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1. INTRODUCTION

The Prisoner’s Dilemma with its generalizations are very important as an 
example of conflicts and social dilemmas. As we can find in Dawes (1980), social 
dilemmas are real life problems which have two properties: ”1. each individual 
receives a higher payoff for a socially defection choice than for a socially 
cooperative choice, no matter what the other individuals in society do; 2. all 
individuals are better off if all cooperate than if all defect.” An example of such 
situation in real life is a problem of soldiers who fight in a battle. They are 
personally better off taking no chances, yet if no one fight against the enemy, 
then the result will be worst for all of soldiers. Such dilemmas can be found 
among resource depletion, pollution and overpopulation. 

Social dilemmas are games in which there is a conflict between individual 
rationality and optimality of the equilibrium payoff. Since it is observable that 
people cooperate with each other in the real situations, game theorists have 
faced the obstacle, how to construct simple tools to encourage players in such 
games to cooperate with each other. The model need to approximate the real 
situation and strategies should be likely to use. 

A natural approach is to consider the infinitely repeated game. Usually, all 
players observe the whole history of action profiles used in previous stages of 
the repeated game. Such situation is called the game with complete information. 
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The strategies are functions from the set of the histories into the set of actions. 
Payoffs in the repeated game are either the discounted sum of stage payoffs or 
the limit of average payoffs. The aim of this approach is to obtain the Nash 
equilibrium in the repeated game with the pair of payoffs which is close to the 
cooperation payoffs in the stage game. Since the fifties of the last century there 
appeared various folk theorems which was not explicitly published and, in many 
cases, the original author is unknown. 

The classic Prisoner’s Dilemma is a 2-player game, in which each player has 
two actions, usually denoted as ܥ (cooperation) and ܦ (defection). The game 
has a unique Nash equilibrium – a pair of actions such that the action of each of 
the players optimize this player’s payoff given the action of the opponent. The 
Nash equilibrium is the action profile (ܦ,  which is the pair of strictly dominant (ܦ
actions i.e. playing ܦ is better than ܥ whatever the other player does. What is 
more, both players benefit changing (ܦ, ,ܥ) into (ܦ  So, the mechanism of .(ܥ
individual rationality fails in the Prisoner’s Dilemma and it leads to a loss of both 
players. It means that the Nash equilibrium is not Pareto-optimal in this case. 

One of solutions for lack of cooperation of the Nash equilibrium in the stage 
game is an idea of good strategies introduced in Smale (1980) for the repeated 
Prisoner’s Dilemma. Every pair of good strategies is a Nash equilibrium in the 
repeated game with Pareto-optimal payoffs corresponding to the payoff of (ܥ,  (ܥ
in the stage game. The second advantage of the good strategies equilibrium is 
the warranted minimal payoff for the non-deviating player. The minimal payoff is 
equal to the Nash payoff in the stage game. Good strategies have yet another 
advantage that has not been pointed in Smale (1980). Choosing a good strategy 
appropriately, the player controls the second player’s payoff. For every ߝ > 0 
there exists the ߝ-good strategy of the first player such that for an arbitrary 
second player’s strategy, the first player’s payoff will be at most ߝ smaller than 
the second player’s payoff. The Prisoner’s Dilemma is symmetric, so the second 
player also can choose the ߝ-good strategy which provides him no worse payoffs 
than the first player’s one minus ߝ. 

In fact, good strategies have properties that was postulated in Axelrod (1984). 
In 80’s he studied the evolution of cooperation. It refers to how cooperation can 
emerge and persist as elucidated by application of game theory. He organized 
a tournament in which game theory experts submitted their strategies and each 
strategy was paired with each other for 200 iterations of Prisoner’s Dilemma. 
Accumulated payoffs through the tournament was treated as a score. The 
winner was the strategy submitted by Arnold Rappaport – Tit for Tat. The 
additional advantage of this tournament was detecting what properties strategies 
should satisfy to encourage players to cooperate. They should be: nice, 
forgiving, retaliatory and are founded on simple rules. Good strategies have 
these properties and, what is more, player cooperates until the other player’s 
average payoff is greater than his average payoff plus ߝ. By choosing ߝ, the 
player determines the level of his tolerance for the defection. 
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In this paper we shall consider the generalization of the idea of good 
strategies onto the Prisoner’s Dilemma type repeated game for three players. 
We consider the repeated game with a partial monitoring. We assume that, after 
each stage, all players can only observe an aggregated history – the arithmetic 
mean of the payoffs from previous stages. The stage game is a symmetric 
3-player game where each player has an action set consisting of two actions: ܫ and ܰ6ܫ. We assume that the action profile (ܰܫ, ,ܫܰ  is the only Nash (ܫܰ
equilibrium, and the sum of the players payoffs is minimal for this profile. The 
sum of players payoffs is maximal for the profile (ܫ, ,ܫ  The strategy profile in .(ܫ
the repeated game is a function ݏ: ܵ → ,ܫ} ܵ ଷ, where{ܫܰ ⊂ ܴଷ is a convex hull of 
the set of the payoffs in the stage game. 

An example of a game considered in the paper is given in Example 2 (section 3). 
The strategy profile (NI, NI, NI) is the only Nash equilibrium. The common payoff 
corresponding to the equilibrium profile (∑ = 60) is the lowest possible one. The 
strategy NI dominates the strategy I, i.e. the action NI gives higher payoff then 
the action I despite of the action of other players. So, the example has 
properties typical for real-life situations called tragedy of commons. The rational 
player should choose the action NI that dominates I but in real-life situations the 
cooperation is often observed (comp. Axelrod, 1984). So, it appears a question 
”How to explain theoretically a player inclination to cooperation that is observed 
practically?” It is known that one of the strongest factors that motivate 
cooperative behavior is the repetition of the game. In the paper we assume that 
the game is repeated infinitely times. Infinite time horizon well approximate real 
life situations of finite (≥ 20) but unknown time horizons. Our aim is to construct 
an equilibrium strategy profile in the repeated game that motivates every player 
to cooperation. We assume that after every repetition players know the average 
payoff of every player from previous stages. Briefly speaking, an equilibrium 
strategy of player i bases on the comparison of her average payoff x୧ with 
average payoffs x୨, x୩ of remaining players. Player i cooperates (chooses I) if x୨ < x୧ + ε and x୩ < x୧ + ε. If one of the remaining players’ average payoff is 
greater to x୧ + ε then she stops cooperation and chooses NI. Precise definition 
of an ε-good strategy is given in (19). The positive constant ε is a measure of 
player’s tolerance for others players defection. 

Our aim is to construct a strategy profile s∗ which is an approximated strong 
Nash equilibrium in the repeated game under consideration. The constructed 
equilibrium is safe in the meaning that the payoff of a player choosing strategy s୧∗ 
is not less then the equilibrium payoff in the stage game. This payoff is assured 
even if the other two players choose an arbitrary strategy. Furthermore, the ε-good strategy guarantees that, in long time horizon, other player’s average 
payoff will not exceed the good strategy player’s average payoff by more than ε. 
                      

6 From now on, we choose to name strategies with ܫ and ܰܫ, where ܫ means invest and it corre-
sponds to strategy ܥ and ܰܫ corresponds to strategy ܦ.  



274 Przegląd Statystyczny, tom LXV, zeszyt 3, 2018 
 
In the framework of the repeated game, a ε-good strategy is an individually 
rational strategy. It theoretically explains the players’ inclination to cooperation in 
the repeated three players Prisoner’s Dilemma. 

The notion of the strong equilibrium in the framework of repeated games was 
introduced by Aumann (1959, 1961, 1967), who showed that every payoff that 
belongs to the ߚ-core of the stage game is a strong equilibrium payoff in the 
corresponding repeated game (comp. Sorin, 1992, Thm. 6.2.2). Despite the fact 
that the payoff corresponding to the profile (ܫ, ,ܫ  core, our-ߚ belongs to the (ܫ
result is not exactly a case of the Aumann results. We have dropped the 
assumption of the full monitoring. Players do not observe the full history, i.e. the 
sequence of actions selected by all players in the previous periods. Instead, we 
assume that they observe the aggregate history, i.e. the arithmetic mean of the 
previous payoffs of all the players. It is worth noting that the results on the 
existence of strong equilibria (comp. Konishi, 1997 and Nessah, 2014) do not 
apply to the repeated game considered in the present paper. 

