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Special Relativity: from metric to 
philosophy

Abstract
The Theory of Relativity from Einstein starts from some everyday system of Cartesian space-
coordinates plus a linear time-parameter, read from a good old grand-father’s clock. The theory 
then contemplates a group of certain homogeneous, linear transformations with constant 
coefficients, transformations which involve all four coordinates and which there is reason to 
interpret as going over the another inertial systems, that moves with constant translational 
velocity with respect to the first.
In fact the very backbone of the theory is that all laws of nature shall be the same for every 
frame reached in this way, including the original one from which we started, there should 
be no difference or distinction in principle between all these inertial frames, any one of 
which can be reached from any other one by a transformation of that group a so called 
Lorentz-transformation. In short, all laws of nature are assumed to be invariant to Lorentz-
transformation.
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INTRODUCTION

The transformation in physical concepts, which was brought about by the 
theory of relativity, had been in preparation for a long time. As long ago as 
1887, in a paper still written from the point of view of the elastic-solid the-

ory of light, Voigt mentioned that it was mathematically convenient to introduce 
a local time t ′  into a moving reference system. 5e origin of t ′  was taken to be a 
linear function of the space coordinates, while the time scale was assumed to be 
unchanged.

Essentially physical results were now obtained, in addition to the purely formal 
recognition that it was mathematically convenient to introduce a local time t ′  in 
a moving coordinate system. It was shown that all experimentally observed e6ects 
of 7rst order in cv  (ratio of the translational velocity of the medium to the ve-
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locity of light) could be explained quantitatively by the theory when the motion of 
the electrons embedded in the aether was taken into account.1

5e theory gave an explanation for the fact that a common velocity of medium 
and observer relative to the aether has no in8uence on the phenomena, as far as 
quantities of 7rst order are concerned. However, the negative result of Michelson’s 
interferometer experiment, concerned as it was with an e6ect of second order in 
cv , created great di9culties for the theory. To remove these, Lorentz and, in 

dependently, Fitzgerald put forward the hypothesis that all bodies change their 
dimensions when moving with a translational velocity v . 5is change of dimen-
sion would be governed by a factor ( )221 cvk −⋅  in the direction of motion, 
with k  as the corresponding factor for the transverse direction; k  itself remains 
undetermined. Lorentz justi7ed this hypothesis by pointing out that the molecular 
forces might well be changed by the translational motion. He added to this the 
assumption that the molecular rest in a position of equilibrium and that their in-
teraction is purely electrostatic. It would then follow from the theory that a state of 
equilibrium exists in the moving system, provided all dimensions in the direction 
of motion are shortened by a factor 221 cv− , with the transverse dimensions 
unaltered.

It now remained to incorporate this Lorentz contraction in the theory, as well as to 
interpret the other experiments which had not succeded in showing the in8uence 
of the earth’s motion on the phenomena in question. 5ere was 7rst of all Lamor 
who, as early as 1900, set up the formulae now generally known as the Lorentz 
transformation, and who thus considered a change also in the time scale.

Lorentz’s review article, completed towards the end of 1903, contained several 
brief allusions which later proved very fruitful. Meanwhile, he conjectured that if 
the idea of a variable electromagnetic mass was extended to all ponderable matter, 
the theory could account for the fact that the translational motion would produce 
only the abovementioned contraction, and no other e6ects, even in the presence of 
molecular motion. In addition, he raised the important question whether the size 
of the electrons might be changed by the motion.2

However, in the introduction to his article, Lorentz still maintained the principle 
that the phenomena depended not only on the relative motion of the bodies, but 
also on the motion of the aether. We now come to the discussion of the three con-
tributions, by Lorentz, Poincaré and Einstein, which contain the line of reasoning 
and the developments that form the basis of the theory of relativity. Chronologi-
cally, Lorentz’s paper came 7rst.3

He proved, above all, that Maxwell’s equations are invariant under the coordinate 
transformation

1 Cf. K. O. FRIEDRICHS – From Pythagoras to Einstein, Singer Company, New York, 1965, 31-36.
2 Cf. W. H. McCREA – Relativity Physics, Wiley and Sons, Inc., London, 1954, 8-10.
3 Cf. A. EINSTEIN – The Meaning of Relativity, Chapman and Hall, London, 1973, 29-31.
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−
⋅=′

xcvtkt ;         ( )cv=β ;

provide the 7eld intensities in the primed system are suitably chosen. 5is, how-
ever, he proved rigorously only for Maxwell’s equations in charge free space. 5e 
terms which contain the charge density and current are, in Lorentz’s treatment, 
not the same in the primed and the moving systems, because he did not transform 
these quantities quite correctly.

He therefore regarded the two systems as not completely, but only very approxi-
mately, equivalent.

By assuming that the electrons too, could be deformed by the translational motion 
and that all masses and forces have the same dependence on the velocity as purely 
electromagnetic masses and forces, Lorentz was able to derive the existence of a 
contraction a6ecting all bodies. He could also explain why all experiments known 
had falled to show any in8uence of the earth’s motion on optical phenomena: a less 
immediate consequence of his theory is that one has to put 1=k . 5is means that 
the transverse dimensions remain unchanged during the motion, if indeed this 
explanation is at all possible. We would like to stress that even in this paper the 
relativity principle was not al all apparent to Lorentz. And in contrast to Einstein, 
he tried to understand the contraction in a causal way.4

5e formal gaps le: by Lorentz’s work were 7lled by Poincaré. He stated the rel-
ativity principle to be generally and rigorously valid. Since he, in common wish 
the previously discussed authors, assumed Maxwell’s equations to hold for the 
vacuum, this amounted to the requirement that all laws of nature must be covar-
iant with respect to the Lorentz transformation. 5e invariance of the transverse 
dimensions during the motion is derived in a natural way from the postulate that 
the transformations which e6ect the transition from a stationary to a uniformly 
moving system must form a group which contains as a subgroup the ordinary 
displacements of the coordinate system.5

