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1. INTRODUCTION

The analysis of contingency tables (CTs) is one of the most common tasks 
performed by statisticians. CTs display the frequency distribution of two (two- 
-way CTs), three (three-way CTs) or more (multi-way CTs) categorical variables.
The information about categorical data can be found e.g. in Bishop et al. (1975),
Agresti (2002), Van Belle et al. (2014). Information presented as CTs features in
a wide variety of areas such as the social sciences (Wickens, 1969), genetics
(El Galta et al., 2008; Dickhaus et al., 2012), demography (Cung, 2013) and
psychology (Iossifova et al., 2013). Basic methods of testing for dependency in
CTs in details is described e.g. in Steinle et al. (2006), Bock (2003), Kaski et
al. (2005), Allison, Liker (1982). Other examples of applications may be found in
Ilyas et al. (2004), Oates, Cohen (1996), Schrepp (2003), Haas et al. (2007).

One can recognize two general cases in which CTs can be useful. This dis-
tinction between the cases is made with respect to the tasks which CTs are used 
for. 

Case A. Dependency is unwanted. The general population is sought to be in 
its normal state or be under control when levels of feature  are independent of 
levels of feature . Revealing dependency means revealing abnormality of 
members of the general population. If so, a large scale and very costly actions 
have to be obligatorily initiated. That is why a decision-maker tries to avoid false 
alarm. This case is typical, for instance, in security guarding. A classic statistical 
way of reasoning is tailored to case A. Please notice that the main hypothesis, 
commonly denoted by , states that:  and  are independent. Moreover,  is 
guarded against rejection by setting significance level at 5% or less.  

Case B. Dependency is wanted. The state of the general population is as-
sessed upon feature . Unfortunately, levels of feature  are difficult to be de-
termined e.g. determination is risky, costly or time consuming. In contrast, levels 
of another feature  are easy to be determined. Assessors are concerned with 
finding out whether there is a tie between  and . In other words, whether  
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and  are dependent or independent. Assessors use , . . . ,  levels as sensible 
indicators of , . . . ,  levels. Case B is typical in diagnostics, both medical and 
technical. In case B another way of statistical reasoning is needed, different from 
the classic way. 

Conservativeness of the classic statistical way of reasoning often obstructs 
progress in numerous situations where rejecting  means making a step 
ahead. This is a strong motivation for making a turnaround in statistical reason-
ing. In this new statistical reasoning there is no null hypothesis. In contrast to the 
classic way, there is a set of competing hypotheses. Moreover, the testing pro-
cedure warrants equality of all the alternatives when the test begins. The former 
null hypothesis is no longer the main one, but exists among the other ones of 
equal importance. Particular hypotheses relate to scenarios under which particu-
lar CTs are created. Details are presented in section 7. There are two reasons 
for which this likelihood based reasoning is developed and put forward: 
a) Undoubtedly, CT-based classic statistical reasoning is the nonparametric 

reasoning. It is commonly known that parametric statistical reasoning, if ap-
plicable, is much more sensitive to untruthfulness of  than nonparametric 
reasoning. In this paper we propose a parametric reasoning. Particular sce-
narios are parameterized with the probability flow parameter (PFP).  

b) Let us again retrace a way of the classic thinking. A value of the test statis-
tics is smaller than the appropriate critical value results in failing to reject 

. In case A the decision maker is comfortable about independence. 
A value of the test statistics is no smaller than the appropriately determined 
critical value results in rejecting . In case B the decision maker is com-
fortable about dependence because there is no word said what the reason 
of rejecting  is. The most likely scenario is selected whereas reasons to 
reject  or not are embedded in scenarios. One can say that the method 
put forward in this paper offers a transition from ”unfathomable” to ”fathom-
able” reasons. 

Nonparametric and parametric reasoning based on 2 × 2 CT is presented in 
(Sulewski, 2018b), therefore this paper is devoted to bigger tables, e.g. 2 × 3, 2 × 4, 3 × 3, 3 × 4, 4 × 4, 2 × 2 × 2, 3 × 2 × 2 ones.  

This paper is organized as follows. Variants of presentation of CT are de-
scribed in section 2. CT coming into being are presented in section 3. Statistic 
tests including the power divergence tests and the | | test are defined in section 
4. Section 5 is devoted to measures of untruthfulness of H0 including the meas-
ure that is defined by means of an absolute value. In section 6 maximum likeli-
hood method is applied to estimate the PFP. Section 7 is devoted to instructions 
how to generate two-way and three-way CTs. Section 8 presents numerical ex-
amples and section 9 presents closing remarks.  

Monte Carlo simulation is performed in Visual Basic for Applications embed-
ded in Microsoft Excel 2016. 
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2. VARIANTS OF PRESENTATION OF CT 
 

This section is devoted to the × ×  CT. If = 1, then we obviously have ×  CT.  
Let , ,  be three features of the same object, respectively, have levels , . . . , , , . . . , , , . . . , . Testing these three features for independence 

with an appropriately arranged CT is probably one of the most common statisti-
cians’ tasks. At the moment one can distinct between four variants of presenta-
tion of CTs. It is because each variant is intended for a different purpose. Below 
details of particular variants are given: 
― TP Variant (theoretical probabilities). Cells contain probabilities  intrin-

sic to the phenomenon being investigated (see table 1). The exact values 
of these probabilities are unknown to the investigator. This variant is intro-
duced a little bit in advance since CTs will be simulated with the Monte 
Carlo method in further sections of this paper. And just then CT variant 
filled with probabilities arbitrarily set by Monte Carlo experimenter will be 
applied. 

― TC Variant (theoretical counts). Cells contain theoretical expected counts = . These counts are theoretical in this sense that they result from 
TP variant. 

― EP Variant (empirical probabilities). Cells that result from EC variant and 
contain estimates ∗ = ∗ /  of the unknown content of TP. 

― EC Variant (experimental counts). Cells contain ∗  counts observed on 
a sample drawn from general population subjected to the investigation. 