The repeated Prisoner’s Dilemma for more than two players has been 
considered in Behrstock (2015). The ߝ-good strategies constructed in the paper 
have some additional properties to the strategies in Behrstock (2015), in which the 
authors base on similar approchability results as we do in this paper. The difference 
is that authors consider ܰ-players Prisoner’s Dilemma Game in which strategies 
are stochastic processes. In our approach all strategies are deterministic. 

The paper is organized as follows. In section 2 we present the basic information 
about sequences related to a map of a convex set. We adopt Blackwell’s 
approachability method (comp. Blackwell, 1956) which was originally used in the 
framework of 2-player repeated games with vector payoffs. We show that the 
Blackwell condition is sufficient to obtain the convergence of the sequence of 
arithmetic means to a set called a weak attractor. The weak attractors introduced 
in subsection 2.1 have different properties in comparison with approachable sets 
in the sense of Blackwell. We provide an example of a singleton being a weak 
attractor that does not satisfy the Blackwell condition. Such a situation is not 
possible for approachable sets (comp. Shani, 2014, Thm. 8). In repeated games, 
there is considered a sequence of vector payoffs. Each payoff corresponds to one 
repetition of the state game. Subsection 2.1 provides us necessary results to 
analyze the directions in which the trajectory shifts and to examine the 
convergence of such sequence. This is crucial for defining the payoff in the 
repeated game. Subsection 2.2 provides basic properties of the Banach limit 
which shall be used to prove that ߝ-good strategies are ߝ Nash equilibria. In some 
of our arguments we not only require that the sequence of mean payoffs 
converges to a set, but that almost all its entries belong to the set. A similar 
problem named strong approachability was considered in Shani (2014). In section 
2.3 we adopt a Lyapunov function method for discrete and discontinuous 
dynamical systems to obtain a deterministic strong approachability result. 
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In section 3 we consider a repeated 3-player symmetric game. Every player 
has two actions: invest (I) or not invest (NI). The vector payoff B = (pଷ, pଷ, pଷ) 
corresponding to the strategy profile (I, I, I) is Pareto optimal and the strategy 
profile (NI, NI, NI) is a Nash equilibrium in the stage game with the payoff vector (r଴, r଴, r଴)). We assume that, in the repeated game, every player knows the 
average vector payoff from the previous stages of the game. The strategy s୧: S →{I, NI}, i ∈ {1,2,3}, is a function from the convex hull S of vector payoffs in the 
stage game to the set of his actions {I, NI}. The strategy profile s = (sଵ, sଶ, sଷ) 
and the vector payoff function G: {I, NI}ଷ → Rଷ determine the function φ = G ∘s: S → S. The strategy profile s and the initial point xଵ ∈ S determine the trajectory xത୬(s, xଵ) of a dynamic system given by  

 
 xത୬ାଵ = ୬୶ത౤ା஦(୶ത౤)୬ାଵ . 
 

 Our aim is to construct a strategy profile sக∗ = (sଵ∗, sଶ∗, sଷ∗) such that for every xଵ ∈ S 
 
 lim୬→ஶxത୬ = B, (1)
 

where xത୬ = xത୬(sக∗, xଵ). If one player (for example player 3) deviates then  
 
 limsup ୬→ஶ xത୬ଷ ≤ pଷ + ε, (2)
 

where xത୬ = xത୬((sଵ∗, sଶ∗, sଷ), xଵ) and sଷ: S → {I, NI} is an arbitrary strategy of player 
3. If two players deviate (for example players 2 and 3) then  

 
 limsup୬→ஶ (xത୬ଶ + xത୬ଷ) ≤ 2pଷ, (3)
 
 liminf ୬→ஶ xത୬ଵ ≥ r଴, (4)
 
 lim୬→ஶdist (xത୬, {x ∈ S; xଶ ≤ xଵ + ε, xଷ ≤ xଵ + ε}) = 0,  (5)
 

where xത୬ = xത୬((sଵ∗, sଶ, sଷ), xଵ) and sଶ, sଷ: S → {I, NI} are the arbitrary strategies of 
players 2 and 3, respectively. By dist(x, A) we denote the distance from the point x to the set A, i.e. dist(x, A) = inf{|x − a|: a ∈ A}. 

If the payoff is a Banach limit (comp. Conway, 1985) of the sequence of 
average payoffs then the strategy profile sக∗ is a strong ε-Nash equilibrium in the 
repeated game as a consequence of (1–3). Property (4) implies that the non-
deviating player’s payoff is no smaller than the payoff corresponding to the Nash 
equilibrium in the stage game. Property (5) guarantees that the deviating player’s 
payoff will not exceed the good strategy player’s payoff by more than ε. The 
results presented in Theorems 3.1, 3.2, 3.3 give a partial answer to the question 
asked by Smale in the last Remark in section 1 of Smale (1980, p. 1623). 
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Section 4 contains concluding remarks. In Appendix we present the proofs of 
theorems from subsection 2.3. 

 
2. PRELIMINARIES 

 
2.1. Approachability results 

 
Let H be a finite dimensional vector space and 〈⋅,⋅〉, | ⋅ | denote an inner 

product and a norm in H, respectively. We assume that S is a nonempty convex 
closed subset of H. By Nக(B) we denote an ε-neighbourhood of the set B in S, 
i.e. Nக(B) = {x ∈ S: dist(x, B) < ε}. The closure (the convex hull) of the set A we 
denote by cl(A) (co(A)) . 

We study limit properties of sequences (xത୬)୬ୀଵஶ  defined by a map φ: S → S and 
an initial point xଵ ∈ S by  

 
 xത୬ାଵ = nxത୬ + φ(xത୬)n + 1 ,    xതଵ = xଵ, (6)

 
 The sequence (xത୬) can be interpreted as a sequence of arithmetic means xത୬ = ଵ୬ (xଵ + ⋯ + x୬), where x୩ାଵ = φ(xത୩). The map φ defines a dynamical 
system β୬: S → S by  

 
 β୬(x) = nx + φ(x)n + 1 , n = 1, 2, … . 
 

 We denote by xത୬(φ, xଵ) a trajectory determined by (6). 
We say that a closed set A ⊂ S is a weak attractor for a dynamic system 

determined by the map φ if for every xଵ ∈ S we have  
 
 lim୬→ஶdist(xത୬(φ, xଵ), A) = 0, 
 

where dist(⋅, A) denotes the distance to the set A. We provide some sufficient 
conditions for being a weak attractor. 

 
First we formulate Blackwell approachability type theorem that originally was 

presented in Blackwell (1956) in the framework of repeated games with vector 
payoffs. We say that a map φ: S → S  satisfies the Blackwell condition for a set A ⊂ S in the domain D ⊂ S if  

 
 ∀x ∈ D, ∃y ∈ Π୅(x),    〈x − y, φ(x) − y〉 ≤ 0, (7)
 

where Π୅(x) denote the set of points in A that are proximal to x, i.e. Π୅(x) = {a ∈A: |a − x| = dist(x, A)}. 



T. Kufel, S. Plaskacz, J. Zwierzchowska    Strong and safe Nash equilibrium… 277 
 

 

The deterministic version of the Blackwell approachability result can be formu- 
lated in the following way. 

Proposition 2.1 Suppose that the map φ: S → S satisfies the Blackwell 
condition for a closed set A ⊂ S in the domain D ⊂ S. If almost all elements of the 
bounded sequence xത୬(φ, xଵ) belong do the set D then  

 
 lim୬→ஶdist(xത୬, A) = 0. 