Poincaré further corrected Lorentz’s formula for the transformations of charge 
density and current and so derived the complete covariance of the 7eld equations 
of electron theory. It was Einstein, 7nally, who in a way completed the basic for-
mulation of the special relativity. His paper of 1905 was submitted at almost the 
same time as Poincaré’s article and had been written without previous knowledge 
of Lorentz’s paper of 1904. And, 7nally, I make up the philosophical formulations 
of Special Relativity.6

4 Cf. Ibidem, 31-34.
5 Cf. Ibidem, 27-29.
6 Cf. S. J. PROKHOVNIK – The Logic of Special Relativity, At the University Press, Cambridge, 

1967, 1-11.
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THE POSTULATES OF SPECIAL RELATIVITY: FROM 
METRIC TO PHILOSOPHY
5e failure of the many attempts to measure terrestrially any e6ects of the earth’s 
motion on physical phenomena allows us to come to the highly probable, if not 
certain, conclusion that the phenomena in a given reference system are, in prin-
ciple, independent of the translational motion of the system as a whole. To put it 
more precisely there exists a triply in7nite set of reference systems moving recti-
linearly and uniformly relative to one another, in which the phenomena occur in 
an identical manner. We shall follow Einstein in calling them Galilean reference 
systems so named because the Galilean law of inertia holds in them.7 

It is unsatisfactory that one can not regard all systems as completely equivalent or 
at least give a logical reason for selecting a particular set of them.

Once the postulate of relativity is stated, the concept of the aether as a substance 
is thereby removed from the physical theories. For there is no point in discussing 
a state of rest or of motion relative to the aether when these quantities can not be 
observed experimentally. Nowadays this is all the less surprising as attempts to 
derive the elastic properties of matter from electrical forces are beginning to show 
success. It would, therefore, be quite inconsistent to try, in turn, to explain elec-
tromagnetic phenomena in terms of the elastic properties of some hypothetical 
medium. Actually, the mechanistic concept of an aether had already come to be 
super8uous and something of a hindrance when the elastic-solid theory of light 
was superseded by the electromagnetic theory of light. In this letter the aether 
substance had always remained a foreign element. Einstein has recently suggested 
an extension of the notion of an aether.8

It should no longer be regarded as a substance but simply as the totality of those 
physical quantities which are to be associated with matterfree space.

In this wider sense there does, of course, exist an aether; only one has to bear 
in mind that it does not possess any mechanical properties. In other words, the 
physical quantities of matterfree space have no space coordinates or velocities as-
sociated with them.9 It might seem that the postulate of relativity is immediately 
obvious, once the concept of an aether has been abandoned. Naturally, we cannot 
subject the whole universe to a translational motion and then investigate wheth-
er the phenomena are thereby altered. Our statement will, therefore, only be of 
heuristic value and physically meaning feel when we regard it as valid for any and 
every closed system. But when is a system a closed system? Would it be su9cient 
to stipulate that all masses should be far enough removed? Experience tells us 
that this is su9cient for uniform motion, but not for a more general motion. 5e 
postulate of relativity implies that a uniform motion of the centre of mass of the 

7 Cf. Ibidem, 27-51.
8 Cf. R. B. LINDSAY; H. M. ARGENAU – Foundations of Physics, Dover Publications, New York, 

1957, 330-350.
9 Cf. P. T. LANDSBERG – The Enigma of Time, Adam Hilger Ltd., Bristol, 1982, 37-39.
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universe relative to a closed system will be without in8uence on the phenomena 
in such a system.

5e relativity theory obeys to these postulates, and there are now forever the op-
portunity to formulate the generalization from Newtonian mechanic and to de7ne 
where is the extension and uni7cation of all classical theories of Physics.10

With the Special 5eory of Relativity we have a new workshop to write the equa-
tions of classical theories, and carries out one bridge to the Quantum Mechanics. 
5e two relativistic postulates are the basis of the new mathematical equations 
adaptations from the classical to the new physics. Although we will see that he also 
helped to initiate the development of Quantum Mechanics, it evolved in a way that 
he found unsatisfying. Modern quantum mechanics holds that only the relative 
likelihood of various outcomes from an experiment may be predicted and not the 
result of a speci7c measurement.

Einstein played an important role as a consultant and sympathetic protagonist in 
the development of quantum mechanics, in his later years Einstein’s research con-
centrated on attempts at a uni7ed theory of gravitation and electromagnetism.

His philosophy and work took him out of the mainstream of physics, although his 
only contributions continued to play an important role in the theory of modern 
physics. Einstein’s reputation was greater and more lasting than that of any other 
scientist of this century.11

According to the Special 5eory of Relativity, the invariance of c  is put forward 
before any procedure for synchronizing clocks, i.e., for de7ning coordinate-time, 
it proposed. Further more only in the light of the postulated invariance of c , does 
the convention of clock-synchronism make sense, i.e., prove to be convenient. 5e 
following except demonstrates that theoretical considerations – totally unrelat-
ed to sense – experience preceded and founded Einstein’s operational de7nition 
of distant simultaneity. Note that the facts adduced by Einstein – which might 
incidentally include the Michelson-Morley results – do not involve any distant 
simultaneities but only round-trip velocities, so no convention about clock-syn-
chronisation need he invoked. As for reducing the General 5eory of Relativity 
to a system of relations between sense-data, it was neither undertaken nor even 
seriously envisaged by Einstein, for he admitted that the connection between the 
coordinates and the results of measurement had been made problematic by the 
new theory.12

It was really Hume who convinced Einstein that no causal laws could be directly 
induced from the facts, whether the latter he presumed to be objective or pure-
ly perceptual causal connection do not inhere in the phenomena as they present 

10 Cf. C. M. WILL – Theory and Experiment in Gravitational Physics, University Press, Cambridge, 
1993, 15-35.

11 Cf. R. G. NEWTON – Thinking about Physics, Princeton University Press, Oxford, 4, 13, 28, 29, 
32, 34, 37, 59-60, 136, 167.