 
Table 1. TP VARIANT OF THREE-WAY CT Z Z  ... Z  

Total X	 	Y⁄  Y  ... Y  ... Y  ... Y  Y   ...  ...  ...  •• 
... ... ... ... ... ... ... ... ... X   ...  ...  ...  •• 

Total •  ... •  ... •  ... •  1 

 
3. ON HOW CT COMES INTO BEING 

 
One can treat CTs as a mathematical expression of a certain phenomenon we 

deal with. This formulation suggests that there is an internal mechanism in this 
phenomenon that determines probabilities of particular ,  or , ,  combina-
tions and ascribes these probabilities to the cells of the table. Below are “pro-
genitors” of all the ×  CTs  
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 = 1/( ) ⋯ 1/( )⋮ ⋯ ⋮1/( ) ⋯ 1/( )  (1)

 
and all the × ×  CTs 
 
 = 1/( ) ⋯ 1/( )	⋮ ⋮ ⋮1/( ) ⋯ 1/( ) 			⋯ 1/( ) ⋯⋮ ⋮ ⋮⋯ 1/( ) ⋯				1/( )⋮1/( )  (2)

 
A variety of tables may be generated when portions of PFP  flow from ”ma-

ternal” cells of (1) or (2) to other cells. Obviously, the total probability always 
equals 1. In this paper twenty eight scenarios that seem fundamental are devel-
oped (tables 2–3). These scenarios are created based on scenarios for the 2 × 2 CT that seem fundamental and describe different levels of dependence 
(Sulewski, 2018b). 

 
Table 2. THE CONTENTS OF ×  CTs RESULTING FROM SCENARIOS IN QUESTION 

Table Scenario Content 

2 × 3 

I = 1/6 − , = = = = 1/6, = 1/6 +  

II = = 1/6 − , = = 1/6, = = 1/6 +  

III = = 1/6 − , = = 1/6, = = 1/6 +  

IV = = 1/6 − , = = 1/6, = = 1/6 +  

2 × 4 

V = 1/8 − , = = = = = = 1/8, = 1/8 +  

VI = = = 1/8 − , = = 1/8, = 	 = 	 = 1/8 +  

VII = 1/8 − , = = = = = = 1/8, = 1/8 +  

VIII = = 1/8 − , = = = = 1/8, = = 1/8 +  

3 × 3 

IX = 1/9 − , = = = = = = = 1/9, = 1/9 +  

X = = 1/9 − , = = = = = 1/9, = = 1/9 +  

XI = = 1/9 − , = = = = = 1/9, = = 1/9 +  

XII = = = 1/9 − , = = = 1/9, = = = 1/9 +  

3 × 4 

XIII 
= 1/12 − , = = = = = = = = = == 1/12, = 1/12 +  

XIV 
= = 1/12 − , = = = = = = = == 1/12, = = 1/12 +  

XV 
= = 1/12 − , = = = = = = = == 1/12, = = 1/12 +  

XVI = = = = 1/12 − , = = = = 1/12, =	= = = = 1/12 +  
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Table 2. THE CONTENTS OF ×  CTs RESULTING FROM SCENARIOS IN QUESTION (cont.) 

Table Scenario Content 

4 × 4 

XVII = = = 1/16 − , = = = = = = = =	= = = 1/16, = = = 1/16 +  

XVIII = = 1/16 − , = = = = = = = = =	= = = = 1/16, = = 1/16 +  

XIX = = = = = = 1/16 − , = = =	= = == 1/16, = = = = = = 1/16 +  

XX = = = = 1/16 − , = = = = =	= = = 1/16, = = = = 1/16 +  

Source: own elaboration. 

 
Table 3. THE CONTENTS OF × ×  CTs RESULTING FROM SCENARIOS IN QUESTION 

Table Scenario Content 

2 × 2 × 2 

XXI = = 1/8 − , = = = = 1/8, = = 1/8 +  

XXII = = = 1/8 − , = = 1/8, = = = 1/8 +  

XXIII = 1/8 − , = = = = = = 1/8, = 1/8 +  

XXIV = = 1/8 − , = = = = 1/8, = = 1/8 +  

3 × 2 × 2 

XXV 
= = 1/12 − , = = = = = = = == 1/12, = = 1/12 +  

XXVI = = 1/12 − , = = = = = =	= = = 1/12, = = 1/12 +  

XXVII = = = 1/12 − , = = = =	= = == 1/12, = = = 1/12 +  

XXVIII = = = = 1/12 − , = = =	= = 1/12, = = = = 1/12 +  

Source: own elaboration. 

 
In all the above scenarios the PFP  takes values in 0,  or 0, . The 

scenarios are selected in such a way that they correspond to different levels of 
dependence expressed by means of an appropriate measure of untruthfulness 
of  (MoU). The MoU takes values on interval 0,1 . A simulation study is car-
ried out for MoU values no bigger than 2/3. It is obvious that the detection of 
a strong dependence is very simple. You can find more information about the 
MoU in section 5. 

Obviously, scenarios do not cover all the cases. They may be locally mutated 
by reversing rows or columns to better fit the analyzed data. These are simple 
equal-portion scenarios. In the scenarios you can use a part of PFP, e.g. /2, /3,…. Surely, real scenarios can be more or less similar to these above. This is 
typical in relations between theory and real life. With the current availability of 
computers, the statistician can afford situations that interest him and instantly 
repeat such simulations. All examples presented here have a very precise algo-
rithmic description in a form of a step list. 
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The researches can be generalized by introducing several PFPs. This, how-
ever, causes a significant deterioration in the properties of the parameter estima-
tors. The Weibull distribution has a simple analytical form. For its generalization, 
the Generalized Gamma Distribution (URG) can be considered. Due to big prob-
lems with estimating URG parameters the author does not know any practical 
applications of URG to describe the reliability results of technical objects. You 
can always add more parameters to the model, however, this might worsen their 
estimation. 