 
We provide the proof of Proposition 2.1 for the reader convenience. 
Proof: For a sufficiently large n we choose y ∈ Π୏(xത୬) and then  
 dist(xത୬ାଵ, A)ଶ ≤ |xത୬ାଵ − y|ଶ = ฬ nn + 1 (xത୬ − y) + 1n + 1 (φ(x୬) − y)ฬଶ = 

 = ቀ nn + 1ቁଶ |xത୬ − y|ଶ + ൬ 1n + 1൰ଶ |φ(x୬) − y|ଶ + 2 n(n + 1)ଶ 〈xത୬ − y, φ(x୬) − y〉 ≤ 

 ≤ ቀ ୬୬ାଵቁଶ dist(xത୬, A)ଶ + ቀ ଵ୬ାଵቁଶ C, 
 

 
where C is an upper bound of dist(x୬, A). Setting d୬ = nଶdist(xത୬, A)ଶ we have d୬ାଵ ≤ d୬ + C for n ≥ n଴. Thus d୬ ≤ d୬బ + (n − n଴)C. So  

 
 dist(xത୬, A)ଶ ≤ ଵ୬ ቀd୬బ + ୬ି୬బ୬ Cቁ. QED

 
Corollary 2.2 If the map φ: S → S satisfies the Blackwell condition for a closed 

set A ⊂ S in the domain S, then the set A is a weak attractor for φ. If the set A ⊂ S 
is convex and the map φ: S → A maps into the set A then the set A is a weak 
attractor for φ.  

Taking A = (−∞, c] in Proposition 2.1 we obtain the following property of real 
sequences.  

Corollary 2.3 Suppose that (a୬)୬ୀଵஶ  is a bounded sequence in ℝ and (aത୬)୬ୀଵஶ  
is the sequence of arithmetic means, i.e. aത୬ = ଵ୬ ∑୬୩ୀଵ a୩. If we have 

 
 (aത୬ > ܿ    ⇒     a୬ାଵ ≤ c) 
 

for almost all n and a fixed constant c ∈ ℝ, then  
 
 limsup ୬→ஶ aത୬ ≤ c. 
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In many cases the set A is a weak attractor despite that the Blackwell condition 
is not satisfied. Such a situation occurs in repeated games that we study in section 
3. Below we present two properties of weak attractors which are necessary for our 
reasoning. 

Proposition 2.4 Suppose that the sets A, B ⊂ ℝୢ are nonempty closed and B 
is bounded. If a sequence x୬ satisfies  

 
 lim୬→ஶdist(x୬, A) = lim୬→ஶdist(x୬, B) = 0, 

 
then 

 
 lim୬→ஶdist(x୬, A ∩ B) = 0. 

 
Proof: We choose a୬ ∈ A, b୬ ∈ B such that  
 
 |x୬ − a୬| = dist(x୬, A),    |x୬ − b୬| = dist(x୬, B) 
 

 Since the set B is compact, we obtain that the sequences (a୬), (b୬), (x୬) are 
bounded and they have the same nonempty set C of accumulating points. Thus lim୬→ஶdist(x୬, C) = 0 and C ⊂ A ∩ B.  

QED  
Proposition 2.5 We suppose that a closed set A ⊂ S is a weak attractor for 

the map φ: S → S and a closed subset B ⊂ A satisfies  
 
ߝ∀  > 0, ߜ∃ > 0, ߮ satisfies the Blackwell conditionfor the set ݈ܿ൫ܰఌ(ܤ)൯ ∩ (8) .(ܣ)in the domain ܰఋ ܣ  

 
 Then the set ܤ is a weak attractor for ߮.  

Proof: Fix xଵ ∈ S and ε > 0. By (8), we choose δ > 0 such that almost all 
elements of the trajectory xത୬(φ, xଵ) belongs to Nஔ(A). By Proposition 2.1, we 
obtain  

 
 lim୬→ஶdist(xത୬, cl(Nக(B)) ∩ A) = 0. 

 
 Thus 

 
 limsup ୬→ஶ dist(xത୬, B) ≤ ε. QED
 
The method illustrated in Proposition 2.4 and Proposition 2.5 bases on the 

scheme that we explain in the following example. 
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Example 1 Let S = ℝଶ, a, b ∈ ℝଶ, aଶ < 0, bଶ > 0, aଵ ≠ bଵ and 
 
 φ(x, y) = ൜a if y > 0,b if y ≤ 0. 
 

 We show that lim୬→ஶxത୬ = d for every xതଵ ∈ ℝଶ, where the limit d is the point of 
intersection of the interval ab with the line p = {(x, y): y = 0}. The set D = {d} does 
not satisfy condition (7). Indeed, if aଵ < bଵ and x > dଵ then φ(x, 0) = b and 〈(x, 0) − (dଵ, dଶ), φ(x, 0) − (dଵ, dଶ)〉 > 0. To show that the set D is a weak attractor 
we point out weak attractors A, B such that D = A ∩ B. We set A = p and B = ab. 
The sets A, B satisfy the Blackwell condition (7). By Theorem 2.1, we have  

 
 lim୬→ஶdist(xത୬, A) = lim୬→ஶdist(xത୬, B) = 0. 
 

 Applying Proposition 2.4 we obtain that lim୬→ஶxത୬ = d. 
Finally, we shall formulate a property of the dynamical system. 
Proposition 2.6 If the set S is bounded then for every ξ > 0 there exists N ∈ ℕ 

such that for all n > N and for all x ∈ S 
 
 |β୬(x) − x| <  ,ߦ
 

where the map φ: S → S determining β୬ is arbitrary. 
 

2.2. Payoff in the repeated game 
 
Considering a sequence of payoffs in the repeated games we always receive 

a bounded sequence. As we presented in (6), the dynamic is the vector of the 
arithmetic mean of the payoffs received in the previous repetitions. To analyze 
such sequence, the following proposition shall be useful. 

Proposition 2.7 Suppose that a଴, aଵ, … , a୩ ∈ ℝୢ and let T ∈ ℕ. Then for all  ε > 0 and for all nଵ, … , n୩ ≥ 0 such that nଵ + ⋯ + n୩ = n, where n is sufficiently 
large, we have  

 
 TT + n a଴ + nଵT + n aଵ + ⋯ + n୩T + n a୩ ∈ Nக(co{aଵ, … , a୩}). 
 
Proposition 2.7 is a consequence of the fact that ୘୘ା୬ aଵ + ୬భ୘ା୬ aଵ + ⋯ + ୬ౡ୘ା୬ a୩ ∈co{aଵ, … , a୩} and ୘୘ା୬ |a଴ − aଵ| is small where n is sufficiently large. 
To define the payoff in repeated games we shall use the Banach limit (comp. 

Conway, 1985). The Banach limit L is a continuous linear functional definite on 
the space lஶ of bounded scalar sequences. If (x୬) is a bounded sequence of 
points in Rୢ then Lim (x୬): = ( Lim (x୬ଵ), Lim (x୬మ), … , Lim (x୬ୢ)), where x୬ =(x୬ଵ, x୬ଶ, … , x୬ୢ). So Banach Limit can be extended onto the space of bounded 
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sequences of points in Rୢ. If φ: Rୢ → R is a linear functional then φ( Lim (x୬)) = Lim (φ(x୬)). 

Proposition 2.8 If A is a compact convex subset of Rୢ and a sequence (x୬) ⊂Rୢ satisfies lim୬→ஶdist(x୬, A) = 0, then Lim (x୬) ∈ A.  
Proof. Suppose to the contrary that Lim (x୬) ∉ A. Then there exists a functional φ: Rୢ → R such that φ( Lim (x୬)) > supୟ∈୅φ(a). We have limsup୬→ஶφ(x୬) ≤supୟ∈୅φ(a). Thus  
 φ( Lim (x୬)) =  Lim (φ(x୬)) ≤ limsup୬→ஶ φ(x୬) ≤ supୟ∈୅ φ(a) 

which gives the contradiction. QED
 

2.3. A lapunov type results 
 
The Lapunov function method is typically used to study stability of equilibrium 

points for dynamical systems. Using the Lapunov function method we obtain 
a strong approachability result for a dynamical system determined by a multivalued 
map. 