12 Cf. P. SUPPES (edited) – Space, time and geometry, D. Reidel Publishing Company, Dordrecht, 
1973, 178-180.
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themselves to us. 5ey are added by the mind’s own operation to the results of 
observation.

Meanwhile, we 7nd in Einstein’s thinking, on the one hand, an insistence on the 
epistemological primacy of concepts directly connected with sense-experience; 
and on the other, the recognition that science operates with notions which, though 
ultimately linked in sense-data, remain logically independent of the latter.13

Einstein was not driven to scepticism of the inductive method. For a time, he was 
drawn to Kant’s theory that the possibility of science to guaranted by the so called 
synthetic a priori principles: these are imposed, with absolute necessity, by the 
mind on the material provided by the senses.14

5e way in which this revolutionary modi7cation had to be carried out was, how-
ever, determined, not by any phenomenalist analysis of experience, but by exam-
ining the transformational properties of Maxwell’s equation, and hence the possi-
bility of turning c  into an invariant.

THE AXIOMATIC NATURE OF LORENTZ TRANSFOR-
MATION: METRIC AND PHILOSOPHY
At 7rst sight it appears as if the two postulates were incompatible. For, let us take a 
light source L  with moves relative to an observer A  with velocity v  and consider 
a second observer B  at rest with respect to L . Both observers must then see as 
wave fronts spheres whose centres are at rest relative to A  andB , respectively. In 
other words, they see di6erent spheres. 5is contradiction disappears, however, if 
one admits that space points which are reached by the light simultaneously for A
, are not reached simultaneously forB .

5is brings us directly to the relativity of simultaneity.15

Here, it will 7rst of all be necessary to say what is meant by the synchronization 
of two clocks at di6erent places. 5e following de7nition was chosen by Einstein.

A light ray is emitted from point P  at time pt , is re8ected at Q  at time Qt , and 
returns to P  at time pt ′ . 5e clock at Q  is then considered synchronized with 

that at P  if ( ) 2ppQ ttt +=  Einstein uses light for regulating the clocks because 
the two postulates enable us to make de7nite statements about the mode of prop-
agation of the light signals. Naturally, one could think of other ways of comparing 
the clocks, such as transporting them, or using mechanical or elastic couplings, 
etc. Only it must be stipulated that no such method should lead to a contradiction 
with the optical regulation method.

13 Cf. W. B. BONOR et alii – Classical General Relativity, University Press, Cambridge, 121-128.
14 Cf. J. M. JAUCH – Foundations of Quantum Mechanics, Addison-Wesley Publishing Company, 

London, 1977, 67-110.
15 Cf. H. A. LORENTZ; A. EINSTEIN  ; H. MINKOWSKI – O Princípio da Relatividade, Volume I, 

tradução do alemão, Fundação Calouste Gulbenkian, Lisboa, 1972, 49-55.
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We can now derived the transformation formulas which connected the coordi-
nates ( )tzyxandtzyx ′′′′ ,,,,,,,  of two reference systems k  and k ′  in uni-
form relative motion. 5e x-axis is chosen to lie along the direction of motion in 
such a way that k ′  moves relative to k  with velocity v  in the positive x-direction. 
All writers start with the requirement that the transformation formulae should be 
linear. 5is can be justi7ed by the statements that a uniform rectilinear motion 
in k  must also be uniform and rectilinear in k ′ . Furthermore it is to be taken 
for granted that 7nite coordinates in k  remain 7nite in k ′ . 5is also implies the 
validity of Euclidean geometry and the homogeneous nature of space and time.

It follows from the two postulates that the equation:

022222 =−++ tczyx

entails the corresponding equation:

022222 =−′+′+′ tczyx .16

Since the transformation is to be a linear one, this is only possible if:

( )2222222222 tczyxktczyx −++=−′+′+′

where k  is a constant depending on v . If one also bears in mind that any motion 
parallel to the x-axis must remain so a:er the transformation formulae will be 
seen to follow immediately. It is, however, still necessary to show that k  can be 
put equal to 1. Einstein’s procedure consists in applying transformation once more, 
with the velocity in the opposite direction:

x k v x vtij = − ⋅
′+ ′

−
( )

( )1 2β
;

y k v yij = − ′( ) ;         z k v zij = − ′( ) ;

t k v t v c xij = −
′+ ′

−
( )

( / )

( )

2

21 β
.

5en:

x k v k v xij = ⋅ −( ) ( ) ;

y k v k v yij = ⋅ −( ) ( ) ;

z k v k v zij = ⋅ −( ) ( ) ;

t k v k v tij = ⋅ −( ) ( ) .

Since k ij  is at rest relative to k , it must be identical with it. Hence,

( ) ( ) 1=−⋅ vkvk .

16 Cf. A. EINSTEIN – The Meaning of Relativity, Chapman and Hall, London, 1973, 26-30.
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5e above relation then gives ( ) 1=vk , since k  must be positive. Poincaré arrives 
at this conclusion in a similar way. He considers the totality of all linear transfor-
mations which transform:

022222 =−++ tczyx

into itself and demands that it should contain as subgroups:
• 5e one-parameter group of translations parallel to the x-axis;
• 5e ordinary displacements of the coordinate axes;
• Once again 1=k  follows, since Einstein’s symmetry requirement 

( ) ( )vkvk −= .

We have thus obtained the de7nite result that:

′ = −

−
x x vt

( )1 2β
;      yy =′ ;      zz =′ ;

( )
( )2

2

1 β−

−
=′

xcvtt .

5e simple structure of the anterior formulae makes one wonder. Whether they 
could not have been derived from general group-theoretical considerations, with-
out having to assume the invariance of the last equations.17

From the group-theoretical assumption it is only possible to derive the general 
form of the transformation formulae, but not their physical content. Incidentally, 
it is to be noted that contains the transformation formulae of ordinary mechanics:

′ = −x x vt ;      tt =′

which can be obtained by putting 0=α .

5e rod is, therefore, contracted in the ratio 1:1 2β− , as was already assumed 
by Lorentz. Since the transverse dimensions of a body remain unaltered, the same 
formula applies to the contraction of its volume:

( )20 1 β−=VV .

