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1. INTRODUCTION

The Prisoner's Dilemma with its generalizations are very important as an
example of conflicts and social dilemmas. As we can find in Dawes (1980), social
dilemmas are real life problems which have two properties: 1. each individual
receives a higher payoff for a socially defection choice than for a socially
cooperative choice, no matter what the other individuals in society do; 2. all
individuals are better off if all cooperate than if all defect.” An example of such
situation in real life is a problem of soldiers who fight in a battle. They are
personally better off taking no chances, yet if no one fight against the enemy,
then the result will be worst for all of soldiers. Such dilemmas can be found
among resource depletion, pollution and overpopulation.

Social dilemmas are games in which there is a conflict between individual
rationality and optimality of the equilibrium payoff. Since it is observable that
people cooperate with each other in the real situations, game theorists have
faced the obstacle, how to construct simple tools to encourage players in such
games to cooperate with each other. The model need to approximate the real
situation and strategies should be likely to use.

A natural approach is to consider the infinitely repeated game. Usually, all
players observe the whole history of action profiles used in previous stages of
the repeated game. Such situation is called the game with complete information.
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The strategies are functions from the set of the histories into the set of actions.
Payoffs in the repeated game are either the discounted sum of stage payoffs or
the limit of average payoffs. The aim of this approach is to obtain the Nash
equilibrium in the repeated game with the pair of payoffs which is close to the
cooperation payoffs in the stage game. Since the fifties of the last century there
appeared various folk theorems which was not explicitly published and, in many
cases, the original author is unknown.

The classic Prisoner's Dilemma is a 2-player game, in which each player has
two actions, usually denoted as C (cooperation) and D (defection). The game
has a unique Nash equilibrium — a pair of actions such that the action of each of
the players optimize this player’'s payoff given the action of the opponent. The
Nash equilibrium is the action profile (D, D) which is the pair of strictly dominant
actions i.e. playing D is better than C whatever the other player does. What is
more, both players benefit changing (D, D) into (C,C). So, the mechanism of
individual rationality fails in the Prisoner’s Dilemma and it leads to a loss of both
players. It means that the Nash equilibrium is not Pareto-optimal in this case.

One of solutions for lack of cooperation of the Nash equilibrium in the stage
game is an idea of good strategies introduced in Smale (1980) for the repeated
Prisoner’s Dilemma. Every pair of good strategies is a Nash equilibrium in the
repeated game with Pareto-optimal payoffs corresponding to the payoff of (C, C)
in the stage game. The second advantage of the good strategies equilibrium is
the warranted minimal payoff for the non-deviating player. The minimal payoff is
equal to the Nash payoff in the stage game. Good strategies have yet another
advantage that has not been pointed in Smale (1980). Choosing a good strategy
appropriately, the player controls the second player's payoff. For every € > 0
there exists the e-good strategy of the first player such that for an arbitrary
second player’s strategy, the first player's payoff will be at most £ smaller than
the second player’s payoff. The Prisoner’s Dilemma is symmetric, so the second
player also can choose the e-good strategy which provides him no worse payoffs
than the first player's one minus «.

In fact, good strategies have properties that was postulated in Axelrod (1984).
In 80’s he studied the evolution of cooperation. It refers to how cooperation can
emerge and persist as elucidated by application of game theory. He organized
a tournament in which game theory experts submitted their strategies and each
strategy was paired with each other for 200 iterations of Prisoner's Dilemma.
Accumulated payoffs through the tournament was treated as a score. The
winner was the strategy submitted by Arnold Rappaport — Tit for Tat. The
additional advantage of this tournament was detecting what properties strategies
should satisfy to encourage players to cooperate. They should be: nice,
forgiving, retaliatory and are founded on simple rules. Good strategies have
these properties and, what is more, player cooperates until the other player’s
average payoff is greater than his average payoff plus . By choosing ¢, the
player determines the level of his tolerance for the defection.
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In this paper we shall consider the generalization of the idea of good
strategies onto the Prisoner’s Dilemma type repeated game for three players.
We consider the repeated game with a partial monitoring. We assume that, after
each stage, all players can only observe an aggregated history — the arithmetic
mean of the payoffs from previous stages. The stage game is a symmetric
3-player game where each player has an action set consisting of two actions:
I and NI®. We assume that the action profile (NI,NI,NI) is the only Nash
equilibrium, and the sum of the players payoffs is minimal for this profile. The
sum of players payoffs is maximal for the profile (I,1,1). The strategy profile in
the repeated game is a function s:S — {I, NI}3, where S c R® is a convex hull of
the set of the payoffs in the stage game.

An example of a game considered in the paper is given in Example 2 (section 3).
The strategy profile (NI, NI, NI) is the only Nash equilibrium. The common payoff
corresponding to the equilibrium profile (3. = 60) is the lowest possible one. The
strategy NI dominates the strategy I, i.e. the action NI gives higher payoff then
the action I despite of the action of other players. So, the example has
properties typical for real-life situations called tragedy of commons. The rational
player should choose the action NI that dominates I but in real-life situations the
cooperation is often observed (comp. Axelrod, 1984). So, it appears a question
"How to explain theoretically a player inclination to cooperation that is observed
practically?” It is known that one of the strongest factors that motivate
cooperative behavior is the repetition of the game. In the paper we assume that
the game is repeated infinitely times. Infinite time horizon well approximate real
life situations of finite (= 20) but unknown time horizons. Our aim is to construct
an equilibrium strategy profile in the repeated game that motivates every player
to cooperation. We assume that after every repetition players know the average
payoff of every player from previous stages. Briefly speaking, an equilibrium
strategy of player i bases on the comparison of her average payoff x; with
average payoffs x;, x, of remaining players. Player i cooperates (chooses I) if
x; <x;+¢ and x, <x;+ e If one of the remaining players’ average payoff is
greater to x; + € then she stops cooperation and chooses NI. Precise definition
of an e-good strategy is given in (19). The positive constant € is a measure of
player’s tolerance for others players defection.