 
4. INDEPENDENCE TESTS 

 
4.1. Two-way contingency table 

 
Features ,  are independent what means that  is true, if = •• ( , = 1,2) for each pair of , . The alternative hypothesis denoted  is such 

one that negates . Let  be the expected counts  

 
 = • • = • • ( = 1,… , ; = 1,… , ). (3)

 
The expected counts  have the same one-way marginal values as the ob-

served table  (Gokhale, Kullback, 1978). 
Statistical science has been enriched with many other statistics intended for 

research on test independency. Cressie, Read (1984) propose the power diver-
gence statistics (PDS). The PDS for ×  CTs is given by  

 = 2( + 1) ∗ ∗∗ − 1 = 

(4)= 2( + 1) ∗ ∗
•∗ •∗ − 1 −∞ < < ∞, 

 
where  values are given by (3). Equation (4) always takes positive values 
and is defined as a limit of  at −1 and 0.  contains a very rich class of test 
statistics, for example: the  statistics ( = 1), the G2 statistics (the limit as  
goes to 0), the Freeman-Tukey statistics ( = −0.5), the modified G2 statistics 
(the limit as  goes to −1), the Neyman modified  statistics ( = −2) and the 
Cressie-Read statistics ( = 2/3). If H0 is true, statistics (4), for large  (i.e. 
asymptotically), follows the chi-square distribution with ( − 1)( − 1) degrees 
of freedom.  
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The following PDS are selected to Monte Carlo study: the  statistics (Pear-
son, 1900), the Freeman-Tukey FT statistics (Freeman, Tukey, 1950), the Cres-
sie-Read CR statistics (Cressie, Read, 1984): 

 
 = ∗ − , (5)

 
 = 4 ∗ − ∗ , (6)

 
 = 95 ∗ ∗∗ / − 1 . (7)

 
The  statistics (Sokal, Rohlf, 2012), the modified  statistics (Kullback, 

1959) and the Neyman modified  statistics (Neyman, 1949) have not been 
subjects in the Monte Carlo study because they are applicable only in a case 
where all 	( = 1,… , ; = 1,… , ) counts are not equal to zero. 

The square used in the numerator of  statistics (5) makes that large differ-
ences between expected and theoretical counts even bigger and the small dif-
ferences even smaller. Another aim of the use of the square is to avoid that the 
differences are mutually exclusive. For this purpose one can use their absolute 
value instead of squared deviations. The | | statistics is selected to Monte Carlo 
study, too. It is an authorial modification of  statistics and it has the form 
(Sulewski, 2013) 

 
 | | = ∗ − ∗∗ = ∗ − •∗ •∗•∗ •∗ , (8)

 
where ∗  are experimental counts, ∗  are expected counts and ∗  are empirical 
probabilities. It is shown in (Sulewski, 2016) that | | test is more powerful than 
tests (5)–(7).  
 
4.2. Three-way contingency table 

 
In this paper the research has been limited only to complete independence. 

Features , ,  are completely independent from one another, and  is true, if 
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 = •• • • ••  (9)

 
for each = 1,… , ; = 1,… , ; = 1,… , . The alternative hypothesis  ne-
gates .  

Let  be the expected counts under complete independence of , ,  

 
 = •• • • •• = •• • • •• ( = 1,… , ; = 1,… , ; = 1,… , ). (10)

 
The expected counts  under complete independence of , ,  have the 

same one-way 
marginal values as the observed table  (Gokhale, Kullback, 1978) 
To study the complete independence of the features , ,  we use the statis-

tics that are extensions of those for two-way CTs (Pardo, 1996) 

 
 = ∗ − ∗∗ , (11)

 = 4 ∗ − ∗ , (12)

 = 95 ∗ ∗∗ / − 1 . (13)

 
Statistics (11)–(13) for CT, when  is true, asymptotically follow the chi-

square distribution with − ( + + ) + 2 degrees of freedom. Statistics  

 
 = 2 ∗ 1n ∗∗ , = ∗ − ∗∗ ,	

= 2 ∗ 1n ∗∗  

 
also belong to the PDS. However, these statistics have not been applied in 
the Monte Carlo study, because they do not take into account the condition ∗ = 0. 

The | | statistics is selected to Monte Carlo study, too. It is an authorial 
modification of  statistics and it has the form (Sulewski, 2018a) 
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 | | = ∗ − ∗∗ , (14)

 
where ∗  are experimental counts and ∗  are expected counts. It is shown in 
(Sulewski, 2018a) that | | test is more powerful than tests (11)–(13).  

 
5. MEASURES OF UNTRUTHFULNESS OF H0 

 
5.1. Two-way contingency table 

 
When the equality = • •  is not fulfilled,  is not true and an appropriate 

measure of untruthfulness of  (MoUH) is needed. There are many different 
measures in literature, e.g.: the Pearson’s , the Tschuprow’s , the Cramer’s , 
the corrected contingency , the Goodman and Kruskal’s .  

In this paper we use a MoUH which is given by (Sulewski, 2016):  

 
 = 1 ∗ − •.∗ ⋅ •∗ = ∗ − •∗ ⋅ •∗ . (15)

 
The  takes values in interval 〈0,1〉. This measure, doubtlessly, springs 

from the essence of  and has a very simple form. The  formulas and the 
maximal  values (the minimal  values are equal to zero) under scenari-
os I-XX are presented in table 4. The  is a function of the PFP . Owing to 
this the  values are very easy to calculate. 

 
Table 4. THE  UNDER SCENARIOS I-XX FOR A TWO-WAY CT 

Table Scenario     Table Scenario   2 × 3 I 4 /3 0.2222 2 × 4 V 2  0.25 

II * 0.3333 VI ** 0.3125 

III 8 /3 0.4444 VII 3  0.375 

IV 4  0.6667 VIII 4  0.5 3 × 3 IX 2 + 2  0.2469 3 × 4 XIII 8 /3 0.2222 

X 8 /3 0.2963 XIV 4  0.3333 

XI 4  0.4444 XV 16 /3 0.4444 

XII 16 /3 0.5926 XVI 8  0.6667 
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Table 4. THE  UNDER SCENARIOS I-XX FOR A TWO-WAY CT (cont.) 

