Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


2007 | 3 | 1-2 | 153-165

Article title

Spatio-temporal low-level neural networks account for visual masking

Selected contents from this journal

Title variants

Languages of publication

Abstracts

EN
Temporal masking is a paradigm that is widely used to study visual information processing. When a mask is presented, typically within less than 100 msec before or after the target, the response to the target is reduced. The results of our psychophysical and visual evoked potential (VEP) experiments show that the masking effect critically depends on a combination of several factors: (1) the processing time of the target, (2) the order of presentation of the target and the mask, and (3) the spatial arrangement of the target and the mask. Thus, the masking effect depends on the spatial-temporal combination of these factors. Suppression was observed when the mask was positioned within a spatial range that was found to evoke inhibition, and when the temporal separation between the target and the mask was short. In contrast, lateral facilitation was observed when the mask was presented at a spatial separation that did not evoke inhibition from the target's vicinity and with a temporal sequence that preceded the target, or when it was presented simultaneously with it, but not when the target preceded the mask. We propose that masking effects, either suppression or facilitation, reflect integration into the spatial and the temporal domains of the feedforward response to the target and the lateral inputs evoked by the mask (excitatory and/or inhibitory). Because the excitation evoked by the mask develops and propagates slowly from the mask's location to the target's location, it lags behind the response to the target. On the other hand, inhibition that is produced in the vicinity of the target evolves more rapidly and follows the onset and offset of the stimulus more closely. Thus, lateral excitation that overcomes the inhibition may facilitate the grouping of local elements into a global percept by increasing the survivability of the object and its accessibility for perceptual awareness.

Year

Volume

3

Issue

1-2

Pages

153-165

Physical description

Contributors

author
  • Goldschleger Eye Research Institute, Tel-Aviv University, Sheba Medical Center, 52621 Tel-Hashomer, Israel
author
  • Goldschleger Eye Research Institute, Tel-Aviv University, Sheba Medical Center, 52621 Tel-Hashomer, Israel
author
  • Goldschleger Eye Research Institute, Tel-Aviv University, Sheba Medical Center, 52621 Tel-Hashomer, Israel