Our aim is to construct a strategy profile s* which is an approximated strong
Nash equilibrium in the repeated game under consideration. The constructed
equilibrium is safe in the meaning that the payoff of a player choosing strategy s;
is not less then the equilibrium payoff in the stage game. This payoff is assured
even if the other two players choose an arbitrary strategy. Furthermore, the
e-good strategy guarantees that, in long time horizon, other player's average
payoff will not exceed the good strategy player’s average payoff by more than «.

& From now on, we choose to name strategies with I and NI, where I means invest and it corre-
sponds to strategy C and NI corresponds to strategy D.
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In the framework of the repeated game, a e-good strategy is an individually
rational strategy. It theoretically explains the players’ inclination to cooperation in
the repeated three players Prisoner’s Dilemma.

The notion of the strong equilibrium in the framework of repeated games was
introduced by Aumann (1959, 1961, 1967), who showed that every payoff that
belongs to the B-core of the stage game is a strong equilibrium payoff in the
corresponding repeated game (comp. Sorin, 1992, Thm. 6.2.2). Despite the fact
that the payoff corresponding to the profile (I,1,1) belongs to the p-core, our
result is not exactly a case of the Aumann results. We have dropped the
assumption of the full monitoring. Players do not observe the full history, i.e. the
sequence of actions selected by all players in the previous periods. Instead, we
assume that they observe the aggregate history, i.e. the arithmetic mean of the
previous payoffs of all the players. It is worth noting that the results on the
existence of strong equilibria (comp. Konishi, 1997 and Nessah, 2014) do not
apply to the repeated game considered in the present paper.

The repeated Prisoner's Dilemma for more than two players has been
considered in Behrstock (2015). The e-good strategies constructed in the paper
have some additional properties to the strategies in Behrstock (2015), in which the
authors base on similar approchability results as we do in this paper. The difference
is that authors consider N-players Prisoner's Dilemma Game in which strategies
are stochastic processes. In our approach all strategies are deterministic.

The paper is organized as follows. In section 2 we present the basic information
about sequences related to a map of a convex set. We adopt Blackwell’'s
approachability method (comp. Blackwell, 1956) which was originally used in the
framework of 2-player repeated games with vector payoffs. We show that the
Blackwell condition is sufficient to obtain the convergence of the sequence of
arithmetic means to a set called a weak attractor. The weak attractors introduced
in subsection 2.1 have different properties in comparison with approachable sets
in the sense of Blackwell. We provide an example of a singleton being a weak
attractor that does not satisfy the Blackwell condition. Such a situation is not
possible for approachable sets (comp. Shani, 2014, Thm. 8). In repeated games,
there is considered a sequence of vector payoffs. Each payoff corresponds to one
repetition of the state game. Subsection 2.1 provides us necessary results to
analyze the directions in which the ftrajectory shifts and to examine the
convergence of such sequence. This is crucial for defining the payoff in the
repeated game. Subsection 2.2 provides basic properties of the Banach limit
which shall be used to prove that e-good strategies are £ Nash equilibria. In some
of our arguments we not only require that the sequence of mean payoffs
converges to a set, but that almost all its entries belong to the set. A similar
problem named strong approachability was considered in Shani (2014). In section
2.3 we adopt a Lyapunov function method for discrete and discontinuous
dynamical systems to obtain a deterministic strong approachability result.
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In section 3 we consider a repeated 3-player symmetric game. Every player
has two actions: invest (I) or not invest (NI). The vector payoff B = (ps3, ps3, p3)
corresponding to the strategy profile (I,1,1) is Pareto optimal and the strategy
profile (NI, NI, NI) is a Nash equilibrium in the stage game with the payoff vector
(ro,To, o). We assume that, in the repeated game, every player knows the
average vector payoff from the previous stages of the game. The strategy s;: S —
{I,NI}, i € {1,2,3}, is a function from the convex hull S of vector payoffs in the
stage game to the set of his actions {I,NI}. The strategy profile s = (s1,s;,53)
and the vector payoff function G:{I,NI}®> -» R® determine the function ¢ = Go
s:S — S. The strategy profile s and the initial point x, € S determine the trajectory
Xn (s, x,) of a dynamic system given by

= __ NXp+@(Xn)
Xn+1 = n+1

Our aim is to construct a strategy profile s; = (s3,s3,s3) such that for every
X, €S

limx, = B, (1)

n—-oo

where X, = X,(s;, x,1). If one player (for example player 3) deviates then

limsup X3 < p; + ¢, )

n—oo

where X, = X,((s1,53,53),%1) and s;:S — {I,NI} is an arbitrary strategy of player
3. If two players deviate (for example players 2 and 3) then

limsup (X2 + X3) < 2ps, (3)
n—oo
liqurljolgf X5 =1, 4)
limdist (X, {X€S; x, <xq +¢ x3<x;+¢€}) =0, (5)
n-oo

where X,, = X,((s],52,53),X1) and s,,s3:S = {I, NI} are the arbitrary strategies of
players 2 and 3, respectively. By dist(x, A) we denote the distance from the point
x to the set A, i.e. dist(x,A) = inf{|x — a|: a € A}.

If the payoff is a Banach limit (comp. Conway, 1985) of the sequence of
average payoffs then the strategy profile s; is a strong e-Nash equilibrium in the
repeated game as a consequence of (1-3). Property (4) implies that the non-
deviating player’s payoff is no smaller than the payoff corresponding to the Nash
equilibrium in the stage game. Property (5) guarantees that the deviating player’s
payoff will not exceed the good strategy player's payoff by more than e. The
results presented in Theorems 3.1, 3.2, 3.3 give a partial answer to the question
asked by Smale in the last Remark in section 1 of Smale (1980, p. 1623).
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Section 4 contains concluding remarks. In Appendix we present the proofs of
theorems from subsection 2.3.

2. PRELIMINARIES
2.1. Approachability results

Let H be a finite dimensional vector space and (-), |-| denote an inner
product and a norm in H, respectively. We assume that S is a nonempty convex
closed subset of H. By N¥(B) we denote an e-neighbourhood of the set B in S,
i.e. N¥(B) = {x € S: dist(x, B) < €}. The closure (the convex hull) of the set A we
denote by cl(A) (co(4)) .