Table Scenario     Table Scenario   4 × 4 XVII 3  0.1875  

XVIII 4  0.25 

XIX ∗∗∗ 0.3125 

XX 8  0.5 

* 4 /3	 (0 < 0.1), 8 + 2 /3	 (0.1 < 1/6)   
** 2 	 (0 0.075), 12 + 	 (0.075 < 0.125) 
*** 4 	 (0 0.0375), 48 + 2 	 (0.0375 < 1/16)       
Source: own elaboration. 
 

5.2. Three-way contingency table 
 
The theory devoted to MoUH for TT is not as rich as for the two-way contin-

gency table, where the Goodman—Kruskal index plays an important role 
(Goodman, Kruskal, 1954). Numeric extensions of this index for three way CT 
are: the Marcotorchino index  (Marcotorchino, 1984), the delta index  (Lom-
bardo, 2011) and the Gray—Williams index  (Gray, Williams, 1975). Infor-
mation about other less popular indices can be found in (Beh, Davy, 1998; 
Harshman, 1970; Lombardo, Beh, 2010; Trucker, 1963). 

Based on the classical definition of independence of , , , the  in the 
form 

 
 = 1 ∗ − ••∗ • •∗ ••∗ = − •• • • •• , (16)

 
is put forward in (Sulewski, 2018a). The measure (16) takes the value 0 when  

is true. The higher the  value, the greater the possibility of H0 falsity. More 
information about the measures , ,  and  defined under some sce-
narios for three-way CT you can find in (Sulewski, 2018a).  

The  as a natural measure, resulting from the definition of independ-
ence, is used in the Monte Carlo simulation. The  formulas and the maxi-
mal  values (the minimal  values are equal to zero) under scenarios 
XXI–XXVIII are presented in table 5. The  is a function of the PFP a. Owing 
to this the  values are very easy to calculate. 

 
Table 5. The  under scenarios XXI-XXVIII for three-way contingency tables  

Table Scenario  	    Table Scenario  	  

2 × 2 × 2 

XXI 16  0.25   3 × 2 × 2 

XXV 8 /3 0.2222 

XXII * 0.3359   XXVI ** 0.3889 

XXIII 3  0.375   XXVII 6  0.5 

XXIV 4  0.5   XXVIII 8  0.6667 
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* 

 0 0.0125 0.025 0.0375 0.05 0.0625 0.075 0.0875 0.1 0.1125 0.125 

 0 0.025 0.0504 0.0763 0.103 0.1309 0.1601 0.1969 0.238 0.283 0.3359 

** 

 0 0.0083 0.0167 0.025 0.0333 0.0417 0.05 0.0583 0.0667 0.075 0.0833 

 0 0.0364 0.0733 0.1108 0.1489 0.1875 0.2267 0.2664 0.3067 0.3475 0.3889 

Source: own elaboration. 
 

6. APPLYING THE MAXIMUM LIKELIHOOD METHOD 
TO ESTIMATE THE PROBABILITY FLOW PARAMETER 

 
This section is a simply attempt of replacing a nonparametric statistical infer-

ence method by the parametric one. Maximum likelihood method is applied to 
estimate the PFP. 

Let us remember that in cells of two-way CT are values 	( = 1,… , ; =1,… , ), in cells of three-way CT are values 	( = 1,… , ; = 1,… , ; =1,… , ). These values are components of the multinomial distribution. Thus the 
multinomial distribution was taken as a groundwork of the likelihood functions. 
A family of these likelihood functions is given below. Every function from this 
family has an index. Indices assign functions to particular scenarios presented in 
section 3 of the paper.  

 
6.1. Two-way contingency table 

 
Let ∗  be the value of ( , ) cell and  is the probability flow parameter. Then 

likelihood functions under CT ×  have the form  
a) table 2 × 3 

 
 ( ) = (1 6⁄ − ) ∗ (1 6⁄ + ) ∗ (1 6⁄ ) ∗ ∗ ∗ ∗ , (17)

 
 ( ) = (1 6⁄ − ) ∗ ∗ (1 6⁄ + ) ∗ ∗ (1 6⁄ ) ∗ ∗ , (18)

 
 ( ) = (1 6⁄ − ) ∗ ∗ (1 6⁄ + ) ∗ ∗ (1 6⁄ ) ∗ ∗ , (19)

 
 ( ) = (1 6⁄ − ) ∗ ∗ (1 6⁄ + ) ∗ ∗ (1 6⁄ ) ∗ ∗ , (20)

 
b) table 2 × 4 

 
 ( ) = (1 8⁄ − ) ∗ (1 8⁄ + ) ∗ (1 8⁄ ) ∗ ∗ ∗ ∗ ∗ ∗ , (21)

 
 ( ) = (1 8⁄ − ) ∗ ∗ ∗ (1 8⁄ + ) ∗ ∗ ∗ (1 8⁄ ) ∗ ∗ , (22)

 
 ( ) = (1 8⁄ − ) ∗ (1 8⁄ + ) ∗ (1 8⁄ ) ∗ ∗ , (23)

 
 ( ) = (1 8⁄ − ) ∗ ∗ (1 8⁄ + ) ∗ ∗ (1 8⁄ ) ∗ ∗ ∗ ∗ , (24)
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c) table 3 × 3 
 

 ( ) = (1 9⁄ − ) ∗ (1 9⁄ + ) ∗ (1 9⁄ ) ∗ ∗ , (25)
 

 ( ) = (1 9⁄ − ) ∗ ∗ (1 9⁄ + ) ∗ ∗ (1 9⁄ ) ∗ ∗ ∗ ∗ ∗ , (26)
 

 ( ) = (1 9⁄ − ) ∗ ∗ (1 9⁄ + ) ∗ ∗ (1 9⁄ ) ∗ ∗ ∗ ∗ ∗ , (27)
 