Let H be a Hilbert space and pଵ, . . . , p୩ ∈ H be unit vectors, i.e. |p୧| = 1. We 
define a function V: H → ℝ by  

 
 V(x) = max୧∈{ଵ,…,୩}V୧(x)         where V୧(x) = 〈p୧, x〉. (9)
 

 The function V is a support function of the set {vଵ, … , v୩}. So, the function V is 
convex, positively homogeneous and lipschitz continuous with the constant L =1 (see [11]). 

 
Set 
 
 Δୡ = ሩ୩

୧ୀଵ {x ∈ H: V୧(x) < ܿ} = ݔ} ∈ :ܪ (ݔ)ܸ < ܿ}. 
 

 Let us denote by φ: S → S a multivalued map of a subset S ⊂ H. 
Definition 2.9 We say that V is the Lapunov type function for the multivalued 

map φ with the constant c > 0 if  
 
 ∃0 < δ < c, ∀x ∈ S\Δୡ, ∀i = 1, . . . , k, ∀ω ∈ φ(x), (V୧(x) ≥ V(x) − δ  ⇒  V୧(ω) ≤ 0). (10)

 
 If the function V satisfies  

 
 ∀x ∈ S\Δୡ, ∀ω ∈ φ(x), ∀i ∈ {1, … , k}    V୧(x) > 0  ⇒   V୧(ω) ≤ 0, (11)
 

then V is the Lapunov type function for φ with the constant c. 
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If V is the Lapunov type function for φ with the constant c and cଵ > c then V is 
the Lapunov type function for φ with the constant cଵ. 

To explain why we say that V is the Lapunov type function observe that if V୧(x) = V(x) then p୧ ∈ ∂V(x), where ∂V(x) is the subdifferential of a convex 
function. The condition (10) implies the following inequality  

 
 〈p୧, ω − x〉 ≤ 〈p୧, ω〉 − 〈p୧, x〉 ≤ 0 − V(x) + δ < δ − c < 0     for x ∈ S\Δୡ, 
 

which means that V is the Lapunov function for the vector field f(x) = ω − x. 
Proposition 2.10 Let S be a nonempty bounded convex subset of H and the 

function V: H → ℝ given by (9) be the Lapunov type function for the multivalued 
map φ: S → S with the constant c > 0. If a sequence (xത୬)୬ୀଵஶ  satisfies  

 
 xതଵ = xଵ ∈ S,    xത୬ାଵ = ୬୶ത౤ା୶౤శభ୬ାଵ ,    x୬ାଵ ∈ φ(xത୬), (12)
 

then  
 
 ∀cଵ > c, ∃N, ∀n ≥ N,    xത୬ ∈ Δୡభ. 
 
The proof of Proposition 2.10 is technical and it is presented in Appendix. 
 

3. THE MODEL AND MAIN RESULTS 
 
Let G be a 3-player symmetric game and every player has two pure actions: 

”invest” (I) or ”not invest” (NI). By P୍  (P୒୍) we denote the payoff for an investing 
(not investing) player. All payoffs depend on the total number of investing 
players. If n ∈ {0, 1, 2, 3} is the total number of investing players, then  

 
 n P୍ (n) P୒୍(n)0 − r଴1 pଵ rଵ2 pଶ rଶ3 pଷ −  

 
 The game G in the normal form is given by the matrix:  

 
 I (pଶ, rଶ, pଶ) (pଷ, pଷ, pଷ)NI (rଵ, rଵ, pଵ) (rଶ, pଶ, pଶ)NI I  

 
when the third player invests, and by the matrix 

 
 I (pଵ, rଵ, rଵ) (pଶ, pଶ, rଶ)NI (r଴, r଴, r଴) (rଵ, pଵ, rଵ)NI I  

 
when the third player does not invest. 
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We shall assume that the functions P୍ (⋅), P୒୍(⋅) are increasing:  
 
 0 < r଴ < rଵ < rଶ   and           0 < pଵ < pଶ < pଷ. (13)
 

 We assume that  
 
 pଵ < r଴. (14)
 

 By (14), the outcome (NI, NI, NI) is a Nash equilibrium. We assume that the 
more players invest, the greater the sum of all players payoffs is, i.e.  

 
 3r଴ < pଵ + 2rଵ < 2pଶ + rଶ < 3pଷ. (15)
 

 By (15), the vector payoff (pଷ, pଷ, pଷ) is Pareto optimal. In fact, the condition (15) means even more – the vector payoff (pଷ, pଷ, pଷ) maximize the sum of 
payoffs. To obtain a strong equilibrium in the repeated game we assume that:  

 
 pଵ + rଵ < 2pଷ. (16)
 

 We additionally assume that:  
 
 pଶ < rଶ. (17)
 

 Observe that from the opposite inequality rଶ ≤ pଶ implies that (pଷ, pଷ, pଷ) is 
a Nash equilibrium payoff, what we wanted to avoid. 

We introduce the following notations  
 
 A = (r଴, r଴, r଴),B = (pଷ, pଷ, pଷ),Cଵଵ: = (pଵ, rଵ, rଵ),Cଶଵ: = (rଵ, pଵ, rଵ),Cଷଵ: = (rଵ, rଵ, pଵ),Cଵଶ: = (rଶ, pଶ, pଶ),Cଶଶ: = (pଶ, rଶ, pଶ),Cଷଶ: = (pଶ, pଶ, rଶ).

 

 
If i players invest (i ∈ {1, 2}) then C୨୧ denotes the vector payoff in the game G. 
If i = 1 then j shows which one invests, while if i = 2 then j tells which player 
does not invest. 

The strategy profile in the iterated game is given by a map s: S → {I, NI}ଷ, 
where S is the convex hull of vector payoffs set, i.e.  

 
 S = co{A, B, Cଵଵ, Cଶଵ, Cଷଵ, Cଵଶ, Cଶଶ, Cଷଶ}. 
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The strategy profile s determines a dynamical process β୬: S → S 
 
 β୬(x) = ୬୶ା஦(୶)୬ାଵ ,           for x ∈ S,    n ∈ ℕ, (18)
 

where φ: S → S is given by the formula φ = G ∘ s. Observe that a pair (s, xଵ), 
where s is a strategy profile and xଵ ∈ S, uniquely determines a sequence (xത୬)୬ୀଵஶ  
by:  

 
 xതଵ = xଵ,      xത୬ାଵ = β୬(xത୬). 
 
We denote the obtained sequence by xത୬(s, xଵ). A similar construction of a 

sequence was considered in section 2. The strategy profile s and the initial point xଵ ∈ S uniquely determine a play path. The action profile in the next stage s(xത୬) 
depends on the average vector payoff xത୬. The element x୬ାଵ is the vector payoff 
in n + 1 stage. We do not assume that the players observe the full history of the 
game. Instead, they observe aggregated history – the arithmetic mean of vector 
payoffs. 

Motivated by the Smale construction in Smale (1980) we define an ε-good 
strategy for the i-th player s୧க: S → {I, NI} by  

 
 s୧க(x) = ൜I if x ∈ V୧,NI if x ∈ S\V୧, (19)

 
where  

 
 V୧ = Ω୧க\W୧,Ω୧க = {x ∈ S:    x୧ > x୨ − ε and x୧ > x୩ − ε},W୧ = {x ∈ S:    x୧ < r଴ or x୨ + x୩ > 2pଷ},  

 
where i, j, k are pairwise different elements of the set of players {1, 2, 3}. The 
player invests if his average payoff is greater than the every other players’ 
average payoff minus ε. The player stops investing if his playing I has been 
exploited by his opponents, that is either the average payoff of the player is 
lower than the payoff guaranteed by Nash equilibrium (x୧ < r଴) or the sum of the 
other players’ average payoffs is greater then the sum of their payoffs 
corresponding to the Pareto optimal profile (I, I, I) (x୨ + x୩ > 2pଷ). 