We have seen that this contraction is connected with the relativity of simultaneity, 
and for this reason the argument has been put forward that it is only an apparent 
contraction, in other words, that it is only simulated by our space-time measure-
ments.18

If a stable is called real only when it can be determined in the same way in all Gali-
lean reference systems, then the Lorentz contraction is indeed only apparent, since 
an observer at rest in k ′  will see the rod without contraction.
17 Cf. Ibidem, 28-29.
18 Cf. D. TER HAAR – Elements of Hamiltonian Mechanics, second edition, Pergamon Press, 

Oxford, 1971, 1-21.
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But we do not consider such a point of view as appropriate, and in any case the Lo-
rentz contraction is in principle observable. It shows that the determination of the 
simultaneity of spatially separated events, which is necessary for the observation 
of the Lorentz contraction, can be carried out entirely with the help of measuring 
rods, without the use of clocks.

For let us think of using two rods 11BA  and 22BA  of the same rest length 0l  
which move relative to E  with equal and opposite velocity v . We mark the points 
*A and *B  in k  at which the points 1A  and 2A  and 1B  and 2B , respectively, 

overlap. 5e distance **BA , as measured by rode at rest in k , will then have the 
value:

( )20 1 β−= ll .

It, therefore, follows that the Lorentz contraction is not a property of a single mea-
suring rod taken by itself, but is a reciprocal relation between single measuring rod 
taken by itself, but is a reciprocal relation between two rods moving relatively to 
each other, and this relation is in principle observable.19

Analogously, the time scale is changed by the motion. Let us again consider a clock 
which is at rest in k ′ . 5e time t ′  which it indicates in k ′  is its proper timeτ  and 
we can put the coordinate x′  equal to zero. It then follows that:

( )21 β

τ

−
=t ;      ( )t21 βτ −=

Measured in the time scale of k , therefore, a clock moving with velocity v  will lag 
behind one at rest in k  in the ratio:

( ) 1:1 2β− .

While this consequence of the Lorentz transformation was already implicitly con-
tained in Lorentz’s and Poincaré’s results; it received its 7rst clear statement only 
by Einstein.20 It is obvious that experiments which are intended to show the e6ect 
of the motion of the coordinate systems as a whole on phenomena within it must, 
according to the theory of relativity, show a negative result. It is nevertheless in-
structive to investigate how such experiments are seen from a system k  which is 
at rest. For this purpose we shall discuss the Michelson interferometer experiment. 
Let 1l  be the length, measured in 1K  of the interferometer arm parallel to the di-
rection of motion, and 2l  that of the arm at right angles to it. 5e time 2t  taken by 
the hight to traverse the arms are then given by:

ct l
1 2

2

1
=

− β
;      ct

l
2 2

2

1
=

−( )β

19 Cf. M. A. TONNELAT – Les Principes de la Théorie Electromagnétique et de la Relativité, 
Masson et Cie, Paris, 1959, 107-109.

20 Cf. V. FOCK – The Theory of Space, Time and Gravitation, Pergamon Press, London, 1959, 
12-16.
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Now, because of the Lorentz contraction, we have:

( )20 1 β−⋅= llz ;      02 tt = ;

so that

ct ct
lp

1 2 2

2

1
= =

−( )β
It would therefore seem that an observer travelling with k ′  measures a velocity 
of light:

( )21 β−=′ cc

di6erent from that measured by an observer in k . 5is is the point of view put 
forward by Abraham. According to Einstein, however, the time-dilatation:

( )21 β−=′ tt

has still to be taken into account, so that:

021 2ltctc =′=′ ,

and thus velocity of light is the same in k ′  as in k . According to Abraham there 
is to time dilatation. Abraham’s point of view is consistent with Michelson’s ex-
periment, but it contradicts the postulate of relativity, since it would in principle 
admit of experiments which would allow one to measure the absolute motion of 
a system.21

Let us discuss the di6erence between Einstein’s and Lorentz’s points of view still 
further. Einstein showed in particular that the distinction between local and true 
time disappears with a more profound formation of the concept pf time. Lorentz’s 
local time is shown to be simply the time in the moving system k ′ .

5ere are as many times and spaces as there are Galilean reference systems. It is 
also of great value that Einstein rendered the theory independent of any special 
assumptions about the constitution of matter.

5e epistemological basis of the theory of relativity has recently been undergoing 
a close examination from the side of philosophy. In this connection the opinion 
has been expressed that the theory of relativity has thrown overboard the concept 
of causality. We take the view that it is perfectly satisfactory from the standpoint 
of the theory of knowledge in to say that the relative motion is the cause of the 
contraction, since this latter is not the property of a single measuring rod, but a 
relation between two such rods. Also it is unnecessary to refer, as Holst dues, to all 
matter present in the universe, in order to satisfy the causality condition.22

21 Cf. R. C. TOLMAN – Relativity, Thermodynamics and Cosmology, At the Clarendon Press, 
Oxford, 32-35.

22 Cf. P. C. W. DAVIES – Space and Time in the modern Universe, University Press, Cambridge, 
1977, 29-56.
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THE FOUR-DIMENSIONAL SPACE-TIME WORLD: 
METRIC AND PHILOSOPHY
5e two postulates of relativity and of the constancy of the velocity of light can be 
combined into the single requirement that all physical laws should be invariant 
under the Lorentz transformation. From now on we shall take to mean by the 
Lorentz transformation the totality of all linear transformation which satisfy the 
identity. Each such transformation can be made up of rotation of the coordinate 
system and the special Lorentz transformation of the type. Mathematically speak-
ing, therefore, the special theory of relativity is the theory of invariants of the Lo-
rentz group.

