Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


2007 | 3 | 1-2 | 167-176

Article title

The power of the feed-forward sweep

Authors

Selected contents from this journal

Title variants

Languages of publication

Abstracts

EN
Vision is fast and efficient. A novel natural scene can be categorized (e.g. does it contain an animal, a vehicle?) by human observers in less than 150 ms, and with minimal attentional resources. This ability still holds under strong backward masking conditions. In fact, with a stimulus onset asynchrony of about 30 ms (the time between the scene and mask onset), the first 30 ms of selective behavioral responses are essentially unaffected by the presence of the mask, suggesting that this type of "ultra-rapid" processing can rely on a sequence of swift feed-forward stages, in which the mask information never "catches up" with the scene information. Simulations show that the feed-forward propagation of the first wave of spikes generated at stimulus onset may indeed suffice for crude recognition or categorization. Scene awareness, however, may take significantly more time to develop, and probably requires feed-back processes. The main implication of these results for theories of masking is that pattern or metacontrast (backward) masking do not appear to bar the progression of visual information at a low level. These ideas bear interesting similarities to existing conceptualizations of priming and masking, such as Direct Parameter Specification or the Rapid Chase theory.

Year

Volume

3

Issue

1-2

Pages

167-176

Physical description

Contributors

  • Centre de Recherche Cerveau et Cognition, CNRS, Université Toulouse 3, 31062 Toulouse Cedex 9, France