 
First we consider the case when all players choose good strategies. Then the 

average payoffs vector tends to the point B corresponding to the Pareto optimal 
profile (I, I, I).  

Theorem 3.1 Suppose that s୧க: S → {I, NI} are the ε-good strategies for i =1,2,3. Then  
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 lim୘→ஶxത୘ = B, 
 

where xത୘ = xത୘((sଵக, sଶக, sଷக), xଵ) and xଵ is an arbitrary element of S.  
 
Now, we consider the case when two players play good strategies and the 

third one deviates and chooses an arbitrary strategy. The deviating player does 
not improve their payoff more then ଶଷ ε, where the positive constant ε can be 
chosen arbitrarily small by the two non-deviating players.  

Theorem 3.2 Suppose that the first and the second player choose the ε-good 
strategies sଵக, sଶக and the third player plays an arbitrary strategy sଷ: S → {I, NI}. 
Then  

 
 limsup୘→ஶ  xഥ୘ଷ ≤ pଷ + ε ଶଷ,(20) (20)
 

where xത୘ = xത୘((sଵக, sଶக, sଷ), xଵ) and xଵ is an arbitrary element of S.  
 
At the end of the section we show an example of the third player strategy, 

such that the upper limit of his average payoffs is strictly grater than pଷ. 
Now, we consider the case when two players deviate.  
Theorem 3.3 Suppose sଵக is the ε-good strategy for the first player and sଶ, sଷ 

are arbitrary strategies. Then  
 
 liminf ୘→ஶ xത୘ଵ ≥ r଴, (21)
 
 limsup୘→ஶ (xത୘ଶ + xത୘ଷ) ≤ 2pଷ, (22)
 
 lim୘→ஶdist (xത୘, Vଵ) = 0, (23)
 

where xത୘ = xത୘((sଵக, sଶ, sଷ), xଵ) and xଵ is an arbitrary element of S.  
 
Suppose that the payoff in the repeated game is defined as the Banach limit 

of average payoffs. The inequality (22) provides that if two players deviate then 
at least one of them will not improve his payoff. Conclusions (21) and (23) mean 
that the good strategy is safe, i.e. the non-deviating player’s payoff is not smaller 
than the Nash equilibrium payoff in the stage game and, moreover, the deviating 
player’s payoff is not greater than the non-deviating player’s payoff plus ߝ (comp. 
Proposition 2.8). 

By Theorems 3.1 – 3.3, we obtain  
Corollary 3.4 The strategy profile sக = (sଵக, sଶக, sଷக) satisfies (1-5). If we define 

the payoff in the repeated game as a Banach limit of average payoffs, i.e Limxത୘ 
then the strategy profile sக is a safe and strong ε Nash equilibrium. 
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Below we provide some elementary properties of sets V୧ that are used in the 
definition of good strategies. We assume that i, j, k are pairwise different 
elements of the set of players {1, 2, 3}. We shall use the following notations  

 
 Vଷ = ⋂ଷ୧ୀଵ V୧V୧ଶ = (S\V୧) ∩ V୨ ∩ V୩V୧ଵ = V୧ ∩ (S\V୨) ∩ (S\V୩). 

 
 If each player plays good strategy then  

 
 φ(x) = ቐB if x ∈ VଷC୧ଵ if x ∈ V୧ଵ for i ∈ {1,2,3}C୧ଶ if x ∈ V୧ଶ for i ∈ {1,2,3}. (24)

 
Proposition 3.5 Suppose that player i plays ε୧-good strategy for i = 1, 2, 3. 

Then  
 
 Ω୧ ∩ W୧ = ∅, (25)
 
 V୧ଵ ⊂ Ω୧, (26)
 

where  
 
 Ω୧ = {x ∈ S: x୧ = max{xଵ, xଶ, xଷ}}. 
 

 If we assume that ε୧ = ε୨ (=: ε) then  
 
 V୧ ∩ (S\V୨) ⊂ Ω୧ ∪ Φ୨. (27)
 

 If we assume that ε୧ = ε୨ = ε୩ (=: ε) then for every i ∈ {1, 2, 3} we have  
 
 V୧ଶ ⊂ Φ୧, (28)
 

where  
 
 Φ୧ = {x ∈ S: x୧ = min{xଵ, xଶ, xଷ}}. 
 
Proof: If x୧ < r଴ and x୧ = max{xଵ, xଶ, xଷ} then xଵ + xଶ + xଷ < 3r଴. If x୨ + x୩ >2pଷ and x୧ = max{xଵ, xଶ, xଷ} then xଵ + xଶ + xଷ > 3pଷ. Since 3r଴ ≤ xଵ + xଶ + xଷ ≤3pଷ for x ∈ S, we obtain (25). 
As (S\V୨) ∩ Ω୨ = ∅ and (S\V୩) ∩ Ω୩ = ∅ we have (S\V୨) ∩ (S\V୩) ⊂ S\(Ω୨ ∪Ω୩) ⊂ Ω୧, and consequently we obtain (26). 
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To prove conclusion (27) we take i = 1, j = 2. As (Wଶ\Wଵ) ∩ Φଵ = ∅ and (Ωଷ\Φଵ) ⊂ Φଶ we obtain Wଶ\Wଵ ⊂ (Ωଵ ∪ Ωଷ)\Φଵ ⊂ Ωଵ ∪ Φଶ. If x ∈ Ωଵக\Ωଶக  then 
either  

 
 xଶ ≤ xଵ − ε 
 

or  
 
 xଶ ≤ xଷ − ε and xଵ > xଷ − ε  (x ∈ Ωଵக). 
 
In both cases we obtain xଶ < xଵ and thus x ∈ Ωଵ ∪ Φଶ. Since Vଵ ∩ (S\Vଶ) ⊂(Ωଵக\Ωଶக ) ∪ (Wଶ\Wଵ), we conclude that  
 
 Vଵ ∩ (S\Vଶ) ⊂ Ωଵ ∪ Φଶ. 
 

 If x୧ ≤ x୨ − ε (x ∉ Ω୧க) and x୩ > x୨ − ε (x ∈ Ω୩க ) then x ∈ Φ୧. If x୧ ≤ x୩ − ε (x ∉Ω୧க) and x୨ > x୩ − ε (x ∈ Ω୨க) then x ∈ Φ୧. Thus (S\Ω୧க) ∩ Ω୨க ∩ Ω୩க ⊂ Φ୧. 
 
If x ∈ V୨ then x ∉ W୨ and hence x୨ ≥ r଴ and x୧ + x୩ ≤ 2pଷ. If x ∈ W୧ ∩ V୨ ∩V୩ then either x୧ < r଴, x୨ ≥ r଴, x୩ ≥ r଴ or x୨ + x୩ > 2pଷ, x୧ + x୩ ≤ 2pଷ, x୧ +x୨ ≤ 2pଷ. In both cases we deduce that x ∈ Φ୧. So V୧ଶ ⊂ Φ୧. QED
First we prove Theorem 3.3. 
Proof: The strategy sଵ∗ is the ε-good strategy, so if xത୘ଵ < r଴ then xത୘ =(xത୘ଵ, xത୘ଶ, xത୘ଷ) ∈ Wଵ and sଵ∗(xത୘) = NI. It means that the next vector payoff x୘ାଵ 

belongs to the set {A, Cଶଵ, Cଷଵ, Cଵଶ}, so x୘ାଵଵ ∈ {r଴, rଵ, rଶ}, i.e. x୘ାଵଵ ≥ r଴ (see (13)). By 
Corollary 2.3 we obtain that limsup୘→ஶ − xത୘ଵ ≤ −r଴, so liminf୘→ஶxത୘ଵ ≥ r଴. 