We study limit properties of sequences (X,)n; defined by a map ¢:S — S and
an initial point x; € S by

- Xy + @Xn)
Xn+1 = ﬁ' X1 = X1, (6)
The sequence (X,) can be interpreted as a sequence of arithmetic means

Xy = %(x1 + - +x,), where xp,; = @(Xy). The map ¢ defines a dynamical
system f3,:S — S by

nx + @(x)

Tl n=12,...

Bn(x) =

We denote by X, (o, x,) a trajectory determined by (6).
We say that a closed set Ac S is a weak attractor for a dynamic system
determined by the map ¢ if for every x; € S we have

lim dist(X, (¢, x4),A) =0,
n—oo

where dist(-,A) denotes the distance to the set A. We provide some sufficient
conditions for being a weak attractor.

First we formulate Blackwell approachability type theorem that originally was
presented in Blackwell (1956) in the framework of repeated games with vector
payoffs. We say that a map ¢:S — S satisfies the Blackwell condition for a set
A c Sinthe domain D c S if

VX €D, dy € HA(X)! (X -y (P(X) - Y) <0 (7)

where I1, (x) denote the set of points in A that are proximal to x, i.e. [I4(x) = {a €
A: |a — x| = dist(x,A)}.
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The deterministic version of the Blackwell approachability result can be formu-
lated in the following way.

Proposition 2.1 Suppose that the map ¢:S — S satisfies the Blackwell
condition for a closed set A c S in the domain D c S. If almost all elements of the
bounded sequence x, (o, x;) belong do the set D then

lim dist(%,, A) = 0.
n—oo

We provide the proof of Proposition 2.1 for the reader convenience.
Proof: For a sufficiently large n we choose y € Ik (X,) and then

1 2
oy 1(cp(xn) -y)| =

dist(Rps1,A)2 < [Rnpq — Y12 =

n-l—l()_(n_Y)—l—

2
n \2 _ 5 1 ) n _
= (3D Wy + (5g) 100 = ¥P2 + 2 s =y, 00) =) <

< (ﬁ)2 dist(%,, A)? + (L)2 C,

n+1

where C is an upper bound of dist(x,,A). Setting d, = n%dist(x,,A)?> we have
dpsq < dy + Cforn =ng. Thus d,, < d,, + (n —ny)C. So

. — 1 n-n
dist(%n, A)? < = (dy, +22C). QED

Corollary 2.2 If the map ¢: S — S satisfies the Blackwell condition for a closed
set A c S in the domain S, then the set A is a weak attractor for . If the set A c S
is convex and the map ¢:S — A maps into the set A then the set A is a weak
attractor for .

Taking A = (—oo,c] in Proposition 2.1 we obtain the following property of real
sequences.

Corollary 2.3 Suppose that (a,);2, is a bounded sequence in R and (3a,)5-,
is the sequence of arithmetic means, i.e. 3, = %Zﬂ:l ay. If we have

@a,>c = ag1 <0
for almost all n and a fixed constant c € R, then

limsup 3, <c.

n—oo
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In many cases the set A is a weak attractor despite that the Blackwell condition
is not satisfied. Such a situation occurs in repeated games that we study in section
3. Below we present two properties of weak attractors which are necessary for our
reasoning.

Proposition 2.4 Suppose that the sets A,B c R are nonempty closed and B
is bounded. If a sequence x,, satisfies

lim dist(x,,A) = limdist(x,, B) = 0,
n-o

n—-oo
then

lim dist(x,, AN B) = 0.

n—-oo

Proof: We choose a, € A, b, € B such that
|x, — ay| = dist(x,,A), |x, — by| = dist(x,, B)

Since the set B is compact, we obtain that the sequences (a,), (b,), (x,) are
bounded and they have the same nonempty set C of accumulating points. Thus
lim,,_, . dist(x,,C) = 0and Cc AN B.

QED

Proposition 2.5 We suppose that a closed set A c S is a weak attractor for
the map ¢:S — S and a closed subset B c A satisfies

Ve > 0,36 > 0, ¢ satisfies the Blackwell condition
for the set cI(N¥(B)) N A in the domain N%(A). )

Then the set B is a weak attractor for ¢.

Proof: Fix x; € S and € > 0. By (8), we choose 6 > 0 such that almost all
elements of the trajectory %,(¢,x;) belongs to N®(A). By Proposition 2.1, we
obtain

lim dist(%,, cI(N¥(B)) N A) = 0.
n—oo

Thus

limsup dist(X,, B) < «. QED

n—-oo

The method illustrated in Proposition 2.4 and Proposition 2.5 bases on the
scheme that we explain in the following example.
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Example 1 LetS = R? a,b€ R? a, < 0,b, >0,a; # b, and

_(a ify>0,
‘P(X'Y)‘{b ify < 0.

We show that lim,,_,.X, = d for every X, € R?, where the limit d is the point of
intersection of the interval ab with the line p = {(x,y): y = 0}. The set D = {d} does
not satisfy condition (7). Indeed, if a;, <b; and x> d; then ¢(x,0)=Db and
((x,0) = (dq,dy), ©(x,0) — (d;,d;)) > 0. To show that the set D is a weak attractor
we point out weak attractors A, B such that D = An B. We set A = p and B = ab.
The sets A, B satisfy the Blackwell condition (7). By Theorem 2.1, we have

lim dist(X,,A) = limdist(x,, B) = 0.
n-o n-—-o
Applying Proposition 2.4 we obtain that lim,_, X, = d.
Finally, we shall formulate a property of the dynamical system.

Proposition 2.6 If the set S is bounded then for every € > 0 there exists N € N
such that for alln > N and for all x € S

IBn(x) — x| <,
where the map ¢: S — S determining 3, is arbitrary.
2.2. Payoff in the repeated game

Considering a sequence of payoffs in the repeated games we always receive
a bounded sequence. As we presented in (6), the dynamic is the vector of the
arithmetic mean of the payoffs received in the previous repetitions. To analyze
such sequence, the following proposition shall be useful.