5e work of Minkowsky has been fundamental for the development of the theory. 
He managed to give the theory an extraordinarily elegant form by making con-
sistent use of two facts. If instead of the ordinary time t , the imaginary quantity 

ictu =  is introduced, the behaviour of the space and time-coordinates. It is com-
pletely equivalent in the Lorentz group, and thus also in the physical laws which 
are invariant with respect to this group. In fact, the invariant which is characteris-
tic for the Lorentz transformation:

22222 tczyx −++

goes over into:
2222 uzyx +++

It is therefore expedient from the legitimity not be separete space and time, but to 
consider the four-dimensional space-time manifold.

We shall follow Minkowski by calling it, in short, “world”.23

Since expression is invariant under the Lorentz transformation and is also qua-
dratic in the coordinates, it would seem natural to de7ne it as the square of the 
distance of the world point ( )uzyxP ,,,  from the origin, in analogy to the corre-
sponding square of the distance:

222 zyx ++

in ordinary space. With this a world geometry (metric) is determined which is 
closely related to Euclidean geometry.

5e two geometries are not completely identical because of the imaginary char-
acter of one of the coordinates. 5e latter property implies, for instances, that two 
world points whose distance from each other is zero do not necessarily coincide, 
such matter. Notwithstanding these geometrical di6erences, we can regard the Lo-
rentz transformations as orthogonal linear transformations of the world coordi-
nates and as rotations of the world coordinate exes, in analogy with the rotations 
of coordinate system in sR . Moreover, just as the ordinary vector and tensor cal-
23 Cf. J. L. SYNGE – Relativity: the special theory, North-Holland Publishing Company, 

Amsterdam, 1958, 56-57.
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culus can be looked upon as an invariant theory of the orthogonal linear coordi-
nate transformations in sR , so the invariant theory of the Lorentz group takes 
the form of a four-dimensional vector and tensor calculus.24 5erefore, we can 
express the second aspect which is essential to Minkowski’s representation of the 
theory, in the following way: because the Lorentz group leaves a quadratic form 
of the four world coordinates invariant, the invariant theory of this group can be 
represented geometrically and it then appears as a natural generalization of the 
ordinary vector and tensor calculus for a four-dimensional manifold. But the lin-
ear transformations of special relativity involve all four-coordinates 4321 ,,, xxxx
, you can identify the same world-point a:er the transformation, but there is no 
good meaning in speaking of the same point in space a:er the transformation 
unless you also refer to the moment of time in which it is contemplated neither is 
there a meaning in speaking of the same moment of time a:er the transformation 
without reference to the point in space where it is contemplated.

What in one frame is the same point in space, envisaged at di6erent moments of 
time, well in general turn out to be two di6erent points in space in the other form 
envisaged at two di6erent moments.25

Again, what in one frame is the same moment at two di6erent points, will in 
general be mapped in the other frame as di6erent moments referring to di6er-
ent points in space. It is this state of a6airs which has given birth to all the much 
discussed paradoxes in the Special 5eory of Relativity so di9cult to explain to 
the non-mathematician, while the mathematician is prepared to encounter some 
clashes with customary views from the mere fact that all four-coordinates are in-
volved in the transformation.

From what has been said it is to be anticipated that neither the “distance” between 
two points in space nor the time interval between the happening of the two events 
are invariant to Lorentz transformation; either of them may even vanish in one 
frame, but not vanish in another frame. If we take for convenience one of the two 
events to happen at the origin at time zero, the other one at the point 321 ,, xxx  at 
time 4x  the square of their distance in that frame will be given by the Pythagorean 
theorem thus:

3
3

2
2

2
1 xxx ++

and their time interval by 4x .26

Since all frames are to be of equal right, the same expressions will hold in any other 
frame, only with the kx′ ’s for the kx . But only neither is invariant. We shall have 
in general:

24 Cf. H. REICHENBACH – Space and Time, translated from german, Dover Publications, Inc, 
New York, 1958, 109-111.

25 Cf. Ibidem, 58-101.
26 Cf. R. MILLS – Space, Time and Quanta, W. H. Freeman and Company, New York, 1994, 81-

106.
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However – and this is the cardinal point – the Lorentz transformation is character-
ized by the fact that the following expression is “invariant”:

2
4

2
3

2
2

2
1

2
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3

2
2

2
1 xxxxxxxx ′+′−′−′−=+−−−

I said the transformations are characterized by this “invariance”. Indeed it is well-
might an exhaustive de7nition distinguishing Lorentz transformations among all 
possible homogeneous linear transformations of the four-coordinates. 5e state 
of a6airs bears formal analogy to the case of orthogonal transformations in there 
dimensions, which are characterized among all linear transformations by the in-
variance of the distance: 2

3
2
2

2
1 xxx ++ .27

A formal description of the injunction can be given in the following terms. If you 
write down the four linear transformation formulae and transcribe every term 
containing 4x  or 4x′ thus:

ax ia ix4 4= − ⋅( ) ( ) ;      ( ) ( )44 xiix ′⋅−=′

in other words if you regard it as a transformation between the variables 
4321 ,,, xxxx  and 4321 ,,, xxxx ′′′′  then, this is an orthogonal transformation in 

four dimensions but with some relevant injunction on the coe9cients as to being 
either real or purely imaginary.

5e invariant of two world-points or point-events, one of which was for simplicity 
taken to happen at the origin of the four-dimensional frame, is the square of the 
time-interval minus the square of the distance.28

5e invariant of two world-points or point-events, one of which was be simplic-
ity taken to happen at the origin of the four-dimensional frame, is the square of 
the time-interval minus the square of the distance. In the 7rst case 1

4x  can never 
vanish, and thus, in virtue of our conventions about the determinant and the coef-
7cient 4

1
4 xx ∂∂  it cannot change its sign on Lorentz transformation. 5e second 

event coordinates is then called later or earlier with respect to the 7rst according 
to whether 04 <x .29

5e Lorentz transformation is correctly the dictionary of the metric from inertial 
systems, and de7nes a new epistemological situation to the relationship on the 
e6ects of veri7cability to the frame articles of relativistic metric in the spacetime 
connection.

27 Cf. R. U. SEXL; H. K. URBANTKE - Relativity, Groups, Particles, translated from the german, 
Springer-Verlag, New York, 2000, 49-59.

