Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


2023 | 112 | 2 | 28-41

Article title

Możliwości i wyzwania zastosowania cyfryzacji w rozwoju zrównoważonego, inteligentnego rolnictwa na przykładzie produkcji roślinnej

Content

Title variants

EN
Opportunities and challenges of the digitalization in sustainable smart agriculture on the example of plant production

Languages of publication

Abstracts

EN
Smart farming, or smart agriculture, is a way of agricultural development that emphasizes information and communication technologies in networked machinery, equipment and sensors, allowing not only high-tech farm supervision, but also remote control of processes. The goal is to optimize and increase production quality and reduce human labor. Innovative technologies, i.e. the Internet of Things (IoT), cloud computing and artificial intelligence, are expected to inspire growth, as well as confront current difficulties, i.e. food security and climate change. The use of new technologies also raises some concerns and poses new challenges for farms. This article describes the tools and equipment used in intelligent agriculture, the possibilities for their application, as well as the anticipated challenges that arise when combining innovative technologies with conventional farming operations.
PL
Inteligentne rolnictwo (ang. smart farming, smart agriculture) to sposób rozwoju rolnictwa, który kładzie nacisk na technologie informacyjne i komunikacyjne w maszynach, urządzeniach i czujnikach, co pozwala nie tylko na zaawansowany technologicznie nadzór nad gospodarstwem, ale daje też możliwość zdalnego sterowania procesami i pracami. Celem stosowania tzw. cyfryzacji jest optymalizacja i zwiększenie jakości produkcji, redukcja pracy ludzkiej, redukcja przemysłowych środków produkcji oraz zmniejszenie presji środowiskowej. Przewiduje się, że innowacyjne technologie tj. Internet Rzeczy (IoT), technologie satelitarne, przetwarzanie w chmurze czy sztuczna inteligencja przyczynią się do rozwoju rolnictwa, a także będą sprzyjać bezpieczeństwu żywności i ograniczą zmiany klimatyczne. Zastosowanie nowych technologii budzi również pewne obawy oraz stawia nowe wyzwania rolnikom. W niniejszym artykule opisano narzędzia i urządzenia wykorzystywane w inteligentnym rolnictwie, możliwości ich zastosowania, a także przewidywane wyzwania, które pojawiają się przy łączeniu innowacyjnych technologii z konwencjonalną działalnością rolniczą.

