Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


2007 | 3 | 1-2 | 125-152

Article title

The role of feedback in visual masking and visual processing

Selected contents from this journal

Title variants

Languages of publication

Abstracts

EN
This paper reviews the potential role of feedback in visual masking, for and against. Our analysis reveals constraints for feedback mechanisms that limit their potential role in visual masking, and in all other general brain functions. We propose a feedforward model of visual masking and provide a hypothesis to explain the role of feedback in visual masking and visual processing in general. We review the anatomy and physiology of feedback mechanisms, and propose that the massive ratio of feedback versus feedforward connections in the visual system may be explained solely by the critical need for top-down attentional modulation. We discuss the merits of visual masking as a tool to discover the neural correlates of consciousness, especially as compared to other popular illusions, such as binocular rivalry. Finally, we propose a new set of neurophysiological standards needed to establish whether any given neuron or brain circuit may be the neural substrate of awareness.

Year

Volume

3

Issue

1-2

Pages

125-152

Physical description

Contributors

  • Barrow Neurological Institute, Phoenix, USA
  • Barrow Neurological Institute, Phoenix, USA

References

  • Angelucci, A., Levitt, J. B., & Lund, J. S. (2002). Anatomical origins of the classical receptive field and modulatory surround field of single neurons in macaque visual cortical area V1.Progress in Brain Research, 136, 373-388.[PubMed]
  • Bichot, N. P., & Schall, J. D. (1999). Saccade target selection in macaque during feature and conjunction visual search.Visual Neuroscience, 16, 81-89.[PubMed]
  • Boyapati, J., & Henry, G. (1984). Corticofugal axons in the lateral geniculate nucleus of the cat.Experimental Brain Research, 53, 335-340.[PubMed]
  • Brefczynski, J. A., & DeYoe, E. A. (1999). A physiological correlate of the 'spotlight' of visual attention.Nature Neuroscience, 2, 370-374.[PubMed]
  • Breitmeyer, B., & Öğmen, H. (2006).Visual Masking: Time slices through conscious and unconscious vision(Second ed.). Oxford, UK: Oxford University Press.
  • Breitmeyer, B. G., & Ganz, L. (1976). Implications of sustained and transient channels for theories of visual pattern masking, saccadic suppression, and information processing.Psychological Review, 83, 1-36.[PubMed]
  • Bridgeman, B. (1971). Metacontrast and lateral inhibition.Psychological Review, 78, 528-539.[PubMed]
  • Bridgeman, B. (1980). Temporal response characteristics of cells in monkey striate cortex measured with metacontrast masking and brightness discrimination.Brain Research, 196, 347-364.[PubMed]
  • Bridgeman, B. (2006). Contributions of lateral inhibition to object substitution masking and attention.Vision Research, 46, 4075-4082.[PubMed]
  • Bullier, J., Hupe, J. M., James, A., & Girard, P. (1996). Functional interactions between areas V1 and V2 in the monkey.Journal of Physiology, Paris, 90, 217-220.[PubMed]
  • Bullier, J., McCourt, M. E., & Henry, G. H. (1988). Physiological studies on the feedback connection to the striate cortex from cortical areas 18 and 19 of the cat.Experimental Brain Research, 70, 90-98.[PubMed]
  • Burkhalter, A., Bernardo, K. L., & Charles, V. (1993). Development of Local Circuits in Human Visual Cortex.Journal of Neuroscience, 13, 1916-1931.[PubMed]
  • Crawford, B. H. (1940). The effect of field size and pattern on the change of visual sensitivity with time.Proceedings of the Royal Society, London., 129B, 94-106.
  • Crawford, B. H. (1947). Visual adaptation in relation to brief conditioning stimuli.Proceedings of the Royal Society of London. Series B., 134B, 283-302.
  • Crick, F., & Koch, C. (1998a). Consciousness and neuroscience.Cerebral Cortex, 8, 97-107.[PubMed]
