human biometeorological conditions in the southern Baltic coast based on the universal thermal climate index (UTCI)’, Theoretical and Applied Climatology, vol. 134, pp. 363–379.
  • Konček, M (ed.) 1974, ‘Climate of Tatra Mts.’, Folia Geographica, vol. 4.
  • Lityński, J 1970, ‘Classification numerique des types de circulation et des types de temps en Pologne’, Cahiers de Geographie de Quebec, vol. 14. pp. 329–338.
  • Łupikasza, E & Niedźwiedź, T 2016, ‘Synoptic climatology of fog in selected locations of southern Poland (1966–2015)’, Bulletin of Geography, Physical Geography Series, vol. 11, pp. 5–15.
  • Mateeva, Z & Filipov, A 2003, ‘Bioclimatic distance index in the Rila-and-Rhodopy area of Bulgaria’ in Postępy w badaniach klimatycznych i bioklimatycznych, eds K Błażejczyk, B Krawczyk & M Kuchcik, Prace Geograficzne IGiPZ PAN, vol. 188 pp. 295–302.
  • Messeri, A, Morabito, M, Messeri, G, Brandani, G, Petralli, M, Natali, F, Grifoni, D, Crisci, A, Gensini, G & Orlandini, S 2015, ‘Weather-related flood and landslide damage: a risk index for Italian regions’, PLoS ONE, vol. 10(12): e0144468.
  • Migała, K 2005, ‘Climatic belts in European mountains and problem of global change’, Acta Universitatis Wratislaviensis, vol. 2718, Studia Geograficzne, vol. 78. Wydawnictwa Uniwersytetu Wrocławskiego.
  • Milewski, P 2013, ‘Application of the UTCI to the local bioclimate of Poland’s Ziemia Kłodzka region’, Geographia Polonica, vol. 86, no. 1, pp. 47–54.
  • Miszuk, B 2008, ‘Characteristic of bioclimatic conditions in Karkonosze from the point of view of various forms of tourism and recreation’, Prace Geograficzne UJ, vol. 120, pp. 79–91.
  • Morabito, M, Crisci, A, Messeri, A, Capecchi, V, Modesti, AP, Gensini, GF & Orlandini, S 2014, ‘Environmental temperature and thermal indices. What is the most effective predictor of heat-related mortality in different geographical contexts?’ Scientific World Journal, vol. 2014.
  • Niedźwiedź, T 1983, ‘The method of a synoptic-complex characterization of the climate presented upon the example of the upper Vistula river basin’, Zeszyty Naukowe UJ. Prace Geograficzne, vol. 57, pp. 17–39.
  • Niedźwiedź, T 2003, ‘Extreme precipitation events on ten northern side of the Tatra Mountains’, Geographia Polonica, vol. 76, 2, pp. 13–21.
  • Niedźwiedź, T 2019, Calendar of air circulation types for southern Poland. Computer file, Uniwersytet Śląski, Katedra Klimatologii, Sosnowiec. Available from: <http://www. kk.wnoz.us.edu.pl/nauka/kalendarz-typow-cyrkulacji/>. [20 March 2020].
  • Niedźwiedź, T 2012, ‘Climate’ in Recent Landform Evolution. The Carpatho-Balcan-Dinaric Region, eds D Lóczy, M Stankoviansky & A Kotarba, A, Springer, pp. 19–29.
  • Nowosad, M, Rodzik, B, Wereski, S & Dobek, M 2013, ‘The UTCI index in Lesko and Lublin and its circulation determinants’, Geographia Polonica, vol. 86, pp. 29–36.
  • Ono, HSP & Kawamura, T 1991, ‘Sensible climates in monsoon Asia’, International Journal of Biometeorology, vol. 35, pp. 39–47.
  • Osadchyi, VI, Skrynyk, OA & Skrynyk, OY 2015, ‘Estimation of a modern stage of wind resources in the Ukrainian Carpathians and their changes regarding the base climatological period’,
  • Dopovidi Nacionalnoi Academi Nauk Ukrainy, vol. 8, pp. 95–99.
  • Owczarek, M, Marosz, M & Kitowski, M 2019, ‘The influence of atmospheric circulation on the occurence of heat stress on human beings in Polish coast of Baltic Sea’ in Zmienność klimatu Polski i Europy oraz jej cyrkulacyjne uwarunkowania, eds L Kolendowicz, E Bednorz & AM Tomczyk, Bogucki Wydawnictwo Naukowe, Poznań, pp. 135–156.