Year

Volume

112

Issue

2

Pages

28-41

Physical description

Dates

published
2023

Contributors

  • Uniwersytet Przyrodniczy w Poznaniu
  • Uniwersytet Przyrodniczy w Poznaniu

References

  • Adamides, G., Kalatzis, N., Stylianou, A., Marianos, N., Chatzipapadopoulos, F., Giannakopoulou, M., Papadavid, G., Vassiliou, V., Neocleous, D. (2020). Smart Farming Techniques for Climate Change Adaptation in Cyprus. Atmosphere, 11(6), Article 6. https://doi.org/10.3390/atmos11060557
  • Alvarez, J., Nuthall, P. (2006). Adoption of computer based information systems: eTh case of dairy farmers in Canterbury, NZ, and Florida, Uruguay. Computers and Electronics in Agriculture, 50(1), 48-60. https://doi.org/10.1016/j.compag.2005.08.013
  • Aqeel-ur-Rehman, Abbasi, A. Z., Islam, N., Shaikh, Z. A. (2014). A review of wireless sensors and networks' applications in agriculture. Computer Standards & Interfaces, 36(2), 263-270. https://doi.org/10.1016/j.csi.2011.03.004
  • Ben Ayed, R., Hanana, M. (2021). Artificial Intelligence to Improve the Food and Agriculture Sector. Journal of Food Quality, 2021, e5584754. https://doi. org/10.1155/2021/5584754
  • Bharti, A., Paritosh, K., Mandla, V. R., Chawade, A., Vivekanand, V. (2021). GIS Application for the Estimation of Bioenergy Potential from Agriculture Residues: An Overview. Energies, 14(4), Article 4. https://doi.org/10.3390/en14040898
  • Bo, Y., Wang, H. (2011). eTh Application of Cloud Computing and the Internet of hTings in Agriculture and Forestry. 2011 International Joint Conference on Service Sciences, 168-172. https://doi.org/10.1109/IJCSS.2011.40
  • Dhanaraju, M., Chenniappan, P., Ramalingam, K., Pazhanivelan, S., Kaliaperumal, R. (2022). Smart Farming: Internet of Things (IoT)-Based Sustainable Agriculture. Agriculture, 12(10), Article 10. https://doi.org/10.3390/agriculture12101745
  • Eden, M., Gerke, H. H., Houot, S. (2017). Organic waste recycling in agriculture and related eefcts on soil water retention and plant available water: A review. Agronomy for Sustainable Development, 37(2), 11. https://doi.org/10.1007/s13593-017-0419-9
  • El Nahry, A. H., Mohamed, E. S. (2011). Potentiality of land and water resources in African Sahara: A case study of south Egypt. Environmental Earth Sciences, 63(6), 1263-1275. https://doi.org/10.1007/s12665-010-0799-5
  • Farooq, M. S., Riaz, S., Abid, A., Umer, T., Zikria, Y. B. (2020). Role of IoT Technology in Agriculture: A Systematic Literature Review. Electronics, 9(2), Article 2. https://doi. org/10.3390/electronics9020319
  • Gebbers, R., Adamchuk, V. I. (2010). Precision Agriculture and Food Security. Science, 327(5967), 828-831. https://doi.org/10.1126/science.1183899
  • Hakkim, V., Joseph, E., Gokul, A., Mufeedha, K. (2016). Precision Farming: eTh Future of Indian Agriculture. Journal of Applied Biology and Biotechnology, 068-072. https://doi.org/10.7324/JABB.2016.40609
  • Jawad, H. M., Nordin, R., Gharghan, S. K., Jawad, A. M., Ismail, M. (2017). Energy-Eficient Wireless Sensor Networks for Precision Agriculture: A Review. Sensors, 17(8), Article 8. https://doi.org/10.3390/s17081781
  • Jha, K., Doshi, A., Patel, P., Shah, M. (2019). A comprehensive review on automation in agriculture using artificial intelligence. Articfiial Intelligence in Agriculture, 2, 1-12. https://doi.org/10.1016/j.aiia.2019.05.004
  • Kamilaris, A., Kartakoullis, A., Prenafeta-Boldú, F. X. (2017). A review on the practice of big data analysis in agriculture. Computers and Electronics in Agriculture, 143, 23-37. https://doi.org/10.1016/j.compag.2017.09.037
  • Kashyap, B., Kumar, R. (2021). Sensing Methodologies in Agriculture for Soil Moisture and Nutrient Monitoring. IEEE Access, 9, 14095-14121. https://doi.org/10.1109/ ACCESS.2021.3052478
  • Khan, A. R., Dubey, M., Bisen, P., Saxena, K. (2016). Constraints Faced by Farmers of Narsing Kheda Village of Sihore District. Indian Research Journal of Extension Education. https://www.semanticscholar.org/paper/Constraints-Faced-by-Farmers-ofNarsing-Kheda-of-Khan-Dubey/8f3843426eb7f59bfe750260ae6915ed0f66ed93
  • Khodadadi, F., Dastjerdi, A. V., Buyya, R. (2016). Chapter 1 - Internet of Things: An overview. W R. Buyya & A. Vahid Dastjerdi (Red.), Internet of iThngs (s. 3-27). Mor - gan Kaufmann. https://doi.org/10.1016/B978-0-12-805395-9.00001-0
  • Kiniorska, I., Brambert, P., Kamińska, W. (2021). Inteligentne rozwiązania technologiczne w działalności rolniczej. Rozwój Regionalny i Polityka Regionalna, 55, 45-66. https://doi.org/10.14746/rrpr.2021.55.05
  • Klepacki, B. (2020). Precision Farming As An Element Of eTh 4.0 Industry Economy. Annals Of eTh Polish Association Of Agricultural And Agribusiness Economists, Xxii(3), 119-128. https://doi.org/10.5604/01.3001.0014.3572
  • Köksal, Ö., Tekinerdogan, B. (2019). Architecture design approach for IoT-based farm management information systems. Precision Agriculture, 20(5), 926-958. https:// doi.org/10.1007/s11119-018-09624-8
  • Lavanya, G., Rani, C., Ganeshkumar, P. (2020). An automated low cost IoT based Fertilizer Intimation System for smart agriculture. Sustainable Computing: Informatics and Systems, 28, 100300. https://doi.org/10.1016/j.suscom.2019.01.002