 ( ) = (1 9⁄ − ) ∗ ∗ ∗ (1 9⁄ + ) ∗ ∗ ∗ (1 9⁄ ) ∗ ∗ ∗ , (28)
 

d) table 3 × 4 
 

 ( ) = (1 12⁄ − ) ∗ (1 12⁄ + ) ∗ (1 12⁄ ) ∗ ∗ , (29)
 

 ( ) = (1 12⁄ − ) ∗ ∗ (1 12⁄ + ) ∗ ∗ (1 12⁄ ) ∗ ∗ ∗ ∗ , (30)
 

 ( ) = (1 12⁄ − ) ∗ ∗ (1 12⁄ + ) ∗ ∗ (1 12⁄ ) ∗ ∗ ∗ ∗ , (31)
 ( ) = (1 12⁄ − ) ∗ ∗ ∗ (1 12⁄ + ) ∗ ∗ ∗ ∗ 	(1 12⁄ ) ∗ ∗ ∗ ∗ , (32)

 
e) table 4 × 4 

 ( ) = (1 16⁄ − ) ∗ ∗ ∗ (1 16⁄ + ) ∗ ∗ ∗ 	(1 16⁄ ) ∗ ∗ ∗ ∗ ∗ ∗ , (33)

 ( ) = (1 16⁄ − ) ∗ ∗ (1 16⁄ + ) ∗ ∗ (1 16⁄ ) ∗ ∗ ∗ ∗ , (34)
 ( ) = (1 16⁄ − ) ∗ ∗ ∗ ∗ ∗ ∗ 	(1 16⁄ + ) ∗ ∗ ∗ ∗ ∗ ∗ (1 16⁄ ) ∗ ∗ ∗ ∗ , (35)

 ( ) = (1 16⁄ − ) ∗ ∗ ∗ ∗ 	(1 16⁄ + ) ∗ ∗ ∗ ∗ (1 16⁄ ) ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ , (36)

 
In formulas (17)–(36) = !/∏ ∏ ∗ !. 
The logarithmic likelihood function under scenario I in CT 2 × 3 is given by 

 ( ) = 1n ( ) = 1n(C) + ∗ 1n(1 6 +⁄ ) + ( ∗ + ∗ ∗ ∗ )1n(1 6⁄ ), 
 

then 
 

 ( ) = ∗1 6 +⁄ − ( ) = 0 ⇒ = ∗ − ∗6( ∗ + ∗ ), 



326 Przegląd Statystyczny, tom LXV, zeszyt 3, 2018 
 

Let us check what kind of extremum we can found. As a result of a simple 
transformation we have 

 
 ( ) = ∗1 6 +⁄ − ∗1 6⁄ − = − ∗(1 6⁄ + ) − ∗(1 6⁄ − ) < 0, (37)

 
for < 1/6. It means that the logarithmic likelihood function has always a maxi-
mum at = . So,  is the maximum likelihood estimator of  which is the prob-
ability flow parameter. It may be proven that inequality (37) holds for all scenari-
os considered in this paper. 

Formulas for the maximum likelihood estimator of  under scenarios I-XX for 
two-way CT are given by: 

 
a) table 2 × 3 

 
 = ∗ − ∗6( ∗ + ∗ ) , = ∗ + ∗ − ( ∗ + ∗ )6( ∗ + ∗ + ∗ + ∗ ), 

(38) = ∗ + ∗ − ( ∗ + ∗ )6( ∗ + ∗ + ∗ + ∗ ) , = ∗ + ∗ − ( ∗ + ∗ )6( ∗ + ∗ + ∗ + ∗ ), 
 

b) table 2 × 4 
 

 = ∗ − ∗8( ∗ + ∗ ) , = ∗ + ∗ + ∗ − ( ∗ + ∗ + ∗ )8( − ∗ − ∗ ) , 
(39) = ∗ − ∗8( ∗ + ∗ ) , = ∗ + ∗ − ( ∗ + ∗ )8( ∗ + ∗ + ∗ + ∗ ), 

 
c) table 3 × 3 

 = ∗ − ∗9( ∗ + ∗ ) , = ∗ + ∗ − ( ∗ + ∗ )9( ∗ + ∗ + ∗ + ∗ ), 
(40)= ∗ + ∗ − ( ∗ + ∗ )9( ∗ + ∗ + ∗ + ∗ ) , = ∗ + ∗ + ∗ − ( ∗ + ∗ + ∗ )9( − ∗ − ∗ − ∗ ) , 

 
d) table 3 × 4 

 = ∗ − ∗12( ∗ + ∗ ) , = ∗ + ∗ − ( ∗ + ∗ )12( ∗ + ∗ + ∗ + ∗ ), 
(41)= ∗ + ∗ − ( ∗ + ∗ )12( ∗ + ∗ + ∗ + ∗ ), = ∗ + ∗ + ∗ + ∗ − ( ∗ + ∗ + ∗ + ∗ )12( − ∗ − ∗ − ∗ − ∗ ) , 
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e) table 4 × 4 
 = ∗ + ∗ + ∗ − ( ∗ + ∗ + ∗ )16( ∗ + ∗ + ∗ + ∗ + ∗ + ∗ ), 

(42)

= ∗ + ∗ − ( ∗ + ∗ )16( ∗ + ∗ + ∗ + ∗ ), 
= ∗ + ∗ + ∗ + ∗ + ∗ + ∗ − ( ∗ + ∗ + ∗ + ∗ + ∗ + ∗ )16( − ∗ + ∗ + ∗ + ∗ ) , = ∗ + ∗ + ∗ + ∗ − ( ∗ + ∗ + ∗ + ∗ )16( ∗ + ∗ + ∗ + ∗ + ∗ + ∗ + ∗ + ∗ ). 

 
To decide which of the defined scenarios takes place, you use the following 

algorithm: 
1. Find dimension of CT in question and read out related  according to the rule: 2 × 3	( = 1), 2 × 4	( = 2), 3 × 3	( = 3), 3 × 4	( = 4), 4 × 4( = 5)	 
2. Set a set of scenario indices 4 − 3,4 − 2,4 − 1,4 . 
3. Calculate ∗, which is an estimate of parameter a for each scenario from step 

2 by means of (38)–(42). 
4. Calculate corresponding values of the maximum likelihood functions ( ∗), ( ∗), ( ∗), ( ∗) by means of (17)–(36). 
5. Choose a scenario for which the value ( ∗) is the greatest. 

