Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

Results found: 2

first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
As part of the research, chitin materials were obtained using the electrospinning method. For this purpose, chitin solutions were prepared in phosphoric acid and lithium chloride in an amide solvent. The coagulation of chitin materials was performed in alkaline water baths and in distilled water. As a result of the method, microspheres and microfibers of chitin were obtained. The morphological structure of the obtained materials was analyzed using a scanning electron microscope (SEM) and an optical microscope. The obtained microspheres were characterized by a similar diameter value, amounting to 195 μm. In contrast, chitin microfibers from 90 to 150 μm. The obtained materials were subjected to mid-infrared and Raman spectrophotometric tests in order to determine the influence of the solvents used on the chemical structure of native and regenerated chitin. Infrared spectroscopy studies confirmed no changes in the chemical structure of regenerated chitin. Raman spectroscopy studies confirmed no degradation of regenerated chitin. In the spectra obtained, differences were observed in the form of changes in the shape of the bands for oscillators be associated in intermolecular interactions, which is caused by changes in the supermolecular structure.
EN
As a result of the work carried out, composites were obtained whose matrix was polylactide (PLA) and the filler was hemp shives with the addition of stearin. Using a heating press, composites with different shares of both PLA and hemp shives were obtained. The amount of stearin was always 15% in relation to the mass of hemp shives used. Samples were prepared from the obtained composites to test the biodegradation process, which were measured and weighed. The biodegradation process was carried out in the environment, placing the appropriately prepared batches of composites in compost derived from grass. Samples were taken at monthly intervals to analyze changes in mass and thickness and morphological assessment. The degradation process of the obtained composites was carried out for 3 months. The mass of the samples after the first month of biodegradation did not change significantly, however, with the biodegradation time, the masses of the tested composite samples decrease. The thickness of composite samples after the first month of biodegradation increased in relation to the initial value, which may be caused by the adsorption of water from the substrate. However, after three months of biodegradation, a decrease in thickness was observed for all samples in comparison to the initial value. Analysis of the surface morphology of the composite samples carried out using a stereoscopic microscope and a scanning electron microscope confirmed the biodegradation process for the obtained composites. Stearin, which is a mixture of fatty acids, used as a composite modifying additive turned out to be a nutrient for microorganisms present in the compost, which accelerated the decomposition of the samples. As a result of the conducted research, it can be stated that the obtained composite has properties that support ecological processing, which is in line with the assumptions of a circular economy.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.