  • Crick, F., & Koch, C. (1998b). Constraints on cortical and thalamic projections - the no-strong-loops hypothesis.Nature, 391, 245-250.[PubMed]
  • Dehaene, S., Naccache, L., Cohen, L., Bihan, D. L., Mangin, J. F., Poline, J. B., Riviere, D. (2001). Cerebral mechanisms of word masking and unconscious repetition priming.Nature Neuroscience, 4, 752-758.[PubMed]
  • Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention.Annual Review of Neuroscience, 18, 193-222.[PubMed]
  • Desimone, R., Schein, S. J., Moran, J., & Ungerleider, L. G. (1985). Contour, color and shape analysis beyond the striate cortex.Vision Research, 25, 441-452.[PubMed]
  • Enns, J. T. (2002). Visual binding in the standing wave illusion.Psychonomic Bulletin and Review, 9, 489-496.[PubMed]
  • Enns, J. T., & Di Lollo, V. (1997). Object substitution - A new form of masking in unattended visual locations.Psychological Science, 8, 135-139.
  • Enns, J. T., & Di Lollo, V. (2000). What's new in visual masking?Trends in Cognitive Sciences, 4, 345-352.[PubMed]
  • Exner, S. (1868).Über die zu einer Gesichtswahrnehmung nöthige Zeit[On the time necessary for face perception]. Paper presented at the Wiener Sitzungbericht der mathematisch-naturwissen-schaftlichen Classe der kaiserlichen Akademie der Wissenschaften.
  • Felleman, D. J., & Van Essen, D. C. (1991). Distributed hierarchal processing in the primate cerebral cortex.Cerebral Cortex, 1, 1-47.[PubMed]
  • Francis, G. (1997). Cortical dynamics of lateral inhibition: metacontrast masking.Psychological Review, 104, 572-594.[PubMed]
  • Francis, G., & Herzog, M. H. (2004). Testing quantitative models of backward masking.Psychonomic Bulletin and Review, 11, 104-112.[PubMed]
  • Gawne, T. J., Kjaer, T. W., Hertz, J. A., & Richmond, B. J. (1996). Adjacent visual cortical complex cells share about 20-percent of.Cerebral Cortex, 6, 482-489.[PubMed]
  • Girard, P., Hupe, J. M., & Bullier, J. (2001). Feedforward and feedback connections between areas V1 and V2 of the monkey have similar rapid conduction velocities.Journal of Neurophysiology, 85, 1328-1331.[PubMed]
  • Harris, J. M., & Willis, A. (2001). A binocular site for contrast-modulated masking.Vision Research, 41, 873-881.[PubMed]
  • Haynes, J. D., Deichmann, R., & Rees, G. (2005). Eyespecific effects of binocular rivalry in the human lateral geniculate nucleus.Nature, 438, 496-499.[PubMed]
  • Haynes, J. D., Driver, J., & Rees, G. (2005). Visibility reflects dynamic changes of effective connectivity between V1 and fusiform cortex.Neuron, 46, 811-821.[PubMed]
  • Haynes, J. D., & Rees, G. (2005). Predicting the orientation of invisible stimuli from activity in human primary visual cortex.Nature Neuroscience, 8, 686-691.[PubMed]
  • He, S., Cavanagh, P., & Intriligator, J. (1996). Attentional resolution and the locus of visual awareness.Nature, 383, 334-337.[PubMed]
  • Herzog, M. H., Ernst, U. A., Etzold, A., & Eurich, C. W. (2003). Local interactions in neural networks explain global effects in Gestalt processing and masking.Neural Computation, 15, 2091-2113.[PubMed]
  • Herzog, M. H., & Fahle, M. (2002). Effects of grouping in contextual modulation.Nature, 415, 433-436.[PubMed]
  • Herzog, M. H., & Koch, C. (2001). Seeing properties of an invisible object: feature inheritance and shine-through.Proceedings of the National Academy of Science USA, 98, 4271-4275.[PubMed]
  • Hubel, D. H. (1960). Single unit activity in lateral geniculate body and optic tract of unrestrained cats.Journal of Physiology, 150, 91-104.[PubMed]
  • Hubel, D. H., & Wiesel, T. N. (1961). Integrative action in the cat's lateral geniculate body.Journal of Physiology, 155, 385-398.[PubMed]
  • Hupe, J. M., James, A. C., Payne, B. R., Lomber, S. G., Girard, P., & Bullier, J. (1998). Cortical feedback improves discrimination between figure and background by V1, V2 and V3 neurons.Nature, 394, 784-787.[PubMed]