References

  • Ansorge, U., Klotz, W., & Neumann, O. (1998). Manual and verbal responses to completely masked (unreportable) stimuli: exploring some conditions for the metacontrast dissociation.Perception, 27, 1177-1189.
  • Guyonneau, R., VanRullen, R., & Thorpe, S. J. (2004). Temporal codes and sparse representations: A key to understanding rapid processing in the visual system.Journal of Physiology Paris, 98, 487-497.[PubMed]
  • Guyonneau, R., VanRullen, R., & Thorpe, S. J. (2005). Neurons tune to the earliest spikes through STDP.Neural Computation, 17, 859-879.[PubMed]
  • Jaśkowski, P. (1996). Simple reaction time and perception of temporal order: dissociations and hypotheses.Percept Mot Skills, 82, 707-730.[PubMed]
  • Jaśkowski, P., Skalska, B., & Verleger, R. (2003). How the self controls its "automatic pilot" when processing subliminal information.Journal of Cognitive Neuroscience, 15, 911-920.[PubMed]
  • Jaśkowski, P., van der Lubbe, R., Schlotterbeck, E., & Verleger, R. (2002). Traces left on visual selective attention by stimuli that are not consciously identified.Psychological Science, 13, 48-54.[PubMed]
  • Jeffreys, D. A. (1996). Evoked potential studies of face and object processing.Visual Cognition, 3, 1-38.
  • Keysers, C., Xiao, D. K., Foldiak, P., & Perrett, D. I. (2001). The speed of sight.Journal of Cognitive Neuroscience, 13, 90-101.[PubMed]
  • Kirchner, H., & Thorpe, S. J. (2006). Ultra-rapid object detection with saccadic eye movements: visual processing speed revisited.Vision Research, 46, 1762-1776.[PubMed]
  • Bacon-Mace, N., Mace, M. J., Fabre-Thorpe, M., & Thorpe, S. J. (2005). The time course of visual processing: backward masking and natural scene categorisation.Vision Research, 45, 1459-1469.[PubMed]
  • Bar, M. (2003). A cortical mechanism for triggering top-down facilitation in visual object recognition.Journal of Cognitive Neuroscience, 15, 600-609.[PubMed]
  • Bar, M., Kassam, K. S., Ghuman, A. S., Boshyan, J., Schmid, A. M., Dale, A. M., et al. (2006). Top-down facilitation of visual recognition.Proceedings of the National Academy of Science USA, 103, 449-454.[PubMed]
  • Bentin, S., Allison, T., Puce, A., Perez, A., & McCarthy, G. (1996). Electrophysiological studies of face perception in humans.Journal of Cognitive Neuroscience, 8, 551-565.
  • Braun, J., & Julesz, B. (1998). Withdrawing attention at little or no cost: detection and discrimination tasks.Perception & Psychophysics, 60, 1-23.[PubMed]
  • Braun, J., & Sagi, D. (1990). Vision outside the focus of attention.Perception & Psychophysics, 48, 45-58.[PubMed]
  • Breitmeyer, B. G., Öğmen, H., & Chen, J. (2004). Unconscious priming by color and form: different processes and levels.Consciousness and Cognition, 13, 138-157.[PubMed]
  • Breitmeyer, B. G. (2007). Visual Masking: Past accomplishments, present status, future developments.Advances in Cognitive Psychology, 3, 9-20.http://www.ac-psych.org/index.php?id=2&rok=2007&issue=1-2#article_34
  • Bullier, J. (2001). Integrated model of visual processing.Brain Research: Brain Research Reviews, 36, 96-107.[PubMed]
  • Delorme, A., & Thorpe, S. J. (2001). Face identification using one spike per neuron: resistance to image degradations.Neural Networks, 14, 795-803.[PubMed]
  • Fei-Fei, L., VanRullen, R., Koch, C., & Perona, P. (2005). Why does natural scene categorization require little attention? Exploring attentional requirements for natural and synthetic stimuli.Visual Cognition, 12, 893-924.
  • Felleman, D. J., & Van Essen, D. C. (1991). Distributed hierarchical processing in the primate cerebral cortex.Cerebral Cortex, 1, 1-47.[PubMed]
  • Fukushima, K., & Miyake, S. (1982). Neocognitron: A new algorithm for pattern recognition tolerant of deformations and shifts in position.Pattern Recognition, 15, 455-469.
  • Gautrais, J., & Thorpe, S. J. (1998). Rate coding vs temporal order coding: A theorical approach.Biosystems, 48, 57-65.[PubMed]
  • Gross, C. G., Rocha-Miranda, C. E., & Bender, D. B. (1972). Visual properties of neurons in inferotemporal cortex of the macaque.Journal of Neurophysiology, 35, 96-111.[PubMed]
  • Kreiman, G., Koch, C., & Fried, I. (2000). Category-specific visual responses of single neurons in the human medial temporal lobe.Nature Neuroscience, 3, 946-953.[PubMed]
  • Lamme, V. A., & Roelfsema, P. R. (2000). The distinct modes of vision offered by feedforward and recurrent processing.Trends in Neurosciences, 23, 571-579.[PubMed]
  • Lamme, V. A., Super, H., & Spekreijse, H. (1998). Feed-forward, horizontal, and feed-back processing in the visual cortex.Current Opinion in Neurobiology, 8, 529-535.[PubMed]
  • Large, M. E., Kiss, I., & McMullen, P. A. (2004). Electrophysiological correlates of object categorization: Back to basics.Brain Research: Cognitive Brain Research, 20, 415-426.[PubMed]
  • Li, F. F., VanRullen, R., Koch, C., & Perona, P. (2002). Rapid natural scene categorization in the near absence of attention.Proceedings of the National Academy of Science USA, 99, 9596-9601.[PubMed]
