Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


2021 | 6 |

Article title

Allelopathic effect of Fucus vesiculosus (brown alga) and Coccotylus brodiei (red alga) on the growth and photosynthesis performance of Baltic cyanobacteria

Content

Title variants

Languages of publication

EN

Abstracts

EN
In aquatic ecosystems, allelopathic activity depends on the production and secretion of active allelopathic compounds and their effective dispersal in the environment. In addition, macroalgae have been found to produce active metabolites that affect other organisms that compete with them for nutrients. However, the allelopathic activity of Baltic red and brown macroalgae on filamentous cyanobacteria is still insufficiently understood. Therefore, the main objective of this study was to demonstrate and compare the allelopathic effects of macroalgae Fucus vesiculosus L. and Coccotylus brodiei (Turner) Kütz. on the growth and photosynthetic activity of two Baltic cyanobacteria Aphanizomenon sp. and Nostoc sp. It was found a stimulating effect of different concentrations (5, 25, and 50 µL mL–1) of the aqueous extract obtained from C. brodiei on the number of cells of Nostoc sp. which constituted 108%, 140%, and 147%, respectively, relative to the control treatment. On the other hand, extracts obtained from F. vesiculosus had no statistically significant effect on the number of cells of the cyanobacteria Aphanizomenon sp. and Nostoc sp. Moreover, the C. brodiei extracts had no significant impact on the growth of Aphanizomenon sp. Furthermore, Baltic macroalgae F. vesiculosus and C. brodiei was able to exert allelopathic effects on photosynthesis performance of Nostoc sp. and Aphanizomenon sp. and compounds produced by them had inhibitory, stimulatory, or no significant effect on the maximum PSII quantum efficiency (Fv/Fm) and the effective quantum yield of PSII photochemistry (ΦPSII). The results obtained in this work constitute an important contribution to the knowledge on the allelopathic activity of Baltic red and brown algae on certain bloom-forming species of filamentous cyanobacteria.
PL
Aktywność allelopatyczna w ekosystemach wodnych zależy od produkcji i uwalniania aktywnych związków allelopatycznych oraz ich skutecznego rozprzestrzeniania się w środowisku. Stwierdzono, że makroglony wytwarzają aktywne metabolity, które wpływają na inne organizmy, które konkurują z nimi o światło i składniki odżywcze. Jednak aktywność allelopatyczna bałtyckich krasnorostów i brunatnic na nitkowate sinice jest nadal niedostatecznie poznana. Dlatego głównym celem niniejszej pracy było wykazanie i porównanie aktywności allelopatycznej makroglonów Fucus vesiculosus (brunatnia) i Coccotylus brodiei (krasnorost) na wzrost i aktywność fotosyntetyczną dwóch bałtyckich sinic Aphanizomenon sp. i Nostoc sp. W pracy stwierdzono stymulujący wpływ różnych stężeń (5, 25 i 50 µL mL–1) wodnego ekstraktu otrzymanego z C. brodiei na liczebność komórek Nostoc sp., które wynosiły odpowiednio: 108%, 140% i 147% w stosunku do grupy kontrolnej. Z drugiej strony ekstrakty uzyskane z F. vesiculosus nie miały istotnego statystycznie wpływu na liczebność komórek sinic Aphanizomenon sp. i Nostoc sp. Wykazano także, że ekstrakty z C. brodiei nie miały istotnego wpływu na wzrost Aphanizomenon sp. Ponadto bałtyckie makroglony F. vesiculosus i C. brodiei wpływały allelopatycznie na aktywność fotosyntetyczną u Nostoc sp. i Aphanizomenon sp., a wydzielane przez nie związki wykazywały hamujący, stymulujący lub brak wpływu na maksymalną wydajność kwantową drugiego fotosystemu (PSII) w ciemności (Fv/Fm) oraz na rzeczywistą wydajność kwantową PSII w świetle (ΦPSII). Wyniki uzyskane w niniejszej pracy stanowią ważny wkład w stan wiedzy na temat aktywności allelopatycznej bałtyckich krasnorostów i brunatnic na wybrane gatunki nitkowatych sinic, zdolnych do tworzenia masowych zakwitów.