  • Judge, S. J., Wurtz, R. H., & Richmond, B. J. (1980). Vision during saccadic eye movements. I. Visual interactions in striate cortex.Journal of Neurophysiology, 43, 1133-1155.[PubMed]
  • Kastner, S., Nothdurft, H. C., & Pigarev, I. N. (1999). Neuronal responses to orientation and motion contrast in cat striate cortex.Visual Neuroscience, 16, 587-600.[PubMed]
  • Knierim, J. J., & Van Essen, D. C. (1991). Neuronal responses to static texture patterns in area V1 of the alert macaque monkey.Journal of Neurophysiology.
  • Kobatake, E., & Tanaka, K. (1994). Neuronal selectivities to complex object features in the ventral visual pathway of the macaque cerebral cortex.Journal of Neurophysiology, 71, 856-867.[PubMed]
  • Kolers, P., & Rosner, B. S. (1960). On visual masking (metacontrast): Dichoptic observations.American Journal of Psychology, 73, 2-21.[PubMed]
  • Lamme, V. A. (1995). The neurophysiology of figureground segregation in primary visual cortex.Journal of Neuroscience, 15, 1605-1615.[PubMed]
  • Lamme, V. A., Zipser, K., & Spekreijse, H. (2002). Masking interrupts figure-ground signals in V1.Journal of Cognitive Neuroscience, 14, 1044-1053.[PubMed]
  • Lamme, V. A. F., Zipser, K., & Spekereijse, H. (1997). Figure-ground signals in V1 depend on extrastriate feedback.Investigative Ophthalmology and Visual Science Supplementum, 38, S969.
  • Le Gros Clark, W. E., & Penman, G. G. (1934). The projection of the retina in the lateral geniculate body.Proceedings of the Royal Socety, London. Series B, 114, 291-313.
  • Lee, S. H., Blake, R., & Heeger, D. J. (2005). Traveling waves of activity in primary visual cortex during binocular rivalry.Nature Neuroscience, 8, 22-23.[PubMed]
  • Lee, T. S., Mumford, D., Romero, R., & Lamme, V. A. (1998). The role of the primary visual cortex in higher level vision.Vision Research, 38, 2429-2454.
  • Leopold, D. A., & Logothetis, N. K. (1996). Activity changes in early visual cortex reflect monkeys' percepts during binocular rivalry.Nature, 379, 549-553.[PubMed]
  • Logothetis, N. K., Leopold, D. A., & Sheinberg, D. L. (1996). What is rivalling during binocular rivalry.Nature, 380, 621-624.[PubMed]
  • Lumer, E. D., Friston, K. J., & Rees, G. (1998). Neural correlates of perceptual rivalry in the human brain.Science, 280, 1930-1934.[PubMed]
  • Macknik, S. L., & Martinez-Conde, S. (in press). Consciousness: Visual awareness, neurophysiology of. In L. R. Squire (Ed.),New Encyclopedia of Neuroscience.Oxford: Elsevier.
  • Macknik, S. L., Martinez-Conde, S., & Haglund, M. M. (2000). The role of spatiotemporal edges in visibility and visual masking.Proceedings of the National Academy of Science USA, 97, 7556-7560.[PubMed]
  • Martinez-Conde, S., Cudeiro, J., Grieve, K. L., Rodriguez, R., Rivadulla, C., & Acuna, C. (1999). Effects of feedback projections from area 18 layers 2/3 to area 17 layers 2/3 in the cat visual cortex.Journal of Neurophysiology, 82, 2667-2675.[PubMed]
  • Martinez-Conde, S., Macknik, S. L., & Hubel, D. H. (2000). Microsaccadic eye movements and firing of single cells in the striate cortex of macaque monkeys.Nature Neuroscience, 3, 251-258.[PubMed]
  • Martinez-Conde, S., Macknik, S. L., & Hubel, D. H. (2002). The function of bursts of spikes during visual fixation in the awake primate lateral geniculate nucleus and primary visual cortex.Proceedings of the National Academy of Sciences of the USA, 99, 13920-13925.[PubMed]
  • McAdams, C. J., & Maunsell, J. H. R. (1999). Effects of attention on orientation-tuning functions of single neurons in macaque cortical area V4.Journal of Neuroscience, 19, 431-441.[PubMed]
  • McFadden, D., & Gummerman, K. (1973). Monoptic and dichoptic metacontrast across the vertical meridian.Vision Research, 13, 185-196.[PubMed]
  • McKee, S. P., Bravo, M. J., Smallman, H. S., & Legge, G. E. (1995). The 'uniqueness constraint' and binocular masking.Perception, 24, 49-65.[PubMed]