Proposition 2.7 Suppose that ag,ay,...,ax € RY and let T € N. Then for all
€ >0 and for all ny, ...,n, = 0 such that n, + -+ ny = n, where n is sufficiently
large, we have

T + ng - Ny
—a —a Ry
T+n“® T+n"? T+n

ax € Ng(cofay, ..., ax}).

Proposition 2.7 is a consequence of the fact that Tt art et hag €

co{ay, ..., ax} and % |lag — a,| is small where n is sufficiently large.

To define the payoff in repeated games we shall use the Banach limit (comp.
Conway, 1985). The Banach limit L is a continuous linear functional definite on
the space 1* of bounded scalar sequences. If (x,) is a bounded sequence of
points in RY then Lim (x,):= (Lim (x;),Lim (Xny), -, Lim (Xpq)), where x, =
(Xn1,Xn2s > Xnd)- SO Banach Limit can be extended onto the space of bounded
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sequences of points in RY. If @:RY - R is a linear functional then ¢( Lim (x,)) =
Lim (@ (xn)).

Proposition 2.8 If A is a compact convex subset of RY and a sequence (x,) ©
RY satisfies lim,,_, . dist(x,, A) = 0, then Lim (x,,) € A.

Proof. Suppose to the contrary that Lim (x,) € A. Then there exists a functional
@:R4 > R such that ¢@(Lim (x,)) > supaea@(@). We have limsup,_.@(x,) <
supaea@(a). Thus

@(Lim (x,)) = Lim (@(x,)) < 1irrgs£p<p(xn) < ‘?éf(p(a)

which gives the contradiction. QED
2.3. A lapunov type results

The Lapunov function method is typically used to study stability of equilibrium
points for dynamical systems. Using the Lapunov function method we obtain
a strong approachability result for a dynamical system determined by a multivalued
map.

Let H be a Hilbert space and p;,,...,px € H be unit vectors, i.e. |p;j| = 1. We
define a function V:H —» R by

V(x) = ier{r%i)'(k}vi(x) where V;(x) = (pj, x). 9)

The function V is a support function of the set {v,, ..., v}. So, the function V is
convex, positively homogeneous and lipschitz continuous with the constant L. =
1 (see [11]).

Set

k
ﬂ X € H:Vi(x) < ¢} = {x € H:V(x) < c}.

i=1

A

Let us denote by ¢:S — S a multivalued map of a subset S c H.
Definition 2.9 We say that V is the Lapunov type function for the multivalued
map ¢ with the constant ¢ > 0 if

I0<8<VxeES\A,Vi=1,...,kVowE px), (Vix) =Vx)—8 =
Vi(w) < 0).

(10)
If the function V satisfies

VX € S\A,, Vo € @(X), Vi € {1,..,k} Vi(x)>0 = Vi(w) <0, (11)

then V is the Lapunov type function for ¢ with the constant c.
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If V is the Lapunov type function for ¢ with the constant c and ¢; > cthen V is
the Lapunov type function for ¢ with the constant c;.

To explain why we say that V is the Lapunov type function observe that if
Vi(x) = V(x) then p; € dV(x), where dV(x) is the subdifferential of a convex
function. The condition (10) implies the following inequality

(P, w—x) <(p;,w) —(pp,x) <0—-VE)+6<8—c<0 forx€S\A,

which means that V is the Lapunov function for the vector field f(x) = w — x.

Proposition 2.10 Let S be a nonempty bounded convex subset of H and the
function V:H — R given by (9) be the Lapunov type function for the multivalued
map ¢: S — S with the constant ¢ > 0. If a sequence (X,,);%; satisfies

NXp+Xn+1

)_(1 = X1 € S, )_(n+1 = T' Xn+1 € (p(XH)Y (12)

then
Ve, >c¢ 3N, vn =N, X, € Acl.
The proof of Proposition 2.10 is technical and it is presented in Appendix.
3. THE MODEL AND MAIN RESULTS

Let G be a 3-player symmetric game and every player has two pure actions:
“invest” (I) or "not invest” (NI). By P; (Py;) we denote the payoff for an investing
(not investing) player. All payoffs depend on the total number of investing
players. If n € {0, 1, 2, 3} is the total number of investing players, then

n P(n) Py
0 - o
1 py ry
2 p; Iy
3 p3 -

The game G in the normal form is given by the matrix:

[ (P2,T2,P2)  (P3,P3,P3)
NI (ry,ry,p1) (2, P2, P2)
NI I

when the third player invests, and by the matrix

I (Pu,r11) (P2, P2, 12)
NI (ro,ro,To) (ry,P1,T1)
NI I

when the third player does not invest.
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We shall assume that the functions P;(+), Py;(-) are increasing:
0<ry<r; <r, and 0 <p; <p; <ps (13)
We assume that
p1 <1y (14)

By (14), the outcome (NI, NI, NI) is a Nash equilibrium. We assume that the
more players invest, the greater the sum of all players payoffs is, i.e.

3rg < p; + 2r; < 2p, + 1, < 3ps. (15)

By (15), the vector payoff (ps, ps,p3) is Pareto optimal. In fact, the condition
(15) means even more — the vector payoff (ps,ps, p3;) maximize the sum of
payoffs. To obtain a strong equilibrium in the repeated game we assume that:

p1 + 11 < 2ps. (16)
We additionally assume that:
p2 <r3. (17)

Observe that from the opposite inequality r, < p, implies that (ps,ps3,p3) is
a Nash equilibrium payoff, what we wanted to avoid.
We introduce the following notations

A = (g, T'o, To),

B = (p3, p3, P3),

C%: = (p1; ry, rl)t
Cy:= (ri,p1, 1),
C3:= (ry, 11, p1)s
Cf:= (r2,p2,p2),
C3:= (P2, T2, P2),
C3:= (P2, P2 T2)-

If i players invest (i € {1,2}) then Cji denotes the vector payoff in the game G.
If i=1 then j shows which one invests, while if i = 2 then j tells which player
does not invest.

The strategy profile in the iterated game is given by a map s:S — {I,NI}3,
where S is the convex hull of vector payoffs set, i.e.