28 Cf. D. KRAMER; H. STEPHANI et alli – Exact Solutions of Einstein’s Field Equations, University 
Press, Cambridge, 1979, 27-41.

29 Cf. J. L. SYNGE – Relativity: the general theory, North-Holland Publishing Company, 
Amsterdam, 1960, 1-41.
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I think so that the Lorentz transformations are the a posteriori sentences to the 
spacetime metric, because they show the sense of metric stationary in the space-
time relationship. 5ese predicates refer the transcendental and universal oppor-
tunity.

Only the theory of special relativity shall be taken in account here. 5e main point 
of importance is the fusion of time and space to four-dimensional space-time, as 
formulated by Minkowski. However, the meaning of space-time can be demon-
strated considering as example the simplest equation of the Lorentz transforma-
tions for inertial systems. It can be written as fallows:

ϕϕ sinhcosh txx ′+′= ;

ϕϕ coshsinh txt ′+′=

with cv=ϕtanh .

It is assumed that the coordinates of the systems are orientated parallel to each 
other, that the relative movement takes place along the x-axis and that the systems 
have the same origin at time 0=′= tt . Also v  represents the relative speed of 
the coordinate systems and c  is the speed of light.30

5is form of the equations was chosen here because of its analogy to the classical 
transformation of rotated systems:

αα sincos yxx ′−′=

αα cossin yxy ′+′=

when the rotation of angleα  takes place around the z-axis.

It is well known that according to the theory of relativity the 8ow of time is dif-
ferent in a system that is moving. 5is di6erence is given by the above equation 
of the Lorentz transformation. 5e analogy between the two equations can be in-
terpreted to show that this di6erence 8ow of time is analogous to the rotation of 
coordinate systems, which correspond to view the world from di6erent perspec-
tives. 5us time and space are fused into a relativistic unity. 5is fusion of time 
with the space leads to the concept of space-time in the theory of special relativity. 
5is concept, however, leads to important role to play simpli7cations. Many cases 
of this can be found in physics, especially where relativistic e6ects enter the game. 
In quantum 7eld theory, e.q., integrations are in general performed on the four-di-
mensional space-time. Also space and time coordinates are not treated completely 
and necessarily identical, however the di6erence is not easily noticeable.

Consciousness at one time can reach only one three-dimensional plane of this 
four-dimensional space-time. 5is plate corresponds to the present moment. But 
this presence is an arbitrary point of reference, arbitrary in the same way as a 

30 Cf. B. HOFFMANN – Perspectives in Geometry and Relativity, Indiana University Press, 
London, 1966, 58-62.
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certain point in space.31 5e relation of events at di6erent times is in principle not 
di6erent from the relation of events at the same time but at di6erent places. 5is 
is usually taken to imply that there is a symmetry between past and present just as 
well as le: and right are symmetrical to each other.

CONCLUSION
For the description of a physical event, one must specify four numbers, say zyx ,, , 
and t , of which the 7rst three refer to the site where the event takes place while the 
fourth refers to the time of its occurrence. For another observer, the same event 
would be speci7ed by a di6erent set of numbers, say zyx ′′′ ,, , and t ′ .

5e mathematical connection between these two sets of numbers would depend 
upon the characteristic features of the transitive from one system of reference to 
the other. Since there is a large variety of systems of reference, there is a large 
variety of transformations one has to deal with. One may, therefore, regard the 
complete set of four members as the coordinates of a world point, representing the 
event in question in a four-dimensional world of zyx ,,  and t , rather than re-
gard yx,  and z  separately as the spatial coordinates of the event in the three-di-
mensional physical space and t  separately as the time of its occurrence in a one 
dimensional continuum of time.32

5e foregoing scheme was 7rst suggested by Minkowski in 1908 and has since 
been employed extensively. According to this scheme, a physical event is repre-
sented by a world points in the four-dimensional world of events – usually referred 
to as the “Minkowski world” or the space-time continuum – which may be de7ned 
as the totality of representation points of all possible physical events. 5e position 
of the representative point, corresponding to a particular event, in the Minkowski 
world is determined by four coordinates zyx ,,  and t , as referred to a set of four 
axes the so called coordinates axed. 5e development of an event is depicted by 
a trajectory, usually referred to as the world line, along which the corresponding 
world point evolves. 5e relative position of one event with respect to another is 
denoted by a vector – the line element – that joint the two events in the Minkowski 
worlds and so forth.33

In this representation the study of relativistic theory reduces to a study of the ge-
ometry of the four-dimensional continuum. In consequence, the formation of the 
special relativity theory assumes so elegant a form that the importance and useful-
ness of Minkowski’s contribution can hardly be overestimated.

As regards transformations, their classi7cation would now be based on the fact 
whether they involve one or both of the following features:
• A rotation of the coordinate axes in the tzyx ,,,  continuum, with six de-

grees of freedom, and;
31 Cf. A. CICHNEROWICZ – Théories Relativistes de la Gravitation et de l’Electromagnétisme  ; 

Masson et Cie, Éditeurs, Paris, 1955, 3-26.
32 Cf. S. W. HAWKING; G. F. R. ELLIS – The Large Scale Structure of Space-time, At the University 

Press, Cambridge, 1980, 118-120.
33 Cf. C. MOLLER – The theory of Relativity, At the Clarendon Press, Oxford, 1966, 31-62.
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• A displacement of the origin of the coordinate system, with four degrees of 
freedom.34

We have seen that the fundamental invariant of the homogeneous Lorentz trans-
formations is:

222222222222 stczyxtczyxs ′=′−′+′+′=−++=

If we employ the set of coordinates:

xx =′1 ;   yx ′=′2 ;   zx ′=′3 ;   ticx ′=′4
5e anterior equations are remained in this:
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2 sxxxxxxxs =′+′+′=+++=

Written in this form, the analogy with the three-dimensional world becomes com-
plete, except for the fact that the fourth square in the sum here is really negative.35

However, because of the imaginary character of the four-coordinate employed, the 
geometry of this continuum is only formally identical with Euclidean geometry; 
that is why it is usually referred to as quasi-Euclidean.

