Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

Refine search results

Results found: 1

first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Point-light biological motion stimuli provide spa-tio-temporal information about the structure of the human body in motion. Manipulation of the spatial structure of point-light stimuli reduces the ability of human observers to perceive biological motion. A recent study has reported that interference with the spatial structure of point-light walkers also reduces the evoked event-related potentials over the occipitotemporal cortex, but that interference with the temporal structure of the stimuli evoked event-related potentials similar to normal biological motion stimuli. We systematically investigated the influence of spatial and temporal manipulation on 2 common discrimination tasks and compared it with predictions of a neurocomputational model previously proposed. This model first analyzes the spatial structure of the stimulus independently of the temporal information to derive body posture and subsequently analyzes the temporal sequence of body postures to derive movement direction. Similar to the model predictions, the psychophysical results show that human observers need only intact spatial configuration of the stimulus to discriminate the facing direction of a point-light walker. In contrast, movement direction discrimination needs a fully intact spatio-temporal pattern of the stimulus. The activation levels in the model predict the observed event-related potentials for the spatial and temporal manipulations.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.