This algorithm will be used in section 8.1, Example 1. 
 

6.2. Three-way contingency table 
 

Let ∗  be the value of ( , , ) cell and  is the PFP. Then likelihood functions 
for selected three-way CT have the form: 

 
a) table 2 × 2 × 2 

 
 ( ) = (1 8 −⁄ ) ∗ ∗ (1 8 +⁄ ) ∗ ∗ (1 8⁄ ) ∗ ∗ ∗ ∗ , (43)

 ( ) = (1 8 −⁄ ) ∗ ∗ ∗ (1 8 +⁄ ) ∗ ∗ ∗ (1 8⁄ ) ∗ ∗ , (44)
 ( ) = (1 8 −⁄ ) ∗ (1 8 +⁄ ) ∗ (1 8⁄ ) ∗ ∗ , (45)
 ( ) = (1 8 −⁄ ) ∗ ∗ (1 8 +⁄ ) ∗ ∗ (1 8⁄ ) ∗ ∗ ∗ ∗ , (46)

b) table 3 × 2 × 2 
 ( ) = (1 8 −⁄ ) ∗ ∗ (1 8 +⁄ ) ∗ ∗ (1 8⁄ ) ∗ ∗ ∗ ∗ , (47)
 ( ) = (1 8 −⁄ ) ∗ ∗ (1 8 +⁄ ) ∗ ∗ (1 8⁄ ) ∗ ∗ ∗ , (48)
 ( ) = (1 8 −⁄ ) ∗ ∗ ∗ (1 8 +⁄ ) ∗ ∗ ∗ 	(1 8⁄ ) ∗ ∗ ∗ ∗ ∗ ∗ ∗ , (49)
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 ( ) = (1 8 −⁄ ) ∗ ∗ ∗ ∗ (1 8 +⁄ ) ∗ ∗ ∗ ∗ 	(1 8⁄ ) ∗ ∗ ∗ ∗ . (50)
 

In formulas (43)–(50) = !/∏ ∏ ∏ ∗ !. 
Formulas for the maximum likelihood estimator of  under scenarios XXIV– 

–XXVIII for CT × ×  are given by 
 
a) table 2 × 2 × 2 
 = ∗ + ∗ − ( ∗ + ∗ )8( ∗ + ∗ + ∗ + ∗ ), 

(51)= ∗ + ∗ + ∗ − ( ∗ + ∗ + ∗ )8( − ∗ − ∗ ) , = ∗ − ∗8( ∗ + ∗ ) , = ∗ + ∗ − ( ∗ + ∗ )8( ∗ + ∗ + ∗ + ∗ ). 
 
a) table 3 × 2 × 2 
 = ∗ + ∗ − ( ∗ + ∗ )12( ∗ + ∗ + ∗ + ∗ ), 

(52)
= ∗ + ∗ − ( ∗ + ∗ )12( ∗ + ∗ + ∗ + ∗ ), = ∗ + ∗ + ∗ − ( ∗ + ∗ + ∗ )8( ∗ + ∗ + ∗ + ∗ )  = ∗ + ∗ + ∗ + ∗ − ( ∗ + ∗ + ∗ + ∗ )12( − ∗ − ∗ − ∗ − ∗ ) . 

 
To decide which of the defined scenarios takes place, you use the following 

algorithm: 
1. Find dimension of CT in question and read out related  according to the rule:  
 2 × 2 × 2	( = 6), 3 × 2 × 2	( = 7) 
 
2. Set a set of scenario indices 4 − 3,4 − 2,4 − 1,4 . 
3. Calculate ∗, which is an estimate of parameter  for each scenario from step 

2 according to (51)–(52) 
4. Calculate corresponding values of the maximum likelihood functions ( ∗), ( ∗), ( ∗), ( ∗) by means of (43)–(50). 
5. Choose a scenario for which the value ( ∗) is the greatest. 

This algorithm will be used in section 8.2, Example 4. 
 

7. GENERATING CONTINGENCY TABLE 
 

Generating CT is very important in the simulation study. The approach in the 
literature for the generating two-way CTs is the Markov Chain Monte Carlo (Di-
aconis, Sturmfels, 1998; Cryan, Dyer, 2003; Cryan et al., 2006; Chen et al., 
2005; Fishman, 2012), the Sequential Importance Sampling (Chen et al., 2005; 
Chen et al., 2006; Blitzstein, Diaconis, 2011; Yoshida, 2011), the probabilistic 
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divide-and-conquer technique (DeSalvo, Zhao, 2015), the Generalized Gamma 
Distribution (Sulewski, 2009), the bar method (Sulewski, Motyka, 2015). The bar 
method for the generating three-way CT is presented in (Sulewski, 2018a).  

In this paper we use an algorithm for generating two-way and three-way CTs 
using the bar method. The bar method is identical to the method that generates 
random numbers that follow the multinomial distribution.  

 
8. PARAMETRIC REASONING PUT INTO PRACTICE 

 
8.1. Two-way contingency table 

 
Example 1. This example compares decision making by means of classic sta-

tistic testing with likelihood based decision making. Tables 6-10 show a set of 
example two-way CTs filled one by one accordingly to the scenarios I–XX. The 
table is divided into two parts. The left hand side is related to likelihood based 
decisions. To decide which of the defined scenarios takes place, see algorithm 
in section 6.1. The right hand side is related to classic statistical testing and pre-
sents values of test statistics. The  states that  and  are independent. Criti-
cal values, indicated by underlining, are determined by Monte Carlo method 
based on 10  order statistics. Such a large number of repetitions guaranties very 
precise results. When reading rows of the table it turns out that all the decisions 
made in a classic way are wrong. It is because untrue  hypotheses have not 
been rejected. But it does not reveal anything new. This is just one more confir-
mation of what is commonly known – the classic statistical test is very conserva-
tive. The PFP  is a maximal value of this parameter for which untrue  is re-
jected in no scenarios. 