  • Pecelj, M, Đorđević, Đ, Pecelj, MR, Pecelj-Purković, J, Filipović, D & Šećerov, V 2017, ‘Biothermal conditions on Mt. Zlatibor based on thermophysiological indices’, Archives Biological Sciences, vol. 69, no. 3, pp. 455–461.
  • Rączkowska, Z, Łajczak, A, Margielewski, W & Święchowicz, J 2012, ‘Recent landform evolution in the Polish Carpathians’ in Recent Landform Evolution: The Carpatho-Balkan-Dinaric Region, eds D Lóczy, M Stankoviansky & A Kotarba, A, Springer Dordrecht Heidelberg London New York, pp. 47–103.
  • Rubel, F, Brugger, K, Haslinger, K & Auer, I 2017, ‘The climate of the European Alps: Shift of very high resolution Köppen- Geiger climate zones 1800–2100’, Met Zeit, vol. 26, no. 2, pp. 115–125.
  • Sheridan, S 2002, ‘The redevelopment of a weather-type classification scheme for North America’, International Journal of Climatology, vol. 22, pp. 51–68.
  • Sindosi, OA, Bartzokas, A, Kotroni, V & Lagouvardos, K 2015, ‘Influence of orography on precipitation amount and distribution in NW Greece; A case study’, Atmospheric Research, vol. 152, pp. 105–122.
  • Smith, RB 2015, ‘Mountain meteorology. Overview’ in Encyclopedia of Atmospheric Sciences, eds GR North, J Pyle & F Zhang, Elsevier, pp. 57–61.
  • Spinoni, J, Szalai, S, Szentimrey, T, Lakatos, M, Bihari, Z, Nagy, A, Németh, Á, Kovács, T, Mihic, D, Dacic, M, Petrovic, P, Kržič, A, Hiebl, J, Auer, I, Milkovic, J, Štepánek, P, Zahradnícek, P, Kilar, P, Limanowka, D, Pyrc, R, Cheval, S, Birsan, MV, Dumitrescu, A, Deak, G, Matei, M, Antolovic, I, Nejedlík, P, Štastný, P, Kajaba, P, Bochnícek, O, Galo, D, Mikulová, K, Nabyvanets, Y, Skrynyk, O, Krakovska, S, Gnatiuk, N, Tolasz, R, Antofie, T & Vogt, J 2014, ‘Climate of the Carpathian Region in the period 1961–2010: Climatologies and trends of 10 variables’, International Journal of Climatology, vol, 35, no. 7, pp. 1322–1341.
  • Trepińska, J 2002, Mountain climates, Wydawnictwo IGiGP UJ, Kraków.
  • Twardosz, R 1999, ‘Precipitation variability and tendency in Kraków for the period 1850–1997 related to circulation patterns’, Acta Geophica Polonica, vol. 47, pp. 111–133.
  • Twardosz, R 2007, ‘Diurnal variation of precipitation frequency in the warm half of the year according to circulation types in Kraków, South Poland’, Theoretical and Applied Climatology, vol. 89, pp. 229–238.
  • Urban, A & Kyselý, J 2014, ‘Comparison of UTCI with other thermal indices in the assessment of heat and cold effects on Cardiovascular Mortality in the Czech Republic’, International Journal of Environmental Research and Public Health, vol. 11, pp. 952–967.
  • Vallorani, R, Bartolini, G, Betti, G, Crisci, A, Gozzini, B, Grifoni, D, Iannuccilli, M, Messeri, A, Messeri, G, Morabito, M & Maracchi, G 2017, ‘Circulation type classifications for temperature and precipitation stratification in Italy’, International Journal of Climatology, vol. 38, no. 2, pp. 915– 931.
  • Zaninović, K, Matzarakis, A & Cegnar, T 2006, ‘Thermal comfort trends and variability in the Croatian and Slovenian mountains’, Met Zeit, vol. 15, no. 2, pp. 243–251.
  • Żmudzka, E & Kulesza, K 2019, ‘Total solar radiation in Zakopane and at mount Kasprowy Wierch in 1986–2015’, Geographia Polonica, vol. 92, no. 2, pp. 211–231.
  • Żmudzka, E 2009, ‘Changes of thermal conditions in the Polish Tatra Mountains’, Landform Analysis, vol. 10, pp. 140–146.
  • Żmudzka, E 2011, ‘Contemporary climate changes in the high mountain part of the Tatras’, Miscellanea Geographica, vol. 15, pp. 93–102.

Document Type

Publication order reference

Identifiers

Biblioteka Nauki
946937

YADDA identifier

bwmeta1.element.ojs-issn-0867-6046-year-2020-volume-24-issue-3-article-bwmeta1_element_desklight-cc7692ac-a289-4258-ae2d-97a92c5ccab0
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.