  • McKee, S. P., Bravo, M. J., Taylor, D. G., & Legge, G. E. (1994). Stereo matching precedes dichoptic masking.Vision Research, 34, 1047-1060.[PubMed]
  • McKeefry, D. J., Abdelaal, S., Barrett, B. T., & McGraw, P. V. (2005). Chromatic masking revealed by the standing wave of invisibility illusion.Perception, 34, 913-920.[PubMed]
  • Meese, T. S., & Holmes, D. J. (2007). Spatial and temporal dependencies of cross-orientation suppression in human vision.Proceedings of Biological Science, 274, 127-136.[PubMed]
  • Merikle, P. M. (1980). Selective metacontrast.Canadian Journal of Psycholology, 34, 196-199.[PubMed]
  • Merikle, P. M., & Joordens, S. (1997). Parallels between perception without attention and perception without awareness.Consciousness and Cognition, 6, 219-236.[PubMed]
  • Merikle, P. M., Smilek, D., & Eastwood, J. D. (2001). Perception without awareness: perspectives from cognitive psychology.Cognition, 79, 115-134.[PubMed]
  • Mignard, M., & Malpeli, J. G. (1991). Paths of information flow through visual cortex.Science, 251, 1249-1251.[PubMed]
  • Minkowski, M. (1920). Über den Verlauf, die Endigung und die zentrale Repräsentation von gekreuzten und ungekreutzten Sehnervenfasern bei einigen Säugetieren und beim Menschen [About the course, the termination, and the central representation of crossed and uncrossed optic nerve fibers in some mammals and humans].Schweizer Archiv für Neurologie und Psychiatrie, 6, 201.
  • Montero, V. M. (1991). A quantitative study of synaptic contacts on interneurons and relay cells of the cat lateral geniculate nucleus.Experimental Brain Research, 86, 257-270.[PubMed]
  • Moran, J., & Desimone, R. (1985). Selective attention gates visual processing in the extrastriate cortex.Science, 229, 782-784.[PubMed]
  • Moutoussis, K., Keliris, G., Kourtzi, Z., & Logothetis, N. (2005). A binocular rivalry study of motion perception in the human brain.Vision Research, 45, 2231-2243.[PubMed]
  • Murphy, P. C., & Sillito, A. M. (1996). Functional morphology of the feedback pathway from area 17 of the cat visual cortex to the lateral geniculate nucleus.Journal of Neuroscience, 16, 1180-1192.[PubMed]
  • Olson, C. X., & Boynton, R. M. (1984). Dichoptic metacontrast masking reveals a central basis for monoptic chromatic induction.Perception & Psychophysics, 35, 295-300.[PubMed]
  • Parker, A. J., & Newsome, W. T. (1998). Sense and the single neuron: probing the physiology of perception.Annual Reviews of Neuroscience, 21, 227-277.[PubMed]
  • Petrov, Y., Carandini, M., & McKee, S. (2005). Two distinct mechanisms of suppression in human vision.Journal of Neuroscience, 25, 8704-8707.[PubMed]
  • Petrov, Y., & McKee, S. P. (2006). The effect of spatial configuration on surround suppression of contrast sensitivity.Journal of Vision, 6, 224-238.[PubMed]
  • Polonsky, A., Blake, R., Braun, J., & Heeger, D. J. (2000). Neuronal activity in human primary visual cortex correlates with perception during binocular rivalry.Nature Neuroscience, 3, 1153-1159.[PubMed]
  • Ratliff, F. (1961). Inhibitory interaction and the detection and enhancement of contours. In W. A. Rosenblith (Ed.),Sensory Communication(pp. 183-203). Cambridge, MA: M.I.T. Press.
  • Ratliff, F., Knight, B. W., Jr., Dodge, F. A., Jr., & Hartline, H. K. (1974). Fourier analysis of dynamics of excitation and inhibition in the eye of Limulus: amplitude, phase and distance.Vision Research, 14, 1155-1168.
  • Reynolds, J., Chelazzi, L., Luck, S., & Desimone, R. (1994). Sensory interactions and effects of selective spatial attention in macaque area V2.Society for Neuroscience Abstracts, 20, 1054.
  • Reynolds, J. H., Chelazzi, L., & Desimone, R. (1999). Competitive mechanisms subserve attention in macaque areas V2 and V4.Journal of Neuroscience, 19, 1736-1753.[PubMed]
  • Reynolds, J. H., & Desimone, R. (1999). The role of neural mechanisms of attention in solving the binding problem.Neuron, 24, 19-29, 111-125.[PubMed]