S = cofA, B, C},C}, CL, €2, C2, C2}.
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The strategy profile s determines a dynamical process 3,:S = S

Bn(x) = %‘pl(x), forx €S, n€N, (18)

where @:S — S is given by the formula ¢ = Gos. Observe that a pair (s,x;),
where s is a strategy profile and x; € S, uniquely determines a sequence (X,)n=,
by:

X1 =Xy, Xpgr = Bn(Xn)-

We denote the obtained sequence by X,(s,x;). A similar construction of a
sequence was considered in section 2. The strategy profile s and the initial point
X4 € S uniquely determine a play path. The action profile in the next stage s(x,)
depends on the average vector payoff X,,. The element x,,, is the vector payoff
in n + 1 stage. We do not assume that the players observe the full history of the
game. Instead, they observe aggregated history — the arithmetic mean of vector
payoffs.

Motivated by the Smale construction in Smale (1980) we define an e-good
strategy for the i-th player s{: S — {I, NI} by

I ifxev,
€ _ ir
si() = {NI ifx € S\V;, (19)

where

Vi = Qf\wi'
Qf = {X€S: x;>x;—ecandx; > x, —¢g},
W= {x€S: x <rporx;+x; > 2ps},

where i, j, k are pairwise different elements of the set of players {1,2,3}. The
player invests if his average payoff is greater than the every other players’
average payoff minus €. The player stops investing if his playing I has been
exploited by his opponents, that is either the average payoff of the player is
lower than the payoff guaranteed by Nash equilibrium (x; < ry) or the sum of the
other players’ average payoffs is greater then the sum of their payoffs
corresponding to the Pareto optimal profile (I, 1, 1) (x; + xix > 2p3).

First we consider the case when all players choose good strategies. Then the
average payoffs vector tends to the point B corresponding to the Pareto optimal
profile (I, 1, 1).

Theorem 3.1 Suppose that s{:S — {I, NI} are the e-good strategies for i =
1,2,3. Then
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limx+ = B,
T-oo T
where X1 = X1((s, s5,s5),x1) and x, is an arbitrary element of S.

Now, we consider the case when two players play good strategies and the
third one deviates and chooses an arbitrary strategy. The deviating player does
not improve their payoff more then gs, where the positive constant € can be

chosen arbitrarily small by the two non-deviating players.

Theorem 3.2 Suppose that the first and the second player choose the e-good
strategies sf, s§ and the third player plays an arbitrary strategy s;:S — {I,NI}.
Then

limsup %3 < ps + £5,(20) (20)

T—oo 3’
where X1 = X1((s, s5, s3),%X1) and x, is an arbitrary element of S.

At the end of the section we show an example of the third player strategy,
such that the upper limit of his average payoffs is strictly grater than p;.

Now, we consider the case when two players deviate.

Theorem 3.3 Suppose sf is the e-good strategy for the first player and s,, s
are arbitrary strategies. Then

. . —1
ll%n_)lgf XT =TI, (21)
limsup (X% + X3) < 2p;, (22)
Tooo
%ggodlst & V1) =0, (23)

where X1 = X1((s, 52, 53),X1) and x, is an arbitrary element of S.

Suppose that the payoff in the repeated game is defined as the Banach limit
of average payoffs. The inequality (22) provides that if two players deviate then
at least one of them will not improve his payoff. Conclusions (21) and (23) mean
that the good strategy is safe, i.e. the non-deviating player’s payoff is not smaller
than the Nash equilibrium payoff in the stage game and, moreover, the deviating
player’s payoff is not greater than the non-deviating player’s payoff plus € (comp.
Proposition 2.8).

By Theorems 3.1 — 3.3, we obtain

Corollary 3.4 The strategy profile s® = (si,s5,s$) satisfies (1-5). If we define
the payoff in the repeated game as a Banach limit of average payoffs, i.e LimX
then the strategy profile s is a safe and strong € Nash equilibrium.
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Below we provide some elementary properties of sets V; that are used in the
definition of good strategies. We assume that i, j, k are pairwise different
elements of the set of players {1, 2, 3}. We shall use the following notations

V3= ﬂi3=1 Vi
VZ = (S\W) nV;nV
Vit = Vi N (S\V)) N (S\Vi)
If each player plays good strategy then
B ifxeV?
e(x) ={Cl ifxeV!forie {123} (24)
C? ifx € V?forie {1,2,3}

Proposition 3.5 Suppose that player i plays ¢-good strategy for i = 1,2, 3.
Then

QNW =9, (25)
Vicq, (26)
where
Q; = {x € S:x; = max{xq,X,,X3}}
If we assume that g; = ¢; (=: €) then
Vin (S\V)) € Q; U @;. (27)
If we assume that g; = ¢; = g, (=:¢) then for every i € {1, 2,3} we have
VZc o, (28)
where
@; = {x € S: x; = min{xy, X,, X3}}.
Proof: If x; <r, and x; = max{x;,x,,x3} then x; +x, + x5 < 3r,. If x; + x>
2p; and x; = max{x,,X,,X3} then x; + x, + X3 > 3p;. Since 3ry < x; + X, + X3 <
3p; for x € S, we obtain (25).

As (S\V)nQ; =0 and (S\Vix)NQ =0 we have (S\Vj)) N (S\Vy) c S\(& U
Q) c £;, and consequently we obtain (26).
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To prove conclusion (27) we take i=1, j=2. As (W,\W;)nd; =@ and
(Q3\®;) € &, we obtain W,\W, c (Q; UQ;)\P, € Q, UD,. If xe QI\Q5 then
either

X, <X;— ¢
or
X, <X3—eandx; >x;3—¢ (X € QD).

In both cases we obtain x, < x; and thus x € Q, U ®,. Since V; n (S\V,) c
(QI\Q%) U (W,\W;), we conclude that

V, N (S\V,) € Q, U d,.

If x; <xj—¢ (x€Qf) and x, > x;—¢ (x € Qi) then x € D;. If x; <x,—¢ (x &
Qf) and x; > x, — £ (x € &) then x € @;. Thus (S\Q) N QF N Qf < d;.