5e immediate advantage of the transition from the anterior equation is that new 
the rotation of the axes of an inertial observer would not lead to an oblique coor-
dinate system. On the other hand, these rotations would now involve only rectan-
gular coordinate systems Lorentz transformations would, therefore, become linear 
orthogonal. Con7ning to the case of homogeneous transformations, wiz the ones 
that do not involve a displacement of the origin, we can write:

′ = ⋅∑x x xt ik k
1

4

where xik ‘s are the coe9cient of transformation. Geometrically, the coe9cient 
xik  may be understood as the cosine of the angle between the ix  axis and the kx  

axis. In view of the speci7c nature of the coordinates and the coe9cient xsp  and 
tx4  would be real while the coe9cient tx4  and sx4  would be purely imaginary.36

From now onward we adopt the so called “summation convention”, i.e., if an index 
occurs twice in a term, a summation over all possible values of that index is auto-
matically implied. 5e convention applies to all the equations that appear in the 
sequel, unless a statement is made to the contrary.For a continuous transformation 
– the one obtainable from the identity transformation ( )SS →  by a continuous 
rotation of the axes – the value of the determinant must be +1. Such transforma-
tions are usually referred to as proper transformation.We can have transforma-
tions which involve re8ections of the coordinates axes and may, therefore, be dis-
continuous. Such transformations are necessarily discontinuous; they are usually 

34 Cf. R. d’INVERNO – Introducing Einstein’s Relativity, At the Clarendon Press, Oxford, 1992, 
33-40.

35 Cf. G. L. NABER – The Geometry of Minkowski Spacetime, Springer-Verlag, Berlin, 1992, 7-87.
36 Cf. I. CHAVEL – Riemannian Geometry: a modern introduction, At the University Press, 

Cambridge, 1993, 49-66.
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referred to as improper transformation. Of course, transformations that involve an 
even number of re8ections must again have: 1+=α .

Also the Special 5eory of Relativity is play a very important role in yours applica-
tions, and de7nes a progress signi7cantly to the Physics.37

Epistemologically, we are not, however, su9ciently advanced in our knowledge of 
Nature’s elementary laws to adopt this more perfect method without going out of 
our depth. At the close of our considerations we shall see that in the most recent 
studies there is an attempt.It more clearly follows from the above what is implied 
by preferred states of motion. 5ey are preferred as regards the laws of Nature. 
States of motion are preferred when, relative to the formulations of the laws of 
Nature, coordinate systems within them are distinguished in that with respect 
to them those laws assume a form preferred by simplicity. According to classical 
mechanics the states of motion of the inertial frames in this sense are physically 
preferred.38Classical mechanics permits a distinction to be made between unac-
celerated and accelerated motions; it also claims that velocities have only a relative 
existence, dependent on the selection of the inertial frame, while accelerations and 
rotations have an absolute existence. 5is state of a6airs can be expressed thus: 
According to classic mechanics velocity relativity exists, but not acceleration rela-
tivity. A:er these preliminary consideration we can pass to the actual topic of one 
contemplations, the relativity theory, by characterizing its development so far in 
terms of principles.39

5e special theory of relativity is an adaptation of physical principles to Max-
well-Lorentz electrodynamics. From earlier physics it takes the assumption that 
Euclidean geometry is valid for the laws governing the situation of rigid bodies, 
the inertial frame and the law of inertia. 5e postulate of equivalence of inertial 
frames for the formulation of the laws of Nature is assumed to be valid for the 
whole of physics as special relativity principle. From Maxwell-Lorentz electrody-
namics it takes the postulate of invariance of the velocity of light in a vacuum 
according to the light principle.40To harmonize the relativity principle with the 
light principle, the assumption that an absolute time exists, had to be abandoned. 
5us the hypothesis is abandoned that arbitrarily moved and suitably set identical 
clocks function in such a way that the times shown by two of them, which meet, 
agree. A speci7c time is assigned to each inertial frame; the state of motion and 
the time of the inertial frame are de7ned, in accordance with the stipulation of 
meaning, by the requirement that the light principle should apply to it. 5e exis-
tence of the inertial frame thus de7ned and the validity of the law of inertia with 
respect to it are assumed. 5e time for each inertial frame is measured by identi-
cal clocks that are rationary relative to the frame.415e laws of transformation for 
space-coordinates and time for the transition from one inertial frame to another, 

37 Cf. T MAUDLIN – Quantum non-locality and Relativity, Blackwell, London, 2002, 29-36.
38 Cf. R. M. ROSENBERG – Analytical Dynamics, Plenum Press, New York, 1977, 7-17.
39 Cf. G. E. O. GIACAGLIA – Mecânica Geral, Editora Campus, Rio de Janeiro, 1982, 131-144.
40 Cf. M. S. LONGAIR – Theoretical concepts in physics, At the University Press, Cambridge, 

1984, 37-60.
41 Cf. B. RUSSELL – ABC of Relativity, Unwin Paperbacks, London, 1977, 68-79.
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the Lorentz transformations as they are termed, are unequivocally established by 
these de7nitions and the hypotheses concealed in the assumption that they are 
free from contradiction. 5eir immediate physical signi7cance lies in the e6ect of 
the motion relative to the used inertial frame on the form of rigid bodies – Lorentz 
contradiction – and on the rate of the clocks. According to the special relativity 
principle the laws of Nature must be covariant relative to Lorentz transformations; 
the theory thus provides a criterion for general laws of Nature. It leads in partic-
ular to a modi7cation of the Newtonian print motion law in which the velocity of 
light in a vacuum is considered the limiting velocity, and it also leads to the reali-
zation that energy and inertial mass are of like nature.42

5e special relativity theory resulted in appreciable advances. It reconciled me-
chanics and electrodynamics. It reduced the number of logically independent hy-
potheses regarding the latter. It enforced the need for a clari7cation of the funda-
mental concepts in epistemological terms. It united the momentum and energy 
principle, and demonstrated the like nature of mass and energy. Yet it was not en-
tirely satisfactory quite apart from the quantum problems, which all theory so far 
has been incapable of really solving. In common with classical mechanics the spe-
cial relativity theory favours, certain states of motion to all other states of motion.