  • Reynolds, J. H., Pasternak, T., & Desimone, R. (2000). Attention increases sensitivity of V4 neurons.Neuron, 26, 703-714.[PubMed]
  • Rossi, A. F., Desimone, R., & Ungerleider, L. G. (2001). Contextual modulation in primary visual cortex of macaques.Journal of Neuroscience, 21, 1698-1709.[PubMed]
  • Rushton, W. A. H., & Westheimer, G. (1962). The effect upon the rod threshold of bleaching neighboring rods.Journal of Physiology, London, 164, 318-329.[PubMed]
  • Salin, P. A., Girard, P., Kennedy, H., & Bullier, J. (1992). Visuotopic organization of corticocortical connections in the visual system of the cat.Journal of Comparative Neurology, 320, 415-434.[PubMed]
  • Salin, P. A., Kennedy, H., & Bullier, J. (1995). Spatial reciprocity of connections between areas 17 and 18 in the cat.Canadian Journal of Physiology & Pharmacology, 73, 1339-1347.[PubMed]
  • Sandell, J. H., & Schiller, P. H. (1982). Effect of cooling area 18 on striate cortex cells in the squirrel monkey.Journal of Neurophysiology, 48, 38-48.[PubMed]
  • Schiller, P. H. (1965). Monoptic and dichoptic visual masking by patterns and flashes.Journal of Experimental Psychology, 69, 193-199.[PubMed]
  • Schiller, P. H. (1968). Single unit analysis of backward visual masking and metacontrast in the cat lateral geniculate nucleus.Vision Research, 8, 855-866.[PubMed]
  • Sheinberg, D. L., & Logothetis, N. K. (1997). The role of temporal cortical areas in perceptual organization.Proceedings of the National Academy of Sciences of the USA, 94, 3408-3413.[PubMed]
  • Sherman, S. M., & Guillery, R. W. (2002). The role of the thalamus in the flow of information to the cortex.Philosophical Transactions of the Royal Society of London, B: Biological Science, 357, 1695-1708.[PubMed]
  • Sillito, A. M., & Jones, H. E. (1996). Context-dependent interactions and visual processing.Journal of Physiology, Paris, 90, 205-209.[PubMed]
  • Spitzer, H., Desimone, R., & Moran, J. (1988). Increased attention enhances both behavioral and neuronal performance.Science, 240, 338-340.[PubMed]
  • Super, H., Spekreijse, H., & Lamme, V. A. (2001). Two distinct modes of sensory processing observed in monkey primary visual cortex (V1).Nature Neuroscience, 4, 304-310.[PubMed]
  • Tanaka, K., Sugita, Y., Moriya, M., & Saito, H. A. (1993). Analysis of object motion in the ventral part of the medial superior temporal area of the macaque visual cortex.Journal of Neurophysiology, 69, 128-142.[PubMed]
  • Thompson, K. G., & Schall, J., D. (1999). The detection of visual signals by macaque frontal eye field during masking.Nature Neuroscience, 2, 283-288.[PubMed]
  • Thompson, K. G., & Schall, J. D. (2000). Antecedents and correlates of visual detection and awareness in macaque prefrontal cortex.Vision Research, 40, 1523-1538.[PubMed]
  • Tong, F., & Engel, S. A. (2001). Interocular rivalry revealed in the human cortical blind-spot representation.Nature, 411, 195-199.[PubMed]
  • Tse, P. U., Martinez-Conde, S., Schlegel, A. A., & Macknik, S. L. (2005). Visibility, visual awareness, and visual masking of simple unattended targets are confined to areas in the occipital cortex beyond human V1/V2.Proceedings of the National Academy of Sciences of the USA, 102, 17178-17183.[PubMed]
  • Tucker, T. R., & Fitzpatrick, D. (2006). Luminance-evoked inhibition in primary visual cortex: A transient veto of simultaneous and ongoing response.Journal of Neuroscience, 26, 13537-3547.[PubMed]
  • Wang, G., Tanaka, K., & Tanifuji, M. (1996). Optical imaging of functional organization in monkey inferotemporal cortex.Science, 272, 1665-1668.[PubMed]
  • Weisstein, N. (1968). A Rashevsky-Landahl neural net: Simulation of metacontrast.Psychological Review, 75, 494-521.[PubMed]
  • Weisstein, N. (1971). W-shaped and U-shaped functions obtained for monoptic and dichoptic disk-disk masking.Perception & Psychophysics, 9, 275-278.