  • Liu, J., Harris, A., & Kanwisher, N. (2002). Stages of processing in face perception: an MEG study.Nature Neuroscience, 5, 910-916.[PubMed]
  • Logothetis, N. K., Pauls, J., & Poggio, T. (1995). Shape representation in the inferior temporal cortex of monkeys.Current Biology, 5, 552-563.[PubMed]
  • Low, A., Bentin, S., Rockstroh, B., Silberman, Y., Gomolla, A., Cohen, R., et al. (2003). Semantic categorization in the human brain: spatiotemporal dynamics revealed by magnetoencephalography.Psychological Science, 14, 367-372.[PubMed]
  • Moran, J., & Desimone, R. (1985). Selective attention gates visual processing in the extrastriate cortex.Science, 229, 782-784.[PubMed]
  • Mouchetant-Rostaing, Y., Giard, M. H., Delpuech, C., Echallier, J. F., & Pernier, J. (2000). Early signs of visual categorization for biological and non-biological stimuli in humans.Neuroreport, 11, 2521-2525.[PubMed]
  • Neumann, O. (1990). Direct parameter specification and the concept of perception.Psychological Research, 52, 207-215.[PubMed]
  • Öğmen, H., Breitmeyer, B. G., & Melvin, R. (2003). The what and where in visual masking.Vision Research, 43, 1337-1350.[PubMed]
  • Oram, M. W., & Perrett, D. I. (1992). Time course of neural responses discriminating different views of the face and head.Journal of Neurophysiology, 68, 70-84.[PubMed]
  • Perrett, D. I., Rolls, E. T., & Caan, W. (1982). Visual neurons responsive to faces in the monkey temporal cortex.Experimental Brain Research, 47, 329-342.[PubMed]
  • Quiroga, R. Q., Reddy, L., Kreiman, G., Koch, C., & Fried, I. (2005). Invariant visual representation by single neurons in the human brain.Nature, 435, 1102-1107.[PubMed]
  • Reddy, L., Reddy, L., & Koch, C. (2006). Face identification in the near-absence of focal attention.Vision Research, 46, 2336-2343.[PubMed]
  • Reddy, L., Wilken, P., & Koch, C. (2004). Face-gender discrimination is possible in the near-absence of attention.Journal of Vision, 4, 106-117.[PubMed]
  • Reynolds, J. H., & Desimone, R. (1999). The role of neural mechanisms of attention in solving the binding problem.Neuron, 24, 19-29, 111-125.[PubMed]
  • Riesenhuber, M., & Poggio, T. (1999). Hierarchical models of object recognition in cortex.Nature Neuroscience, 2, 1019-1025.[PubMed]
  • Schmidt, T. (2002). The finger in flight: real-time motor control by visually masked color stimuli.Psychological Science, 13, 112-118.
  • Seeck, M., Michel, C. M., Mainwaring, N., Cosgrove, R., Blume, H., Ives, J., et al. (1997). Evidence for rapid face recognition from human scalp and intracranial electrodes.Neuroreport, 8, 2749-2754.[PubMed]
  • Thorpe, S. J. (1990). Spike arrival times: A highly efficient coding scheme for neural networks. In R. Eckmiller, G. Hartman & G. Hauske (Eds.),Parallel processing in neural systems(pp. 91-94). North-Holland: Elsevier.
  • Thorpe, S. J., & Fabre-Thorpe, M. (2001). Seeking categories in the brain.Science, 291, 260-263.[PubMed]
  • Thorpe, S. J., Fize, D., & Marlot, C. (1996). Speed of processing in the human visual system.Nature, 381, 520-522.
  • Thorpe, S. J., Guyonneau, R., Guilbaud, N., Allegraud, J. M., & VanRullen, R. (2004). SpikeNet: real-time visual processing with one spike per neuron.Neurocomputing, 58-60, 857-864.
  • Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention.Cognitive Psychology, 12, 97-136.[PubMed]
  • VanRullen, R. (2003). Visual saliency and spike timing in the ventral visual pathway.Journal of Physiology Paris, 97, 365-377.[PubMed]
  • VanRullen, R., Delorme, A., & Thorpe, S. J. (2001). Feed-forward contour integration in primary visual cortex based on asynchronous spike propagation.Neurocomputing, 38-40, 1003-1009.
  • VanRullen, R., Gautrais, J., Delorme, A., & Thorpe, S. J. (1998). Face processing using one spike per neuron.Biosystems, 48, 229-239.
  • VanRullen, R., & Koch, C. (2003). Visual selective behavior can be triggered by a feed-forward process.Journal of Cognitive Neuroscience, 15, 209-217.[PubMed]
  • VanRullen, R., Reddy, L., & Fei-Fei, L. (2005). Binding is a local problem for natural objects and scenes.Vision Research, 45, 3133-3144.[PubMed]
  • VanRullen, R., Reddy, L., & Koch, C. (2004). Visual search and dual-tasks reveal two distinct attentional resources.Journal of Cognitive Neuroscience, 16, 4-14.[PubMed]
  • VanRullen, R., & Thorpe, S. J. (2001). The time course of visual processing: from early perception to decision-making.Journal of Cognitive Neuroscience, 13, 454-461.[PubMed]
  • VanRullen, R., & Thorpe, S. J. (2002). Surfing a spike wave down the ventral stream.Vision Research, 42, 2593-2615.[PubMed]
  • Vogels, R. (1999). Categorization of complex visual images by rhesus monkeys. Part 2: single-cell study.European Journal of Neuroscience, 11, 1239-1255.[PubMed]
  • Wolfe, J. M., & Bennett, S. C. (1997). Preattentive object files: shapeless bundles of basic features.Vision Research, 37, 25-43.[PubMed]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.cejsh-article-doi-10-2478-v10053-008-0022-3
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.