  • Lets Nurture. (2023). How much it will cost to develop an IoT based proof of concept for Smart Farming System. Lets Nurture - An IT Company Nurturing Ideas into Reality. https://www.letsnurture.com/how-much-it-will-cost-to-develop-an-iot-basedproof-of-concept-for-smart-farming-system.html
  • Martínez-Fernández, J., González-Zamora, A., Sánchez, N., Gumuzzio, A., Herrero-Jiménez, C. M. (2016). Satellite soil moisture for agricultural drought monitoring: Assessment of the SMOS derived Soil Water Deficit Index. Remote Sensing of Environment, 177, 277-286. https://doi.org/10.1016/j.rse.2016.02.064
  • Neethirajan, S. (2020). eTh role of sensors, big data and machine learning in modern animal farming. Sensing and Bio-Sensing Research, 29, 100367. https://doi.org/10.1016/j.sbsr.2020.100367
  • Newlands, N. K. (2018). Model-Based Forecasting of Agricultural Crop Disease Risk at the Regional Scale, Integrating Airborne Inoculum, Environmental, and Satellite-Based Monitoring Data. Frontiers in Environmental Science, 6. https://www.frontiersin.org/articles/10.3389/fenvs.2018.00063
  • Nie, J., Yang, B. (2021). A Detailed Study on GPS and GIS Enabled Agricultural Equipment Field Position Monitoring system for Smart Farming. Scalable Computing: Practice and Experience, 22(2), Article 2. https://doi.org/10.12694/scpe.v22i2.1882
  • Palaniswami, C., Gopalasundaram, P., Bhaskaran, A. (2011). Application of GPS and GIS in Sugarcane Agriculture. Sugar Tech, 13(4), 360-365. https://doi.org/10.1007/ s12355-011-0098-9
  • Pallavi, S., Mallapur, J. D., Bendigeri, K. Y. (2017). Remote sensing and controlling of greenhouse agriculture parameters based on IoT. 2017 International Conference on Big Data, IoT and Data Science (BID), 44-48. https://doi.org/10.1109/BID.2017.8336571
  • Petropoulos, G. P., Ireland, G., Barrett, B. (2015). Surface soil moisture retrievals from remote sensing: Current status, products & future trends. Physics and Chemistry of the Earth, Parts A/B/C, 83-84, 36-56. https://doi.org/10.1016/j.pce.2015.02.009
  • Quy, V. K., Hau, N. V., Anh, D. V., Quy, N. M., Ban, N. T., Lanza, S., Randazzo, G., Muzirafuti, A. (2022). IoT-Enabled Smart Agriculture: Architecture, Applications, and Challenges. Applied Sciences, 12(7), Article 7. https://doi.org/10.3390/app12073396
  • Saiz-Rubio, V., Rovira-Más, F. (2020). From Smart Farming towards Agriculture 5.0: A Review on Crop Data Management. Agronomy, 10(2), Article 2. https://doi. org/10.3390/agronomy10020207
  • Scherr, S. J., Shames, S., Friedman, R. (2012). From climate-smart agriculture to climate-smart landscapes. Agriculture & Food Security, 1(1), 12. https://doi. org/10.1186/2048-7010-1-12
  • Singh, R., Singh, G. S. (2017). Traditional agriculture: A climate-smart approach for sustainable food production. Energy, Ecology and Environment, 2(5), 296-316. https:// doi.org/10.1007/s40974-017-0074-7
  • Srisruthi, S., Swarna, N., Ros, G. M. S., Elizabeth, E. (2016). Sustainable agriculture using eco-friendly and energy eficient sensor technology. 2016 IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), 1442-1446. https://doi.org/10.1109/RTEICT.2016.7808070
  • Ślusarz, G. (Red.). (2015). Koncepcja inteligentnej specjalizacji w rolnictwie i obszarach wiejskich. Dylematy i wyzwania. https://doi.org/10.22004/ag.econ.233519
  • Tran, M. Q., Phan, T., Takahashi, A., aThnh, T., Duy, S., aThnh, M., Hong, C. (2017). A Cost-eefctive Smart Farming System with Knowledge Base (s. 316). https://doi. org/10.1145/3155133.3155151
  • Udomkun, P., Nagle, M., Argyropoulos, D., Mahayothee, B., Müller, J. (2016). Multi-sensor approach to improve optical monitoring of papaya shrinkage during drying. Journal of Food Engineering, 189, 82-89. https://doi.org/10.1016/j.jfoodeng.2016.05.014
  • Velten, S., Leventon, J., Jager, N., Newig, J. (2015). What Is Sustainable Agriculture? A Systematic Review. Sustainability, 7(6), Article 6. https://doi.org/10.3390/su7067833
  • Venkatesan, R., Kathrine, G. J. W., Ramalakshmi, K. (2018). Internet of Things Based Pest Management Using Natural Pesticides for Small Scale Organic Gardens. Journal of Computational and eThoretical Nanoscience , 15(9-10), 2742-2747. https://doi. org/10.1166/jctn.2018.7533
  • Villarrubia, G., Paz, J. F. D., Iglesia, D. H. D. L., Bajo, J. (2017). Combining Multi-Agent Systems and Wireless Sensor Networks for Monitoring Crop Irrigation. Sensors, 17(8), Article 8. https://doi.org/10.3390/s17081775
  • Wietzke, A., Westphal, C., Gras, P., Kraft, M., Pfohl, K., Karlovsky, P., Pawelzik, E.,  Tscharntke, T., Smit, I. (2018). Insect pollination as a key factor for strawberry physiology and marketable fruit quality. Agriculture, Ecosystems & Environment, 258, 197-204. https://doi.org/10.1016/j.agee.2018.01.036
  • Xue, J., Su, B. (2017). Significant Remote Sensing Vegetation Indices: A Review of Developments and Applications. Journal of Sensors, 2017, e1353691. https://doi. org/10.1155/2017/1353691
  • Yuan, G., Luo, Y., Sun, X., Tang, D. (2004). Evaluation of a crop water stress index for detecting water stress in winter wheat in the North China Plain. Agricultural Water Management, 64(1), 29-40. https://doi.org/10.1016/S0378-3774(03)00193-8

Document Type

Publication order reference

Identifiers

Biblioteka Nauki
2232940

YADDA identifier

bwmeta1.element.ojs-issn-1232-3578-year-2023-volume-112-issue-2-article-9b12336b-9f3e-3c7a-95fa-10a7c9b348ff
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.