If x € V; then x ¢ W, and hence x; = rp and x; + xx < 2p;. If xEW; nV; N
Vi then either x; <, Xj =1y, Xi = 1o OF X + Xy > 2p3, X; + X < 2p3, X; +
Xj < 2p3. In both cases we deduce that x € ®;. So VZ c &;. QED

First we prove Theorem 3.3.

Proof: The strategy s; is the e-good strategy, so if X+ <r, then X =
(x1,%%,%3) e W; and s;(Xr) = NL. It means that the next vector payoff xr,;
belongs to the set {A, C3,C3,C?}, so xt,4 € {ro, 1y, 1}, i.€. x4, =1, (see (13)). By
Corollary 2.3 we obtain that limsupq_,. — X} < —Ty, SO liminfq_, X+ > ry.

Similarly, if X3 + X3 > 2p; then sj(Xr) = NI. Thus the sum xZ,, + x3,, is one
of the numbers: 2ry, p; + ry, 2p,. From the assumptions (13), (15) and (16), it
follows that x%,; + x3,,; < 2p5. By Corollary 2.3, we get

limsup X% + X3 < 2ps.

T—oo

If xeS\V; then siXp)=NL So, ¢@(x)=G((s1,S253)(X))€E
{A,C3,C3,C%} c v,. By Corollary 2.2, the set V, is a weak attractor for . QED

Let m,:R® - u be the orthogonal projection onto the line u={x € R3:x; =
X, = x3} and mp: R® —» P be the orthogonal projection onto the plane P = {x €

R®: %, + X, + X; = 0}. Obviously m, (x) = (X2 Xatxetis i) ang m, (x) =
x — My (x). In the remainder of the section we denote the projection of a point (a
set) A onto the plane P by 4, i.e. A = mp(A). The projection of the set S onto the

plane P:

)

g: = T[p(S)

is the convex hull of the hexagon with successive vertexes C}, C3, C3, €2, C1, C2.
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Set

1

Vl ﬁ(oﬁ _1;1); V4 - _Vl;
1

v, = —(—1,0,1), Ve = —V,,
\/f( ) 5 2
1

V3 - ﬁ(_lﬁllo)l V6 - _V3l

and

Ac(K) = Niek {y € S:(vi,y) < ¢},
where K c {1, ...,6} and c > 0. One can easy check that

x € QO © mp(x) € A.({2,3)),
x € Q5 © mp(x) € A({1,6}),
X € Qf © mp(x) € A({4,5}),

where ¢ = % Setting 0f = N3, Of and A, = A ({1, ...,6}) we obtain

X € Qf o mp(X) € A.. (29)

Now, we are able to prove Theorem 3.1.

Proof: Fix x, € S. It is sufficient to show that in the sequence Xt = X1(s*,%X;)
there exists an element Xy belonging to V3, where s* = (s§,s%,s5). Indeed, if Xy €
V3 then Xy,x = %XN + ﬁB, so limp_, Xy = B.

First we show that almost all elements of the sequence X belong to Q" =
N, Q) for every n > 0.

The map ¢ given by (24) is determined by the strategy profile s*, i.e. ¢ = Go
s*. Consider @:S » Sand V:P - R given by

Px) = {mp(e(y)): mp(y) =x},
V(x) = max{{v;,x):i =1, ...,6}.

We verify that V is a Lapunov type function for @ with the constant c, for an
arbitrary ¢ > 0. Let us fix x € S such that (v;,x) > 0. If y € S and mp(y) = x then
(vq,y) = (v1,x).Thus y; —y, > 0 and therefore y & Q, U ®;. By (26), (28), we
have y & V1 U VZ. Since ¢(y) € {C},C},C2,C%, B}, we obtain (v;,w) <0 for w €
P(x)). We use similar arguments to show that if (v;,x) > 0 and w € §(x) then
(v ) <0, fori=2,..,6.
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Fix 1 < min{e, ps — 22272, 2222 _ v} By Proposition 2.10 and (29), there

exists N such that x, € Q" for n > N. We claim that there exists M > N such that
Xy € V3. Suppose to the contrary that Xy & V3 for every M > N. Then ¢(Xy) €
{c},c3,ci,c?,c3,c31 for M>N. By Proposition 2.7, we obtain that zy €
(p1+23r1—n’2p2+3r2+n) for M sufficiently large, where the point (zy,zy,zy) is the
projection of X onto u.

But, if x € QM\V3 then 222052 @ (1220l 2oty ndeed, if x; + X; > 2p;

>p3—g. If x; <ryand x € Q" then

Xq1+Xp+X3 Xq1+Xp+X3

3

and x € Q" then <ro+ gn.

QED
Now, we are in a position to prove Theorem 3.2.
Proof: Let x, € S and n1 > 0. Our aim is to prove that almost all elements of
the sequence Xr = X1((s5,s5,53), X;) belongs to Q*+1:= ;™" n Q5*". We have

X € Q5 & mp(x) € A({1,2,3,6)), (30)

where c: = HT; We show that the function V*: P — R given by

V*(x) = max{(v;,x):i = 1,2,3,6}
is the Lapunov type function for §*:S — S with the constant ¢, where

¢ ={mp(2); z€@"(y), () =x}
and
(C},C3} ify €V, N (S\Vy),
{C3,C3} ify e (S\V))NVy,
@' (y) =y

{B,C3} ifyev,nV,,

{A,C3} ify € (S\V1) N (S\Vy).

The map ¢: S — S induced by the profile (sf,s3,s3) is a selection of .

If (vg,x) >0 (x €S) and mp(y) =x (y €S) then y; >y, and thus y & Q, U ®,.
By (27), we have V, n (S\V;) € Q, U @,. Thus ¢*(y) n {C},C?} = @. So, we have
(ve, w) < 0 for w € §*(x).

Using similar arguments we show that if (v3,x) > 0 then (v;, w) <0 for w €
¢ ().