  • Weisstein, N., Ozog, G., & Szoc, R. (1975). A comparison and elaboration of two models of metacontrast.Psychological Review, 82, 325-343.[PubMed]
  • Werner, H. (1935). Studies on contour: I. Qualitative analysis.American Journal of Psychology, 47, 40-64.
  • Westheimer, G. (1965). Spatial interaction in the human retina during scotopic vision.Journal of Physiology, London, 181, 881-894.[PubMed]
  • Westheimer, G. (1967). Spatial interaction in human cone vision.Journal of Physiology, London, 190, 139-154.[PubMed]
  • Westheimer, G. (1970). Rod-cone independence for sensitizing interaction in the human retina.Journal of Physiology, London, 206, 109-116.[PubMed]
  • Wheatstone, C. (1838). On some remarkable, and hitherto unobserved, phenomena of binocular vision.Philosophical Transactions, 128, 371-394.
  • Williford, T., & Maunsell, J. H. (2006). Effects of spatial attention on contrast response functions in macaque area V4.Journal of Neurophysiology, 96, 40-54.[PubMed]
  • Wunderlich, K., Schneider, K. A., & Kastner, S. (2005). Neural correlates of binocular rivalry in the human lateral geniculate nucleus.Nature Neuroscience, 8, 1595-1602.[PubMed]
  • Mach, E. (1965). On the effect of the spatial distribution of the light stimulus on the retina. (F. Ratliff, Trans.). InMACH BANDS: Quantitative studies on neural networks in the retina.(pp. 253-271). San Francisco: Holden-Day.
  • Macknik, S. L. (2006). Visual masking approaches to visual awareness.Progress in Brain Research, 155, 179-217.[PubMed]
  • Macknik, S. L., & Haglund, M. M. (1999). Optical images of visible and invisible percepts in the primary visual cortex of primates.Proceedings of the National Academy of Science USA, 96, 15208-15210.[PubMed]
  • Macknik, S. L., & Livingstone, M. S. (1998). Neuronal correlates of visibility and invisibility in the primate visual system.Nature Neuroscience, 1, 144-149.[PubMed]
  • Macknik, S. L., & Martinez-Conde, S. (2004a). Dichoptic visual masking reveals that early binocular neurons exhibit weak interocular suppression: implications for binocular vision and visual awareness.Journal of Cognitive Neuroscience, 16, 1-11.[PubMed]
  • Macknik, S. L., & Martinez-Conde, S. (2004b). The spatial and temporal effects of lateral inhibitory networks and their relevance to the visibility of spatiotemporal edges.Neurocomputing, 58-60C, 775-782.
  • Zeki, S. M. (1978a). Functional specialisation in the visual cortex of the rhesus monkey.Nature, 274, 423-428.[PubMed]
  • Zeki, S. M. (1978b). Uniformity and diversity of structure and function in rhesus monkey prestriate visual cortex.Journal of Physiology, London, 277, 273-290.[PubMed]
  • Zipser, K., Lamme, V. A., & Schiller, P. H. (1996). Contextual modulation in primary visual cortex.Journal of Neuroscience, 16, 7376-7389.[PubMed]
  • Adrian, E. D., & Matthews, R. (1927). The action of light on the eye. Part I. The discharge of impulses in the optic nerve and its relation to the electric changes in the retina.Journal of Physiology, 63, 378-414.[PubMed]
  • Albrecht, D. G., & Hamilton, D. B. (1982). Striate cortex of monkey and cat: contrast response function.Journal of Neurophysiology, 48, 217-237.[PubMed]
  • Allman, J., Miezin, F., & McGuinness, E. (1985). Stimulus specific responses from beyond the classical receptive field: Neurophysiological mechanisms for local-global comparisons in visual neurons.Annual Review of Neuroscience, 8, 407-430.[PubMed]
  • Angelucci, A., & Bressloff, P. C. (2006). Contribution of feedforward, lateral and feedback connections to the classical receptive field center and extra-classical receptive field surround of primate V1 neurons.Progress in Brain Research, 154, 93-120.[PubMed]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.cejsh-article-doi-10-2478-v10053-008-0020-5
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.