Tables 6–10 show that all the decisions made in a classic way are wrong un-
der the scenarios in question. It is because untrue  hypotheses have not been 
rejected even in situations where the MoU does not have such small values, e.g. = 0.3 in scenario XX. In turn, the parametric approach detected a depend-
ency between features.  

Example 2. The conservativeness of classic testing is a reason why we 
suggest making a turnaround in this domain. The new proposal is a method of 
statistical inference and not a classical parametric test. Now there will be no 
null hypothesis, but there will be a set of competing alternative hypotheses 
instead. The former  is no longer the main one, but exists among the com-
petitors of an equal rank. All the hypotheses state: “the considered two-way CT 
is generated accordingly to particular scenarios”. Each figure from 1 to 5 
shows sets of four likelihood curves. Each curve has its four attributes, namely 

, , table dimensions and, of course, the actual generation scenario that is 
specified in the figure's title. The legend lists all competing scenarios including 
the actual one. 
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Figure 1. The likelihood functions for = . , = , table ×  

 

 

 
 

 

Source: own elaboration. 
 

Figure 2. The likelihood functions for = 0.0625, = 80, table 2 × 4 

 

 

 
 

 

 

 
Source: own elaboration. 
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Figure 3. The likelihood functions for = 0.0444, = 90, table 3 × 3 

 

 

 
 

 

Source: own elaboration. 

Figure 4. The likelihood functions for = 0.0250, = 120, table 3 × 4 

 

 

 
 

 

 

 
Source: own elaboration. 
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Figure 5. The likelihood functions for = 0.0375, = 80, table 4 × 4 

 

 

 
 
 

Source: own elaboration. 

 
It is noteworthy (see figures 1–5) that in each set of likelihood curves, the 

curve related to the actual scenario predominates over the others. It is instruc-
tive to read out a value of  that maximizes likelihood function on a particular 
figure and notice that this value is close to assumed .  

Example 3. This example is carried out in accordance with the following algo-
rithm: 
1. Find dimension of CT in question and read out related  according to the 

rule:  2 × 3	( = 1), 2 × 4	( = 2), 3 × 3	( = 3), 3 × 4	( = 4), 4 × 4( = 5) 
2. Set a set of scenario indices 4 − 3, 4 − 2, 4 − 1, 4 . 
3. Calculate values of PFP by means of = 0.1 /( )	( = 1,2, … ,10). 
4. Set a sample size . 
5. Repeat the following steps = 10  times: 

5.1. Let = 0, = 0, = 0, = 0 
5.2. Generate CT under the scenarios that you have chosen in Step 2.  
5.3. Calculate ( ), ( ), ( ), ( ) by means of (17)–(36). 
5.4. If = ( ), then = + 1,  

If = ( ), then = + 1, 
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If = ( ), then = + 1, 
If = ( ), then = + 1. 

6. Calculate probabilities of recognizing (PoR) scenarios. These are probabili-
ties for the actual scenario to be recognized as one of scenarios in ques-
tion. = / , = / , = / , = / . 
Figures 6-10 present PoR(a) functions for two-way CT in question. Sample 

sizes for a given CT are different because maximal MoU values under the 
scenarios are different (see table 4). The minimal sample sizes are chosen in 
such a way that probabilities of proper recognition (actual I as I, …, actual XX 
as XX) are greater than probabilities of improper recognitions for all the  
values.  

 

Figure 6. The PoR actual scenario as one of I–IV scenarios, table 2 × 3 

 

 

 
 

 

 

 
Source: own elaboration. 
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Figure 7. The PoR actual scenario as one of V–VIII scenarios, table 2 × 4 

 

 

 
 

 

Source: own elaboration.  
 

Figure 8. The PoR actual scenario as one of IX–XII scenarios, table 3 × 3 

 

 

  
 

 

 

 
Source: own elaboration. 
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Figure 9. The PoR actual scenario as one of XIII–XVI scenarios, table 3 × 4 

 

 

 
 

 

Source: own elaboration. 
 

Figure 10. The PoR actual scenario as one of XVII–XX scenarios, table 4 × 4 

 

 

 
 

 

 

 
Source: own elaboration. 
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Figures 6–10 show that even when samples are small (e.g. 15 items), proba-
bilities of proper recognition are greater than probabilities of improper recogni-
tions, regardless how small the PFP is. The bigger PFP , the bigger PoR actual 
scenario. In the classic statistical testing related to 2 × 3 CT (see table 6) untrue 
H0 has not been rejected even if = 60, PFP = 0.05 and = 0.2. In a like-
lihood based decision dependence between features in 2 × 3 CT is visible al-
ready for = 15 and PFP < 0.05 (see figure 6). In the classic statistical testing 
related to 2 × 4 CT (see table 7) untrue H0 has not been rejected even if = 80, 
PFP = 0.0625 and = 0.25. In a likelihood based decision dependence 
between features in 2 × 4 CT is visible already for = 25 and PFP = 0.0625 
(see figure 7). In the classic statistical testing related to 3 × 3 CT (see table 8) 
untrue H0 has not been rejected even if	 = 90 , PFP = 0.0444 and =0.237. In a likelihood based decision dependence between features in 3 × 3 CT 
is visible already for = 30  and PFP < 0.0444 (see figure 8). A similar situa-
tion occurs related to 3 × 4 and 4 × 4 CTs.  

 
8.2. Three-way contingency table 
 

Example 4. This example compares decision making by means of classic 
statistic testing with likelihood based decision making. Tables 11–12 show 
a set of example three-way CTs filled one by one accordingly to the scenarios 
XXI–XXVIII. The description of these tables has been presented in the exam-
ple 1. To decide which of the defined scenarios takes place, see algorithm in 
section 6.2. 