5is was actually more di9cult to tolerate that the preference for a single state of 
motion as in the case of the theory of light with a stationary ether, for this imag-
ined, i.e., the light ether. A theory which from the outset prefers to state of motion 
should appear more satisfactory. Moreover the previously mentioned vagueness in 
the de7nition of the inertial frame or in the formulation of the law of inertia raise 
doubts which obtain their decisive importance, owing to the empirical principle 
for the equality of the inertial and heavy mass, in the light of the following con-
sideration.

Let k  be an inertial frame without a gravitational 7eld, k ′  a system of coordinates 
accelerated uniformly relative to k . 5e behaviour of material points relative to 
k ′  is the same as if k ′  were an inertial frame in respect of which a homogeneous 
gravitational 7eld exists. On the basis of the empirically known properties of the 
gravitational 7eld, the de7nition of the inertial frame thus proves to be weak. 5e 
conclusion is obvious that any arbitrarily moved frame of reference is equivalent 
to any other for the formulation of the laws of nature, that there are thus no phys-
ically perfected states of motion at all in respected of regions of 7nite extension.

5e implementation of this concept necessitates an even more profound modi7-
cation of the geometric-kinematical principles than the special relativity theory.43

5e Lorentz contraction, which is derived from the latter, leads to the conclusions 
that with regard to a system k ′  arbitrarily moved relative to an inertial frame k , 
the laws of Euclidean geometry governing the position of rigid bodies do not ap-
ply. We arrive at the formal description of the 7eld by the following consideration. 
For each in7nitesimal point environment in an arbitrary gravitational 7eld a local 
42 Cf. J. G. TAYLOR – Special Relativity, At the Clarendon, Oxford, 1975, 1-12.
43 Cf. R. K. PATHRIA – The Theory of Relativity, second edition, Pergamon Press, Oxford, 15-48.
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frame of coordinates can be given for such a state of motion that relative to the 
local frame no gravitational 7eld exists a local inertial frame.

In terms of this inertial frame we way regard the results of the special relativi-
ty theory as correct to a 7rst approximation for the in7nitesimally small region. 
5ere are an in7nite number of such local inertial frames at any space-time point; 
they are associated by Lorentz transformations. 5ese latter are characterised in 
that they leave invariant the distance ds  of two in7nitely adjacent point events 
de7ned by the equation:

ds c dt dx dy dz2 2 2 2 2 2= − − −
which distance can be measured by means of scales and clocks. For ,,,, tzyx  
represent coordinates and time measured with reference to a local inertial frame.44

To describe space-time regions of in7nite extent arbitrary point coordinates in 
four dimensions are required which serve no other purpose than to provide an un-
ambiguous designation of the space-time points by four numbers each 321 ,, xxx  
and 4x , which takes account of the continuity of the four-dimensional manifold 
by Gaussian coordinates. 5e mathematical expression of the general relativity 
principle is then, that the systems of equations expressing the general laws of Na-
ture are equal for all such systems of coordinates.45 Since the coordinate di6eren-
tials of the local inertial frame are expressed linearly by the di6erential dxik  of a 
Gaussian system of coordinates, when the latter is used for the distance ds  of two 
events an expression of the form:

ds g dx dxik i k
2 = ⋅ ⋅

is obtained.

5e gik , which are continuous functions of xik , determine the metric in the 
four-dimensional manifold where ds  is de7ned as an absolute parameter mea-
surable by means of rigid scales and clocks.

5ese same parameters gik , however, also describe with reference to the Gaussian 
system of coordinates the gravitational 7eld which we have previously found to be 
identical with the physical cause of the metric.

5e care as to the validity of the special relativity theory for 7nite regions is char-
acterised in that when the system of coordinates is suitably chosen, the values of 
gik  for 7nite regions are independent of gik .

In accordance with the general theory of relativity the law of point motion in the 
pure gravitational 7eld is expressed by the equation for the “geodesic line”.46

44 Cf. W. G. DIXON – Special Relativity, the foundations of macroscopic physics, At the University 
Press, Cambridge, 1978, 25-30.

45 Cf. Ch. W. MISNER; K. S. THORNE; J. A. WHEELER – Gravitation, W. H. Freeman and Company, 
San Francisco, 1973, 385-431.

46 Cf. Th. FRANKEL – Gravitational Curvature, W. H. Freeman and Company, Sam Francisco, 
1979, 35-45.
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Actually the geodetic line is the simplest mathematically which in the special case 
of constant gik  becomes rectilinear. Here, therefore, we are confronted with the 
transfer of Galileo’s law of inertia to the general theory of relativity.47 In mathemat-
ical terms the catch for the 7eld equations amounts to ascertaining the simplest 
generally covariant di6erential equations to which the gravitational potentials gik  
can be subjected. By de7nition these equations should not contain higher deriv-
atives of gik  with respect to xik  than the second and these only linearly, which 
condition reveals these equations to be a logical transfer of the Poisson 7eld equa-
tion of the Newtonian theory of gravity to the general theory of relativity. And that 
exhausts the direct consequences of the relativity principle. I shall turn to those 
problems which are related to the development which I have traced. Already, New-
ton recognized that the law of inertia is unsatisfactory in a context so far unmen-
tioned in the exposition, namely that it gives no real cause for the special physical 
position, of the states of motion of the inertial frames relative to all other states of 
motion.48 It makes the observable material bodies responsible for the gravitational 
behaviour of a material point, yet indicates in material cause for the material point 
but devise the cause for it (absolute space).

47 Cf. H. A. ATWATER – Introduction to General Relativity, Pergamon Press, Oxford, 1974, 136-
159.

48 Cf. B. HOFFMANN – Relativity and its Roots – W. H. Freeman and Company, New York, 1983, 
81-103.