T. Kufel, S. Plaskacz, J. Zwierzchowska Strong and safe Nash equilibrium... 289

Suppose that (v;,x) = V*(x) =6 (x €S5) and m(y) =x (y € S), where & < %
Then (v,x) = (vi,y) > . If 2€05 then (vy,7) = \/%(23 —7)> %
have y & Q5 oV, and therefore ¢*(y) c {C},C2,C},A}. So, (v;,w) <0 for w €
().

In the similar way we prove that if (v,,x) > V*(x) =8 and w € " (x) then
(v, w) < 0.

Thus, we

By Proposition 2.10, we obtain that almost all elements of the
sequence (mp(Xt)) belongs to A.({1,2,3,6}). By (30), we have that
almost all elements of the sequence (X) belongs to Q™. If x € Q&

then x; > x3 —(e+m) and x, >x3 — (¢ +1m) and so x3 < ps3 +§(£+n)
(X1+X2 +X3 S 3p3 fOI’XE S)
QED

Remark. Reasoning as in the proofs of Theorem 3.2 and Theorem 3.3, we
can conclude that good strategies are safe and strong Nash equilibria not only in
the class of Smale’s strategies, but also if "loyal” players adopt good strategies,
then “disloyal” players can even play the random choice in each repetition.
It does not change the properties (20), (21), (22) and (23).

Example 2 Let the stage game G be given by:

n PF(n) Py(n)
0 - 20
1 10 28
2 18 36
3 26 —

This game satisfies conditions (13) — (17).

Let si:S — {I,NI} be the e-good strategy for the i-th player, i = 1,2, and 0 <
£< % LetZ = conv{A,B,C},C3} = {x € S:x; =x,}and D = (26 —~,26 —>,26 +).
We present the construction of the third player strategy s3: S — {I, NI} such that

%im xr(s*, x,) = D for every x;, € Z.

We have V; N Z =V, nZ. We set

s3(X) = {NI ifx € V; N Z N co{B,D, C}}
3 I elsewhere.
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The map ¢ induced by the strategy profile s* = (s, s3, s3) is given by

B ifx € V; nZ\co{B,D,C}},
@(x)={C? ifx €V, nZnco{BD,CL}
Cl ifx € Z\V,.

The values of the map ¢ outside the set Z have no influence onto the trajectory
Xr(s*,x1) if x;, €Z. The map ¢:Z — Z satisfies the Blackwell condition for the
triangle co{C},C2,D} in the domain Z. The map ¢:Z — Z satisfies the Blackwell
condition for the sum of intervals BD U D_C§ in the domain Z. By Proposition 2.1,
the sets co{C},C2% D} and @UD_C% are week attractors. To conclude that the

interval BD is a weak attractor we apply Proposition 2.5 taking A = BD U D_C§ and
B = BD. By Proposition 2.4, the intersection of weak attractors co{C}, CZ,D} and
A = BD is a weak attractor. The intersection equals to the set {D}.

4. CONCLUSIONS

This paper is concerned with the specific model of social dilemmas. Such
models have a very special place in game theory as they describe real social
problems of modern world: resources depletion, pollution and overpopulation.
The main characteristic of such models is that each player gain more by not
cooperating when opponents fix their choices and all individuals are better off if
all cooperate. The lack of optimality of Nash equilibrium is the most interesting
problem, because as we can observe in the real world, people are keen to
cooperate with each other on the certain conditions. As we can find in Axelrod
(1984), strategies that effectively encourage people to cooperate are: nice,
forgiving, retaliatory and are found on simple rules.

The key idea in our approach is to apply Smale’s idea for 3-payer extension of
Prisoner’s Dilemma. Our strategies are deterministic and satisfy conditions that
are postulated in Axelrod (1984). What is more, e-good strategies satisfy condition
(5) which guarantee that using this strategy our payoff shall not be different than
our opponents payoffs for more than . This constant ¢ is totally controlled by the
player who choose it. This property is not received by any other author.

Our future aim is to extend the idea presented in Plaskacz (2018) onto the type
of games considered in the paper - three players repeated social dilemmas. The
idea is as follows. We would like to analyze the repeated three players game by
evolutionary games methods. To achieve this goal, we threat the repeated game as
a new game in which a player action is a point in the B-core of the original game.
Using methods presented in the paper each point from the fg-core should
determine e-good strategy. The main difficulty is to obtain the payoff in the case
when players choose different points in the -core. The payoffs in the new game
are determined by the payoff in the repeated game.
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APPENDIX

In this Appendix we shall present the proof of Proposition 2.10. We start with
the necessary theorem.

Theorem 5.1 If S is a bounded convex subset of H and V:H — R given by (9)
is the Lapunov type function for the mulivalued map ¢:S — S with the constant
¢ >0, then

Ay >0, Jay >0, Va€e[0,ay], VxeES\4, Yo € @(x)
V(iaw + (1 — 0)x) < V(x) — ay.

Proof: By (10) we choose 6 € (0,c). Let M = sup{|x|: x € S}. For x € S\A, we
define a set of indexes I(x) by

1) =€ fl...k:V(x) = V(x) — 8

and a subset 0; of S, related to the fixed index i:
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0;:={x € S\A.:V;(x) = V(x) — 6} (31)
If x € 0; then Vi(x) > 0 and (p;,w) < 0 for all w € @(x). Obviously, i € I(x) is
equivalent to x € 0; for x € S\A..