 
Tables 11–12 show that all the decisions made in a classic way are wrong 

under the scenarios in question. It is because untrue  hypotheses have not 
been rejected even in situations where the MoU does not have such small val-
ues, e.g. = 0.267 in scenario XXVIII. In turn, the parametric approach de-
tected a dependency between features. 

Example 5. This example is very similar to the Example 2. The new pro-
posal is a method of statistical inference, not a classical parametric test. 
All the hypotheses state: “the considered three-way CT is generated accord-
ingly to particular scenarios”. Each of figures from 11 to 12 shows a sets of 
four likelihood curves. Each curve has its four attributes, namely , , table 
dimensions and, of course, the actual generation scenario that is specified in 
the figure's title. The legend lists all competing scenarios including the actual 
one. 
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Figure 11. The likelihood functions for = 0.0625, = 80, table 2 × 2 × 2 

 

 

 
 

 

Source: own elaboration. 

 
Figure 12. The likelihood functions for = 0.0333, = 120, table 3 × 2 × 2 

 

 

 
 

 

 

 
Source: own elaboration. 
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It is noteworthy (see figures 11–12) that in each set of likelihood curves, the 
curve related to the actual scenario predominates over the others. It is instruc-
tive to read out a value of  that maximizes likelihood function on a particular 
figure and notice that this value is close to assumed .  

Example 6. This example is carried out in accordance with the following algo-
rithm: 
1. Find dimension of CT in question and read out related  according to the rule:  
 2 × 2 × 2	( = 6), 3 × 2 × 2	( = 7) 

 
2. Set a set of scenario indices 4 − 3, 4 − 2, 4 − 1, 4 . 
3. Calculate a value of PFP by means of = 01 /( )	( = 1,2, … ,10). 

Steps 4–6 are the same as in the example 3. 
Figure 13–14 present PoR(a) functions for three-way CT in question. Sample 

sizes for a given CT are different because a maximal MoU values under the 
scenarios are different (see table 5). The minimal sample sizes are chosen in 
such a way that probabilities of proper recognition (actual XXI as XXI, …, actual 
XXVIII as XXVIII) are greater than probabilities of improper recognitions for all 
the  values.  

 
Figure 13. The por actual scenario as one of XXI–XXIV scenarios, table 2 × 2 × 2 

 

 

 
 

 

 

 
Source: own elaboration. 
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Figure 14. The por actual scenario as one of XXV–XXVIII scenarios, table 3 × 2 × 2 

 

 

 
 

 

Source: own elaboration. 

 
Figures 13–14 show that even when samples are small (e.g. 30 items), prob-

abilities of proper recognition are greater than probabilities of improper recogni-
tions, regardless how small the PFP is. The bigger PFP , the bigger PoR actual 
scenario. In the classic statistical testing related to 2 × 2 × 2 CT (see table 11) 
untrue H0 has not been rejected even if = 80, PFP = 0.0625 and =0.25. In a likelihood based decision dependence between features in 2 × 2 × 2 
CT is visible already for = 30 and PFP 0625.0a  (see figure 13). In the 
classic statistical testing related to 3 × 2 × 2 CT (see table 12) untrue H0 has not 
been rejected even if = 120, PFP = 0.0333 and = 0.267. In a likelihood 
based decision dependence between features in 3 × 2 × 2 CT is visible already 
for = 30 and PFP < 0.0333 (see figure 14). 

 
9. CONCLUSIONS 

 
There are two new elements in the method of statistical reasoning from CTs 

presented in this paper. Firstly, CTs are parameterized with the probability flow 
parameters. Parametric reasoning turns out to be much more sensitive in re-
vealing dependency between features than classic reasoning. Secondly, we 
suggest a scenario (i.e. internal mechanism) under which particular CT comes 
into being.  
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Figuring up more and more general scenarios does not seem very difficult. The 
researches can be generalized by introducing a part of flow parameter, e.g. /2, /3, … also remembering about the condition of normalization. The re-
searches can also be generalized by introducing several flow parameters. This, 
however, causes a significant deterioration in the properties of the parameter 
estimators. You can always add more parameters to the model, however, this 
might worsen their estimation. Hence, inflated generalizations should be avoided.  
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WNIOSKOWANIE PARAMETRYCZNE I NIEPARAMETRYCZNE 

W TABLICACH DWUDZIELCZYCH I TRÓJDZIELCZYCH 
 

Streszczenie 
 

W artykule proponowane są scenariusze generowania tablic dwudzielczych 
(TD) z parametrem przepływu prawdopodobieństwa i zdefiniowane są miary 
nieprawdziwości H0. W artykule wykorzystywane są statystyki z rodziny  oraz 
statystyka modułowa | |. Niniejsza praca jest prostą próbą zastąpienia niepara-
metrycznej metody wnioskowania statystycznego metodą parametryczną. Meto-
da największej wiarygodności jest wykorzystana do oszacowania parametru 
przepływu prawdopodobieństwa. W pracy opisane są także instrukcje genero-
wania TD za pomocą metody słupkowej. Symulacje komputerowe przeprowa-
dzono metodami Monte Carlo.  

Słowa kluczowe: wnioskowanie statystyczne, funkcja największej wiarygod-
ności, tablice kontyngencji, test parametryczny, parametr przepływu prawdopo-
dobieństwa 

 
NONPARAMETRIC VERSUS PARAMETRIC REASONING BASED ON 

TWO-WAY AND THREE-WAY CONTINGENCY TABLES  
 

Abstract 
 

This paper proposes scenarios of generating two-way and three way contin-
gency tables (CTs). A concept of probability flow parameter (PFP) plays a cru-
cial role in these scenarios. Additionally, measures of untruthfulness of  are 
defined. The power divergence statistics and the | | statistics are used. This 
paper is a simple attempt to replace a nonparametric statistical inference from 
CTs by the parametric one. Maximum likelihood method is applied to estimate 
PFP and instructions of generating CTs according to scenarios in question are 
presented. The Monte Carlo method is used to carry out computer simulations. 

Keywords: statistical inference, likelihood function, contingency tables, par-
ametric test, probability flow parameter 