Similarly, if xത୘ଶ + xത୘ଷ > 2pଷ then sଵ∗(xത୘) = NI. Thus the sum x୘ାଵଶ + x୘ାଵଷ  is one 
of the numbers: 2r଴, pଵ + rଵ, 2pଶ. From the assumptions (13), (15) and (16), it 
follows that x୘ାଵଶ + x୘ାଵଷ ≤ 2pଷ. By Corollary 2.3, we get  

 
 limsup ୘→ஶ xത୘ଶ + xത୘ଷ ≤ 2pଷ. 
 
If x ∈ S\Vଵ then sଵ∗(xത୘) = NI. So, φ(x) = G((sଵ∗, sଶ, sଷ)(x)) ∈{A, Cଶଵ, Cଷଵ, Cଵଶ} ⊂ Vଵ. By Corollary 2.2, the set Vଵ is a weak attractor for φ. QED
Let π୳: ℝଷ → u be the orthogonal projection onto the line u = {x ∈ ℝଷ: xଵ =xଶ = xଷ} and π୔: ℝଷ → P be the orthogonal projection onto the plane P = {x ∈ℝଷ: xଵ + xଶ + xଷ = 0}. Obviously π୳(x) = ቀ୶భା୶మା୶యଷ , ୶భା୶మା୶యଷ , ୶భା୶మା୶యଷ ቁ and π୔(x) =x − π୳(x). In the remainder of the section we denote the projection of a point (a 

set) A onto the plane P by A෩, i.e. A෩ = π୔(A). The projection of the set S onto the 
plane P:  

 
 S෨: = π୔(S) 
 

is the convex hull of the hexagon with successive vertexes C෨ଵଵ, C෨ଶଶ, C෨ଷଵ, C෨ଵଶ, C෨ଶଵ, C෨ଷଶ. 
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Set  
 
 vଵ = 1√2 (0, −1,1), vସ = −vଵ,vଶ = 1√2 (−1,0,1), vହ = −vଶ,vଷ = 1√2 (−1,1,0), v଺ = −vଷ, 
 

and  
 
 Δୡ(K) = ⋂୧∈୏ {y ∈ S෨: 〈v୧, y〉 < c}, 
 

where K ⊂ {1, … ,6} and c > 0. One can easy check that  
 
 x ∈ Ωଵக ⇔ π୔(x) ∈ Δୡ({2,3}),x ∈ Ωଶக ⇔ π୔(x) ∈ Δୡ({1,6}),x ∈ Ωଷக ⇔ π୔(x) ∈ Δୡ({4,5}), 
 

where c = க√ଶ. Setting Ωக = ⋂ଷ୧ୀଵ Ω୧க and Δୡ = Δୡ({1, … ,6}) we obtain 

 
 x ∈ Ωக ⇔ π୔(x) ∈ Δୡ. (29)
 
Now, we are able to prove Theorem 3.1. 
Proof: Fix xଵ ∈ S. It is sufficient to show that in the sequence xത୘ = xത୘(s∗, xଵ) 

there exists an element xത୒ belonging to Vଷ, where s∗ = (sଵக, sଶக, sଷக). Indeed, if xത୒ ∈Vଷ then xത୒ା୩ = ୒୒ା୩ xത୒ + ୩୒ା୩ B, so lim୘→ஶxത୘ = B. 
First we show that almost all elements of the sequence xത୘ belong to Ω஗ =⋂ଷ୧ୀଵ Ω୧஗, for every η > 0. 
The map φ given by (24) is determined by the strategy profile s∗, i.e. φ = G ∘s∗. Consider φ෥: S෨ → S෨ and V: P → ℝ given by  
 
 φ෥(x) = {π୔(φ(y)):  π୔(y) = x},V(x) = max{〈v୧, x〉: i = 1, … ,6}.  

 
We verify that V is a Lapunov type function for φ෥ with the constant c, for an 

arbitrary c > 0. Let us fix x ∈ S෨ such that 〈vଵ, x〉 > 0. If y ∈ S and π୔(y) = x then 〈vଵ, y〉 = 〈vଵ, x〉.Thus yଷ − yଶ > 0 and therefore y ∉ Ωଶ ∪ Φଷ. By (26), (28), we 
have y ∉ Vଶଵ ∪ Vଷଶ. Since φ(y) ∈ {Cଵଵ, Cଷଵ, Cଵଶ, Cଶଶ, B}, we obtain 〈vଵ, ω〉 ≤ 0 for ω ∈φ෥(x)). We use similar arguments to show that if 〈v୧, x〉 > 0 and ω ∈ φ෥(x) then 〈v୧, ω〉 ≤ 0, for i = 2, … ,6. 
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Fix η < min{ε, pଷ − ଶ୮మା୰మଷ , ୮భାଶ୰భଷ − r଴} . By Proposition 2.10 and (29), there 
exists N such that xത୬ ∈ Ω஗ for n > N. We claim that there exists M > N such that xത୑ ∈ Vଷ. Suppose to the contrary that xത୑ ∉ Vଷ for every M > N. Then φ(xത୑) ∈{Cଵଵ, Cଶଵ, Cଷଵ, Cଵଶ, Cଶଶ, Cଷଶ} for M > N. By Proposition 2.7, we obtain that z୑ ∈(୮భାଶ୰భି஗ଷ , ଶ୮మା୰మା஗ଷ ) for M sufficiently large, where the point (z୑, z୑, z୑) is the 
projection of xത୑ onto u.  

But, if x ∈ Ω஗\Vଷ then ୶భା୶మା୶యଷ ∉ (୮భାଶ୰భି஗ଷ , ଶ୮మା୰మା஗ଷ ). Indeed, if x୧ + x୨ > 2pଷ 
and x ∈ Ω஗ then ୶భା୶మା୶యଷ > pଷ − ஗ଷ. If x୧ < r଴ and x ∈ Ω஗ then ୶భା୶మା୶యଷ < r଴ + ଶଷ η.  

QED  
Now, we are in a position to prove Theorem 3.2. 
Proof: Let xଵ ∈ S and η > 0. Our aim is to prove that almost all elements of 

the sequence xത୘ = xത୘((sଵக, sଶக, sଷ), xଵ) belongs to Ωகା஗: = Ωଵகା஗ ∩ Ωଶகା஗. We have  
 
 x ∈ Ωகା஗ ⇔ π୔(x) ∈ Δୡ({1, 2, 3, 6}), (30)
 

where c: = கା஗√ଶ . We show that the function V∗: P → ℝ given by  

 
 V∗(x) = max{〈v୧, x〉: i = 1,2,3,6} 
 

is the Lapunov type function for φ෥∗: S෨ → S෨ with the constant c, where  
 
 φ෥∗ = {π୔(z);   z ∈ φ∗(y), π୔(y) = x} 
 

and  
 
 

φ∗(y) =
ەۖۖۖ
۔ۖۖ
,Cଵଵ}ۓۖ Cଶଶ} if y ∈ Vଵ ∩ (S\Vଶ),{Cଶଵ, Cଵଶ} if y ∈ (S\Vଵ) ∩ Vଶ,{B, Cଷଶ} if y ∈ Vଵ ∩ Vଶ,{A, Cଷଵ} if y ∈ (S\Vଵ) ∩ (S\Vଶ).

 

 
 The map φ: S → S induced by the profile (sଵக, sଶக, sଷ) is a selection of φ∗. 

If 〈v଺, x〉 > 0 (x ∈ S෨) and π୔(y) = x (y ∈ S) then yଵ > yଶ and thus y ∉ Ωଶ ∪ Φଵ. 
By (27), we have Vଶ ∩ (S\Vଵ) ⊂ Ωଶ ∪ Φଵ. Thus φ∗(y) ∩ {Cଶଵ, Cଵଶ} = ∅. So, we have 〈v଺, ω〉 < 0 for ω ∈ φ෥∗(x). 

Using similar arguments we show that if 〈vଷ, x〉 > 0 then 〈vଷ, ω〉 ≤ 0 for ω ∈φ෥∗(x). 
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Suppose that 〈vଵ, x〉 ≥ V∗(x) − δ (x ∈ S෨) and π(y) = x (y ∈ S), where δ < ஗√ଶ. 