References

  • Adini, Y., & Sagi, D. (2001). Recurrent networks in human visual cortex: psychophysical evidence.J. Opt. Soc. Am. A. Opt. Image. Sci. Vis., 18, 2228-2236.[PubMed]
  • Adini, Y., Sagi, D., & Tsodyks, M. (1997). Excitatory-inhibitory network in the visual cortex: psychophysical evidence.Proc. Natl. Acad. Sci. USA, 94, 10426-10431.[PubMed]
  • Albrecht, D. G. (1995). Visual cortex neurons in monkey and cat: effect of contrast on the spatial and temporal phase transfer functions.Vis. Neurosci., 12, 1191-1210.[PubMed]
  • Bair, W., Cavanaugh, J. R., & Movshon, J. A. (2003). Time course and time-distance relationships for surround suppression in macaque V1 neurons.J. Neurosci., 23, 7690-7701.[PubMed]
  • Bauer, R., & Heinze, S. (2002). Contour integration in striate cortex. Classic cell responses or cooperative selection?Exp. Brain Res., 147, 145-152.[PubMed]
  • Bonneh, Y., & Sagi, D. (1998). Effects of spatial configuration on contrast detection.Vision Res., 38, 3541-3553.[PubMed]
  • Borg-Graham, L. J., Monier, C., & Fregnac, Y. (1998). Visual input evokes transient and strong shunting inhibition in visual cortical neurons.Nature, 393, 369-373.[PubMed]
  • Breitmeyer, B. G. (1984).Visual masking: An integrative approach.New York: Oxford University Press.
  • Breitmeyer, B. G., & Öğmen, H. (2000). Recent models and findings in visual backward masking: A comparison, review, and update.Perception & Psychophysics, 62, 1572-1595.[PubMed]
  • Bridgeman, B. (1975). Correlates of metacontrast in single cells of the cat visual system.Vision Res., 15, 91-99.[PubMed]
  • Bridgeman, B. (1980). Temporal response characteristics of cells in monkey striate cortex measured with metacontrast masking and brightness discrimination.Brain Res., 196, 347-364.[PubMed]
  • Bridgeman, B. (1988). Visual evoked potentials: concomitants of metacontrast in late components.Percept. Psychophys., 43, 401-403.[PubMed]
  • Bringuier, V., Chavane, F., Glaeser, L., & Fregnac, Y. (1999). Horizontal propagation of visual activity in the synaptic integration field of area 17 neurons.Science, 283, 695-699.[PubMed]
  • Cass, J.R., & Spehar, B. (2005). Dynamics of collinear contrast facilitation are consistent with long-range horizontal striate transmission.Vision Res., 45, 2728-2739.[PubMed]
  • Chavane, F., Monier, C., Bringuier, V., Baudot, P., Borg-Graham, L., Lorenceau, J., & Fregnac, Y. (2000). The visual cortical association field: a Gestalt concept or a psychophysiological entity?J. Physiol. Paris, 94, 333-342.[PubMed]
  • Enns, J.T., & Di Lollo, V. (2000). What's new in visual masking?Trends Cogn. Sci., 4, 345-352.[PubMed]
  • Francis, G. (2000). Quantitative theories of meta-contrast masking.Psychological Review, 107, 768-785.[PubMed]
  • Herzog, M. H., & Fahle, M. (2002). Effects of grouping in contextual modulation.Nature, 415, 433-436.[PubMed]
  • Hirsch, J. A., & Gilbert, C. D. (1991). Synaptic physiology of horizontal connections in the cat's visual cortex.Journal of Neuroscience, 11, 1800-1809.[PubMed]
  • Jeffreys, D.A. (1971). Source locations of pattern-related visual evoked potentials (VEP) components.Electroencephalogr. Clin. Neurophysiol., 30, 367.[PubMed]
  • Jeffreys, D.A., & Axford, J.G. (1972). Source locations of pattern-specific components of human visual evoked potentials. II. Component of extrastriate cortical origin.Exp. Brain Res., 16, 22-40.[PubMed]
  • Jeffreys, D.A., & Musselwhite, M.J. (1986). A visual evoked potential study of metacontrast masking.Vision Res., 26, 631-642.[PubMed]
  • Kapadia, M.K., Ito, M., Gilbert, C.D., & Westheimer, G. (1995). Improvement in visual sensitivity by changes in local context: parallel studies in human observers and in V1 of alert monkeys.Neuron, 15, 843-856.[PubMed]
  • Kapadia, M.K., Westheimer, G., & Gilbert, C.D. (2000). Spatial distribution of contextual interactions in primary visual cortex and in visual perception.J. Neurophysiol., 84, 2048-2062.[PubMed]
  • Kovacs, I. (1996). Gestalten of today: early processing of visual contours and surfaces.Behav. Brain Res., 82, 1-11.[PubMed]
  • Legge, G.E. (1978). Sustained and transient mechanisms in human vision: temporal and spatial properties.Vision Res., 18, 69-81.
  • Levitt, H. (1971). Transformed up-down methods in psychoacoustics.Journal of Acoustical Society of America, 49, 467.[PubMed]
  • Li, W., & Gilbert, C.D. (2002). Global contour saliency and local colinear interactions.J. Neurophysiol., 88, 2846-2856.[PubMed]
  • Macknik, S.L., & Livingstone, M.S. (1998). Neuronal correlates of visibility and invisibility in the primate visual system.Nat. Neurosci., 1, 144-149.[PubMed]
  • Malonek, D., Tootell, R.B., & Grinvald, A. (1994). Optical imaging reveals the functional architecture of neurons processing shape and motion in owl monkey area MT.Proceedings of the Royal Society of London. Series B: Biological Sciences, 258, 109-119.[PubMed]
  • Mandon, S., & Kreiter, A.K. (2005). Rapid contour integration in macaque monkeys.Vision Res., 45, 291-300.[PubMed]
  • Mizobe, K., Polat, U., Pettet, M.W., & Kasamatsu, T. (2001). Facilitation and suppression of single striate-cell activity by spatially discrete pattern stimuli presented beyond the receptive field.Vis. Neurosci., 18, 377-391.[PubMed]
  • Polat, U. (1999). Functional architecture of long-range perceptual interactions.Spat. Vis., 12, 143-162.[PubMed]
  • Polat, U., Mizobe, K., Pettet, M.W., Kasamatsu, T., & Norcia, A.M. (1998). Collinear stimuli regulate visual responses depending on cell's contrast threshold.Nature, 391, 580-584.[PubMed]
  • Polat, U., & Norcia, A.M. (1996). Neurophysiological evidence for contrast dependent long-range facilitation and suppression in the human visual cortex.Vision Res., 36, 2099-2109.[PubMed]
  • Polat, U., & Norcia, A.M. (1998). Elongated physiological summation pools in the human visual cortex.Vision Res., 38, 3735-3741.[PubMed]
  • Polat, U., & Sagi, D. (1993). Lateral interactions between spatial channels: suppression and facilitation revealed by lateral masking experiments.Vision Res., 33, 993-999.[PubMed]
  • Polat, U., & Sagi, D. (1994). The architecture of perceptual spatial interactions.Vision Res., 34, 73-78.[PubMed]
  • Polat, U., & Sagi, D. (2006). Temporal asymmetry of collinear lateral interactions.Vision Res., 46, 953-960.[PubMed]
  • Polat, U., & Tyler, C.W. (1999). What pattern the eye sees best.Vision Res., 39, 887-895.[PubMed]
  • Rosen, A., Belkin, M., & Polat, U. (2005). Spatial and temporal processing in the visual system.Reviews in the Neuroscience, 16, 53.
  • Schiller, P.H., & Chorover, S.L. (1966). Metacontrast: its relation to evoked potentials.Science, 153, 1398-1400.[PubMed]
  • Schmidt, K.E., Goebel, R., Lowel, S., & Singer, W. (1997). The perceptual grouping criterion of colinearity is reflected by anisotropies of connections in the primary visual cortex.Eur. J. Neurosci., 9, 1083-1089.[PubMed]
  • Series, P., Lorenceau, J., & Fregnac, Y. (2003). The "silent" surround of V1 receptive fields: theory and experiments.J. Physiol. Paris, 97, 453-474.[PubMed]
  • Sugita, Y. (1999). Grouping of image fragments in primary visual cortex.Nature, 401, 269-272.[PubMed]
  • Tanaka, Y., & Sagi, D. (1998). Long-lasting, long-range detection facilitation.Vision Res., 38, 2591-2599.[PubMed]
  • van Aalderen-Smeets, S., I, Oostenveld, R., & Schwarzbach, J. (2006). Investigating neurophysiological correlates of metacontrast masking with magnetoencephalography.Advances in Cognitive Psychology, 2, 21-35.http://www.ac-psych.org/index.php?id=2&rok=2006#article_7
  • Watson, A.B., Barlow, H.B., & Robson, J.G. (1983). What does the eye see best?Nature, 302, 419-422.[PubMed]
  • Zenger, B., & Sagi, D. (1996). Isolating excitatory and inhibitory nonlinear spatial interactions involved in contrast detection.Vision Research, 36, 2497-2513.[PubMed]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.cejsh-article-doi-10-2478-v10053-008-0021-4
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.