Year

Volume

6

Physical description

Dates

published
2021-07-08

Contributors

  • Institute of Oceanography, University of Gdansk, Gdynia, Poland
  • University of Gdańsk

References

  • Budzałek, G., Śliwińska-Wilczewska, S., Latała, A. (2018). Allelopathic effect of Ulva intestinalis L. on the Baltic filamentous cyanobacterium Nostoc sp. Annales Universitatis Paedagogicae Cracoviensis Studia Naturae 3, 80–89. http://doi.org./10.24917/25438832.3.6.
  • Campbell, D., Hurry, V., Clarke, A. K., Gustafsson, P., Öquist, G. (1998). Chlorophyll fluorescence analysis of cyanobacterial photosynthesis and acclimation. Microbiology and Molecular Biology Reviews, 62, 667–683.
  • Dandelot, S., Robles, C., Pech, N., Cazaubon, A., Verlaque, R. (2008). Allelopathic potential of two invasive alien Ludwigia spp. Aquatic Botany, 88, 311–316. https://doi.org/10.1016/j.aquabot.2007.12.004
  • El Gamal, A.A. (2010). Biological importance of marine algae. Saudi Pharm Journal, 18, 1–25. https://doi.org/10.1016/j.jsps.2009.12.001
  • Elakovich, S.D., Wooten, J.W. (1989). Allelopathic potential of sixteen aquatic and wetland plants. Toxicology, 17, 129–182.
  • Gomes, M.P., Garcia, Q.S., Barreto, L.C., Pimenta, L.P.S., Matheus, M.T., Figueredo, C.C. (2017). Allelopathy: an overview from micro-to macroscopic organisms, from cells to environments, and the perspectives in a climate-changing world. Biologia, 72, 113–129. https://doi.org/10.1515/biolog-2017-0019
  • Granéli, E., Salomon, P.S., Fistarol, G.O. (2008). The role of allelopathy for harmful algal bloom formation. In: Evangelista, V., Barsanti, L., Frassanito, A., Passarelli, V., Gualtieri P. (eds.). Algal toxins: nature, occurrence, effect and detection. NATO Science for Peace and Security Series A: Chemistry and Biology, Springer, Netherlands: pp. 159–178. http://doi.org/10.1007/978-1-4020-8480-5_5
  • Gross, E.M. (2003). Allelopathy of aquatic autotrophs. Critical reviews in plant sciences, 22, 313–339. https://doi.org/10.1080/713610859
  • Guillard, R.R., Sieracki, M.S. (2005). Counting cells in cultures with the light microscope. Algal Culturing Techniques, 239–252. http://doi.org/10.1016/B978-012088426-1/50017-2
  • Guillard, R.R.L. (1975). Culture of phytoplankton for feeding marine invertebrates. In: W.L. Smith, M.H. Chanley (eds.), Culture of marine invertebrate animals. New York, USA: Plenum Press, 26–60. http://doi.org./10.1007/978-1-4615-8714-9_3.
  • Guiry, M.D., Guiry, G.M. (2021). AlgaeBase World-wide electronic publication. Galway, Ireland: National University of Ireland, Galway. http://www.algaebase.org; searched on 17 June 2021
  • IAS. (1996). First world congress on allelopathy. A science for the future. http://www-ias.uca.es/ bylaws.htm#CONSTI.
  • Inderjit, Dakshini, K.M.M. (1994). Algal allelopathy. The Botanical Review, 60, 182–197. https://doi.org/10.1007/BF02856576
  • Ishii, T., Okino, T., Suzuki, M., Machiguchi, Y. (2004). Tichocarpols A and B, two novel phenylpropanoids with feeding-deterrent activity from the red alga Tichocarpus crinitus. Journal of Natural Products, 67, 1764–1766. https://doi.org/10.1021/np0498509
  • Kakisawa, H., Asari, F., Kusumi, T., Toma, T., Sakurai, T., Oohusa, T., Hara, Y., Chiharai, M. (1988). An allelopathic fatty acid from the brown alga Cladosiphon okamuranus. Phytochemistry, 27, 731–735. https://doi.org/10.1016/0031-9422(88)84084-6
  • Kristinsson, G., Jónsdóttir, R. (2015). Novel bioactive seaweed based ingredients and products. Nordic Innovation Publication, Digitala Vetenskapliga Arkivet, Oslo, p. 72.
  • Latała, A., Jodłowska, S., Pniewski, F. (2006). Culture Collection of Baltic Algae (CCBA) and characteristic of some strains by factorial experiment approach. Algological Studies/Archiv für Hydrobiologie, 122, 137–154. http://doi.org/10.1127/1864-1318/2006/0122-0137.
  • Legrand, C., Rengefors, K., Fistarol, G.O., Granéli, E. (2003). Allelopathy in phytoplankton – biochemical, ecological and evolutionary aspects. Phycologia, 42, 406–419. https://doi.org/10.2216/i0031-8884-42-4-406.1