Then 〈vଵ, x〉 = 〈vଵ, y〉 > க√ଶ. If z ∈ Ωଶக  then 〈vଵ, z〉 ≥ ଵ√ଶ (zଷ − zଶ) > க√ଶ. Thus, we 
have y ∉ Ωଶக ⊃ Vଶ and therefore φ∗(y) ⊂ {Cଵଵ, Cଶଶ, Cଷଵ, A}. So, 〈vଵ, ω〉 ≤ 0 for ω ∈φ෥∗|(x). 

In the similar way we prove that if 〈vଶ, x〉 ≥ V∗(x) − δ and ω ∈ φ෥∗(x) then 〈vଶ, ω〉 ≤ 0. 

 
By Proposition 2.10, we obtain that almost all elements of the 

sequence (π୔(xത୘)) belongs to Δୡ({1, 2, 3, 6}). By (30), we have that 
almost all elements of the sequence (xത୘) belongs to Ωகା஗. If x ∈ Ωகା஗ 
then xଵ > xଷ − (ε + η) and xଶ > xଷ − (ε + η) and so xଷ < pଷ + ଶଷ (ε + η)   
(xଵ + xଶ + xଷ ≤ 3pଷ for x ∈ S). 

QED 

 
Remark. Reasoning as in the proofs of Theorem 3.2 and Theorem 3.3, we 

can conclude that good strategies are safe and strong Nash equilibria not only in 
the class of Smale’s strategies, but also if ”loyal” players adopt good strategies, 
then ”disloyal” players can even play the random choice in each repetition. 
It does not change the properties (20), (21), (22) and (23). 

Example 2 Let the stage game G be given by:  

 
 n P୍ (n) P୒୍(n)0 − 201 10 282 18 363 26 −  

 
 This game satisfies conditions (13) – (17). 

Let s୧∗: S → {I, NI} be the ε-good strategy for the i-th player, i = 1,2, and 0 <ε < ଵଶ. Let Z = conv{A, B, Cଷଵ, Cଷଶ} = {x ∈ S: xଵ = xଶ} and D = (26 − கଶ , 26 − கଶ , 26 + கଶ). 
We present the construction of the third player strategy sଷ∗: S → {I, NI} such that  

 
 lim୘→ஶx୘(s∗, xଵ) = D for every xଵ ∈ Z. 

 
 We have Vଵ ∩ Z = Vଶ ∩ Z. We set  

 
 sଷ∗(x) = ൜NI if x ∈ Vଵ ∩ Z ∩ co{B, D, Cଷଵ}I elsewhere.    
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 The map φ induced by the strategy profile s∗ ൌ ሺsଵ∗, sଶ

∗, sଷ
∗ሻ is given by  

 
 

φሺxሻ ൌ ቐ
B if	x ∈ Vଵ ∩ Z\coሼB, D, Cଷ

ଵሽ,
Cଷ
ଶ if	x ∈ Vଵ ∩ Z ∩ coሼB, D, Cଷ

ଵሽ
Cଷ
ଵ if	x ∈ Z\Vଵ.

, 

 
 The values of the map φ outside the set Z have no influence onto the trajectory 
xത୘ሺs∗, xଵሻ if xଵ ∈ Z. The map φ: Z → Z satisfies the Blackwell condition for the 
triangle coሼCଷଵ, Cଷଶ, Dሽ in the domain Z. The map φ: Z → Z satisfies the Blackwell 
condition for the sum of intervals BD ∪ DCଷଵ in the domain Z. By Proposition 2.1, 
the sets coሼCଷଵ, Cଷଶ, Dሽ and BD ∪ DCଷଵ are week attractors. To conclude that the 
interval BD is a weak attractor we apply Proposition 2.5 taking A ൌ BD ∪ DCଷ

ଵ and 
B ൌ BD. By Proposition 2.4, the intersection of weak attractors coሼCଷଵ, Cଷଶ, Dሽ and 
A ൌ BD is a weak attractor. The intersection equals to the set ሼDሽ. 

 
4. CONCLUSIONS 

 
This paper is concerned with the specific model of social dilemmas. Such 

models have a very special place in game theory as they describe real social 
problems of modern world: resources depletion, pollution and overpopulation. 
The main characteristic of such models is that each player gain more by not 
cooperating when opponents fix their choices and all individuals are better off if 
all cooperate. The lack of optimality of Nash equilibrium is the most interesting 
problem, because as we can observe in the real world, people are keen to 
cooperate with each other on the certain conditions. As we can find in Axelrod 
(1984), strategies that effectively encourage people to cooperate are: nice, 
forgiving, retaliatory and are found on simple rules. 

The key idea in our approach is to apply Smale’s idea for 3-payer extension of 
Prisoner’s Dilemma. Our strategies are deterministic and satisfy conditions that 
are postulated in Axelrod (1984). What is more, ߝ-good strategies satisfy condition 
(5) which guarantee that using this strategy our payoff shall not be different than 
our opponents payoffs for more than ߝ. This constant ߝ is totally controlled by the 
player who choose it. This property is not received by any other author. 

Our future aim is to extend the idea presented in Plaskacz (2018) onto the type 
of games considered in the paper - three players repeated social dilemmas. The 
idea is as follows. We would like to analyze the repeated three players game by 
evolutionary games methods. To achieve this goal, we threat the repeated game as 
a new game in which a player action is a point in the ߚ-core of the original game. 
Using methods presented in the paper each point from the ߚ-core should 
determine ߝ-good strategy. The main difficulty is to obtain the payoff in the case 
when players choose different points in the ߚ-core. The payoffs in the new game 
are determined by the payoff in the repeated game. 
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APPENDIX 

 
In this Appendix we shall present the proof of Proposition 2.10. We start with 

the necessary theorem. 
Theorem 5.1 If S is a bounded convex subset of H and V: H → ℝ given by (9) 

is the Lapunov type function for the mulivalued map φ: S → S with the constant c > 0, then  
 
 ∃γ > 0,    ∃α଴ > ߙ∀    ,0 ∈ [0, α଴],    ∀x ∈ S\Δୡ,    ∀ω ∈ φ(x) V(αω + (1 − α)x) ≤ V(x) − αγ. 
 
Proof: By (10) we choose δ ∈ (0, c). Let M = sup{|x|: x ∈ S}. For x ∈ S\Δୡ we 

define a set of indexes I(x) by  
 
 I(x) = {j ∈ {1, . . . , k}: V୨(x) ≥ V(x) − δ} 
 

and a subset O୧ of S, related to the fixed index i:  
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 O୧: = {x ∈ S\Δୡ: V୧(x) ≥ V(x) − δ}. (31)
 

 If x ∈ O୧ then V୧(x) > 0 and 〈p୧, ω〉 ≤ 0 for all ω ∈ φ(x). Obviously, i ∈ I(x) is 
equivalent to x ∈ O୧ for x ∈ S\Δୡ. 

We fix positive constants: r, γ and α଴ such that  
 
 r < δ2 ,        γ < ܿ − α଴        ,ߜ < ݉݅݊ ൜ c − δ − γc − δ + M , r2M , 1ൠ 
 

and take an arbitrary x ∈ S\Δୡ. The following condition holds true  
 
 ∀y ∈ B(x, r) = {y ∈ S\Δୡ: ||x − y|| < r}    ∃i ∈ I(x)    V(y) = V୧(y). (32)
 

 Indeed, if j ∉ I(x), then V୨(x) < V(x) − δ. Since V୨ and V are lipschitz 
continuous with the constant L=1, we get V୨(y) < V(y). Therefore, there exists i ∈ I(x) such that V(y) = V୧(y). 