We fix positive constants: r, y and a, such that

c—06—-y 1 }
c—8+M'2M’

)
r<E, y<c-—9, a0<min{
and take an arbitrary x € S\A.. The following condition holds true
vy € B(x,r) = {y € S\Ac:|[x —y|| <1} Fi€lx) V(y)=Vi(). (32)
Indeed, if j¢I(x), then Vj(x) <V(x)—8. Since V; and V are lipschitz
continuous with the constant L=1, we get V;(y) < V(y). Therefore, there exists
i € I(x) such that V(y) = Vi(y).
If i € I(x) then Vi(x) 2V(x)—8=c—3& and (p;, w) <0 for w € p(x). Let a €
[0, ap] then x4: = aw + (1 — a)x € B(x, 1) and V;(x,,) < Vi(x,). Moreover,
ViXe) = Vi(Xg,) = —0g[w]| + (1T —ag)(c—=8) =2c—8—apg(c—8+M) =y
and
Vixe) < (1 — a)Vi(x) < Vi(x) — ay.
Thus we have obtained that

Vi €I(x), Va€|[0,0p], VwE€ @(x), Vi(Xy) < Vi(x) — ay. (33)

The function V has the following property: if V(a) = V;(a) and V(b) = V;(b)
then V(Aa + (1 — A)b) = Vj(Aa + (1 — A)b) for A € [0,1] so the set

{a € [0, ap]: Vi(aw + (1 — )x) = V(aw + (1 — a)x)}

is a closed segment. By (32) there exists s < k and a partition 0 =, < ; <...<
Bs = ay such that

Vj € {0, ST 1}' Ji= 1(]) € I(X)' Va € [B]‘t Bj+1]' V(Xot) = Vi(Xoc)- (34)

Let o € [By, B1]- In view of (34) there exists i =i(0) € I(x) such that V(x,) =
Vi(x4) and by (33):

V(o) = Vi(Xe) < Vi(x) —ay = V(x) — ay.
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Suppose that
Vix) V) —ay, Yk=1,...,j—1 Vo€ [Bx Brs1]
and take a € [Bj,Bj+1]. By (34) there exists i =i(j) such that V(x,) = Vi(Xq)-

Since « € [B;, Bj41], there exists &€ [0,1] such that x, =%w+ (1- E)ij-
Therefore,

X = 6w+ (1 =B + (1 =BPx) = E+ (1 - §Bw + (1 = (1 = Byx,
so

a=8&+(1-9F <&+

It is obvious that

V(xa) = Vixe) = ViGw + (1 = Oxpg) = § < w,p; > +(1 = &) <xp;,p; >
< (1 = )Vilxg) = Vilxg) — 8Vi(xg)) < Vixg)) — 8.

Then we get
Vi(xg) =8y < V() =By =8y = V() —y(Bj +§) < V() — ay,
hence,
V(aw + (1 — )x) < V(x) — ay. QED

The proof of Proposition 2.10.
Proof: Fix (X,)n=, satisfying (12). First, we prove that

VM, AN > M, Xy € A.. (35)

Suppose, contrary to our claim, that X, € A. for n = m. We choose k = m such
that i < ay, Where o, and y are given by Theorem 5.1. Thus

_ 1 k+1 _ _ 1
V(Xis141) =V (mxk+l+1 +i{+ﬁxk+l)1s V&) = Y731 S
~SVE Y (Tt )

which contradicts to the assumption that V(X,) = c for n > m.
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Fix c; > c. By Proposition 2.6, we choose M such that |X,; —X;| < ¢; — c for
1>M. By (35), there exists N>M such that Xy € A.. If Xy, € A. then
VEn+1+1) S VAN + [Xnser = Xt <€ I Rng € A \Ae then V(Xyyi4q) <
V&n4) < Cq. QED

SILNE | BEZPIECZNE ROWNOWAGI NASHA W PEWNYCH GRACH
POWTARZANYCH 3 GRACZY

Streszczenie

W pracy analizujemy gre nieskoriczenie powtarzang 3-graczy bedgcg rozsze-
rzeniem gry typu Dylemat WieZnia. Rozwazamy gre 3-graczy w postaci normalnej
z petng informacjg, w ktorej kazdy gracz ma dwa dziatania. Zaktadamy, Ze gra jest
symetryczna i powtarzana nieskoriczenie wiele razy. Strategig gracza w grze po-
wtarzanej jest funkcja zdefinowana na uwypukleniu zbioru wypfat. Naszym celem
Jest skonstruowanie mocnej rownowagi Nasha w grze powtarzanej, to znaczy
profilu strategii, ktoéry jest odporny na odstepstwa od strategii rownowagi przez
koalicje graczy. Skonstruowane strategie rownowagi sg bezpieczne, to znaczy
wypfata gracza, ktoéry nie odstepuje od strategii rGwnowagi jest niemnigjsza od
wyptaty odpowiadajgcej rownowadze w grze etapowej, oraz wyptata gracza od-
stepujacego od rownowagi moze byc wieksza od wyptaty gracza nieodstepujgce-
go od strategii rownowagi, ale nie wiecej niz o pewng statg dodatnig, ktéra moze
by¢ wybrana dowolnie mafa przez gracza nieodstepujgcego od rownowagi. Nasza
konstrukcja jest inspirowana koncepcjg dobrych strategii Smale’a opisang w jego
pracy z 1980 roku, gdzie rozwazany byt powtarzany Dylemat Wieznia. W dowo-
dach wykorzystujemy wyniki o zblizaniu oraz silnym zblizaniu.

Stowa kluczowe: gra powtarzana, silna réwnowaga Nasha, metoda
Blackwell'a w problemie zblizania, metoda funkcji Lapunowa

STRONG AND SAFE NASH EQUILIBRIUM IN SOME
REPEATED 3-PLAYER GAMES

Abstract

The paper examines an infinitely repeated 3-player extension of the Prisoner’s
Dilemma game. We consider a 3-player game in the normal form with
incomplete information, in which each player has two actions. We assume that
the game is symmetric and repeated infinitely many times. At each stage,
players make their choices knowing only the average payoffs from previous
stages of all the players. A strategy of a player in the repeated game is
a function defined on the convex hull of the set of payoffs. Our aim is to
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construct a strong Nash equilibrium in the repeated game, i.e. a strategy profile
being resistant to deviations by coalitions. Constructed equilibrium strategies are
safe, i.e. the non-deviating player payoff is not smaller than the equilibrium
payoff in the stage game, and deviating players’ payoffs do not exceed the non-
deviating player payoff more than by a positive constant which can be arbitrary
small and chosen by the non-deviating player. Our construction is inspired by
Smale’s good strategies described in Smale’s paper (1980), where the repeated
Prisoner’'s Dilemma was considered. In proofs we use arguments based on
approachability and strong approachability type results.

Keywords: repeated game, strong Nash equilibrium, Blackwell's approacha-
bility, Lapunov function method