  • Lu, H., Xie, H., Gong, Y., Wang, Q., Yang, Y. (2011). Secondary metabolites from the seaweed Gracilaria lemaneiformis and their allelopathic effects on Skeletonema costatum. Biochemical Systematics and Ecology, 39, 397–400. https://doi.org/10.1016/j.bse.2011.05.015
  • Machado, M.D., Lopes, A.R., Soares, E.V. (2015). Responses of the alga Pseudokirchneriella subcapitata to long-term exposure to metal stress. Journal of Hazardous Materials, 296, 82–92. https://doi.org/10.1016/j.jhazmat.2015.04.022
  • Molisch, H. (1937). The influence of one plant on the other, allelopathy (Der Einfluss einer Pflanze auf die andere, Allelopathie). Germany: Fischer Jena. [In German]
  • Nagayama, K., Shibata, T., Fujimoto, K., Honjo, T., Nakamura, T. (2003). Algicidal effect of phlorotannins from the brown alga Ecklonia kurome on red tide microalgae. Aquaculture, 218, 601–611. https://doi.org/10.1016/S0044-8486(02)00255-7
  • Rice, E.L. (1984). Allelopathy. 2nd ed. Orlando, Florida: Academic Press, pp. 423.
  • Schreiber, U., Endo, T., Mi, H., Asada, K. (1995). Quenching analysis of chlorophyll fluorescence by the saturation pulse method: particular aspects relating to the study of eukaryotic algae and cyanobacteria. Plant and Cell Physiology, 36, 873–882. https://doi.org/10.1093/oxfordjournals.pcp.a078833
  • Song, H., Lavoie, M., Fan, X., Tan, H., Liu, G., Xu, P., Fu, Z., Paerl, H.W., Qian, H. (2017). Allelopathic interactions of linoleic acid and nitric oxide increase the competitive ability of Microcystis aeruginosa. The ISME Journal, 11, 1865–1876. https://doi.org/10.1038/ismej.2017.45
  • Suikkanen, S., Fistarol, G.O., Granéli, E. (2004). Allelopathic effects of the Baltic Cyanobacteria Nodularia spumigena, Aphanizomenon flos-aquae and Anabaena lemmermannii on algal monocultures. Journal of Experimental Marine Biology and Ecology, 308, 85–101.
  • Suzuki, M., Yamada, H., Kurata, K. (2002). Dictyterpenoids A and B two novel diterpenoids with feeding-deterrent activity from the brown alga Dilophus okamurae. Journal of Natural Products, 65, 121–125. https://doi.org/10.1021/np010234b
  • Suzuki, Y., Takabayashi, T., Kawaguchi, T., Matsunaga, K. (1998). Isolation of an allelopathic substance from the crustose coralline algae, Lithophyllum spp., and its effect on the brown alga, Laminaria religiosa Miyabe (Phaeophyta). Journal of Experimental Marine Biology and Ecology, 225, 69–77. https://doi.org/10.1016/S0022-0981(97)00208-6
  • Śliwińska-Wilczewska, S., Maculewicz, J., Barreiro Felpeto, A., Vasconcelos, V., Latała, A. (2017). Allelopathic activity of the picocyanobacterium Synechococcus sp. on filamentous cyanobacteria. Journal of Experimental Marine Biology and Ecology 496, 16–21. http://doi.org/10.1016/j.jembe.2017.07.008.
  • Śliwińska-Wilczewska, S., Wiśniewska, K., Konarzewska, Z., Cieszyńska, A., Barreiro Felpeto, A., Lewandowska, A.U., Latała, A. (2021). The current state of knowledge on taxonomy, modulating factors, ecological roles, and mode of action of phytoplankton allelochemicals. Science of the Total Environment 773, 145681. https://doi.org/10.1016/j.scitotenv.2021.145681
  • Wang, R., Xiao, H., Zhang, P., Qu, L., Cai, H., Tang, X. (2007). Allelopathic effects of Ulva pertusa, Corallina pilulifera and Sargassum thunbergii on the growth of the dinoflagellates Heterosigma akashiwo and Alexandrium tamarense. Journal of Applied Phycology, 19, 109–121. https://doi.org/10.1007/s10811-006-9117-8
  • Złoch, I., Śliwińska-Wilczewska, S., Kucharska, M., Kozłowska, W. (2018). Allelopathic effects of Chara species (C. aspera, C. baltica, and C. canescens) on the bloom-forming picocyanobacterium Synechococcus sp. Environmental Science and Pollution Research, 25, 36403–36411. https://doi.org/10.1007/s11356-018-3579-5

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.ojs-issn-2545-0999-year-2021-volume-6-article-8276
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.