If i ∈ I(x) then V୧(x) ≥ V(x) − δ ≥ c − δ and 〈p୧, ω〉 ≤ 0 for ω ∈ φ(x). Let α ∈[0, α଴] then x஑: = αω + (1 − α)x ∈ B(x, r) and V୧(x஑బ) ≤ V୧(x஑). Moreover,  
 V୧(x஑) ≥ V୧(x஑బ) ≥ −α଴||ω|| + (1 − α଴)(c − δ) ≥ c − δ − α଴(c − δ + M) ≥ γ 
 

and  
 
 V୧(x஑) ≤ (1 − α)V୧(x) ≤ V୧(x) − αγ. 
 

 Thus we have obtained that  
 
 ∀i ∈ I(x),    ∀α ∈ [0, α଴],    ∀ω ∈ φ(x),    V୧(x஑) ≤ V୧(x) − αγ.  (33)
 

 The function V has the following property: if V(a) = V୧(a) and V(b) = V୧(b) 
then V(λa + (1 − λ)b) = V୧(λa + (1 − λ)b) for λ ∈ [0,1] so the set  

 
 {α ∈ [0, α଴]: V୧(αω + (1 − α)x) = V(αω + (1 − α)x)} 
 

is a closed segment. By (32) there exists s ≤ k and a partition 0 = β଴ < βଵ <. . . <βୱ = α଴ such that  
 
 ∀j ∈ {0, . . . , s − 1}, ∃i = i(j) ∈ I(x), ∀α ∈ [β୨, β୨ାଵ],    V(x஑) = V୧(x஑). (34)
 

 Let α ∈ [β଴, βଵ]. In view of (34) there exists i = i(0) ∈ I(x) such that V(x஑) =V୧(x஑) and by (33):  
 
 V(x஑) = V୧(x஑) ≤ V୧(x) − αγ = V(x) − αγ. 
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 Suppose that  
 

 V(x஑) ≤ V(x) − αγ,    ∀k = 1, . . . , j − 1    ∀α ∈ [β୩, β୩ାଵ] 
 
and take α ∈ [β୨, β୨ାଵ]. By (34) there exists i = i(j) such that V(x஑) = V୧(x஑). 
Since α ∈ [β୨, β୨ାଵ], there exists ξ ∈ [0,1] such that x஑ = ξω + (1 − ξ)xஒౠ. 
Therefore,  
  

 x஑ = ξω + (1 − ξ)(β୨ω + (1 − β୨)x) = (ξ + (1 − ξ)β୨)ω + (1 − ξ)(1 − β୨)x, 
 
so  
  

 α = ξ + (1 − ξ)β୨ ≤ ξ + β୨. 
 

 
 It is obvious that  

 
 V(x஑) = V୧(x஑) = V୧(ξω + (1 − ξ)xஒౠ) = ξ < ߱, p୧ > +(1 − (ߦ < xஒౠ, p୧ > ≤ (1 − ξ)V୧(xஒౠ) = V୧(xஒౠ) − ξV୧(xஒౠ) ≤ V୧(xஒౠ) − ξγ. 
 

 Then we get  
 
 V୧(xஒౠ) − ξγ ≤ V(x) − β୨γ − ξγ = V(x) − γ(β୨ + ξ) ≤ V(x) − αγ, 
 

hence,  
 
 V(αω + (1 − α)x) ≤ V(x) − αγ. QED
 

 The proof of Proposition 2.10. 
Proof: Fix (xത୬)୬ୀଵஶ  satisfying (12). First, we prove that  
 
 ∀M, ∃N ≥ M,    xത୒ ∈ Δୡ. (35)
 

 Suppose, contrary to our claim, that xത୬ ∉ Δୡ for n ≥ m. We choose k ≥ m such 
that ଵ୩ < α଴, where α଴ and γ are given by Theorem 5.1. Thus  

 
 V(xത୩ା୪ାଵ) = V ൬ 1k + l + 1 x୩ା୪ାଵ + k + lk + l + 1 xത୩ା୪൰ ≤ V(xത୩ା୪) − γ 1k + l + 1 ≤ … ≤ V(xത୩) − γ ൬ 1k + l + 1 + ⋯ + 1k + 1൰ ł→ஶሱۛሮ −∞ 

 
which contradicts to the assumption that V(xത୬) ≥ c for n ≥ m. 



294 Przegląd Statystyczny, tom LXV, zeszyt 3, 2018 
 

Fix cଵ > c. By Proposition 2.6, we choose M such that |xത୪ାଵ − xത୪| < cଵ − c for l ≥ M. By (35), there exists N ≥ M such that xത୒ ∈ Δୡ. If xത୒ା୪ ∈ Δୡ then V(xത୒ା୪ାଵ) ≤ V(xത୒ା୪) + |xത୒ା୪ାଵ − xത୒ା୪| < cଵ. If xത୒ା୪ ∈ Δୡభ\Δୡ then V(xത୒ା୪ାଵ) ≤V(xത୒ା୪) < cଵ. QED  

 
SILNE I BEZPIECZNE RÓWNOWAGI NASHA W PEWNYCH GRACH 

POWTARZANYCH 3 GRACZY 
 

Streszczenie 
 
W pracy analizujemy grę nieskończenie powtarzaną 3-graczy będącą rozsze- 

rzeniem gry typu Dylemat Więźnia. Rozważamy grę 3-graczy w postaci normalnej 
z pełną informacją, w której każdy gracz ma dwa działania. Zakładamy, że gra jest 
symetryczna i powtarzana nieskończenie wiele razy. Strategią gracza w grze po-
wtarzanej jest funkcja zdefinowana na uwypukleniu zbioru wypłat. Naszym celem 
jest skonstruowanie mocnej równowagi Nasha w grze powtarzanej, to znaczy 
profilu strategii, który jest odporny na odstępstwa od strategii równowagi przez 
koalicję graczy. Skonstruowane strategie równowagi są bezpieczne, to znaczy 
wypłata gracza, który nie odstępuje od strategii równowagi jest niemniejsza od 
wypłaty odpowiadającej równowadze w grze etapowej, oraz wypłata gracza od-
stępujacego od równowagi może być większa od wypłaty gracza nieodstępujące-
go od strategii równowagi, ale nie więcej niż o pewną stałą dodatnią, która może 
być wybrana dowolnie mała przez gracza nieodstępującego od równowagi. Nasza 
konstrukcja jest inspirowana koncepcją dobrych strategii Smale’a opisaną w jego 
pracy z 1980 roku, gdzie rozważany był powtarzany Dylemat Więźnia. W dowo-
dach wykorzystujemy wyniki o zbliżaniu oraz silnym zbliżaniu. 

Słowa kluczowe: gra powtarzana, silna równowaga Nasha, metoda  
Blackwell'a w problemie zbliżania, metoda funkcji Lapunowa 

 
STRONG AND SAFE NASH EQUILIBRIUM IN SOME 

REPEATED 3-PLAYER GAMES 
 

Abstract 
 
The paper examines an infinitely repeated 3-player extension of the Prisoner’s 

Dilemma game. We consider a 3-player game in the normal form with 
incomplete information, in which each player has two actions. We assume that 
the game is symmetric and  repeated  infinitely many times. At each stage, 
players make their choices knowing only the average payoffs from previous 
stages of all the players. A strategy of a player in the repeated game is 
a function defined on the convex hull of the set of payoffs. Our aim is to 
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construct a strong Nash equilibrium in the repeated game, i.e. a strategy profile 
being resistant to deviations by coalitions. Constructed equilibrium strategies are 
safe, i.e. the non-deviating player payoff is not smaller than the equilibrium 
payoff in the stage game, and deviating players’ payoffs do not exceed the non-
deviating player payoff more than by a positive constant which can be arbitrary 
small and chosen by the non-deviating player. Our construction is inspired by 
Smale’s good strategies described in Smale’s paper (1980), where the repeated 
Prisoner’s Dilemma was considered. In proofs we use arguments based on 
approachability and strong approachability type results. 
Keywords: repeated game, strong Nash equilibrium, Blackwell’s approacha- 

bility, Lapunov function method 
 




